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Abstract

The remarkable breakthroughs in point cloud represen-
tation learning have boosted their usage in real-world ap-
plications such as self-driving cars and virtual reality. How-
ever, these applications usually have a strict requirement
for not only accurate but also efficient 3D object detec-
tion. Recently, knowledge distillation has been proposed
as an effective model compression technique, which trans-
fers the knowledge from an over-parameterized teacher to
a lightweight student and achieves consistent effectiveness
in 2D vision. However, due to point clouds’ sparsity and
irregularity, directly applying previous image-based knowl-
edge distillation methods to point cloud detectors usually
leads to unsatisfactory performance. To fill the gap, this
paper proposes PointDistiller, a structured knowledge dis-
tillation framework for point clouds-based 3D detection.
Concretely, PointDistiller includes local distillation which
extracts and distills the local geometric structure of point
clouds with dynamic graph convolution and reweighted
learning strategy, which highlights student learning on the
crucial points or voxels to improve knowledge distillation
efficiency. Extensive experiments on both voxels-based and
raw points-based detectors have demonstrated the effective-
ness of our method over seven previous knowledge distilla-
tion methods. For instance, our 4× compressed PointPillars
student achieves 2.8 and 3.4 mAP improvements on BEV
and 3D object detection, outperforming its teacher by 0.9
and 1.8 mAP, respectively. Codes are available in https:
//github.com/RunpeiDong/PointDistiller.

1. Introduction

The growth in large-scale lidar datasets [14] and the
achievements in end-to-end 3D representation learning [46,
47] have boosted the developments of point cloud based seg-
mentation, generation, and detection [25, 48]. As one of the
essential tasks of 3D computer vision, 3D object detection
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Figure 1. Experimental results (mAP of moderate difficulty) of our
methods on 4×, 8×, and 16× compressed students on KITTI. The
area of dash lines indicates the benefits of knowledge distillation.

plays a fundamental role in real-world applications such as
autonomous driving cars [3, 6, 14] and virtual reality [43].
However, recent research has shown a growing discrepancy
between cumbersome 3D detectors that achieve state-of-the-
art performance and lightweight 3D detectors which are
affordable in real-time applications on edge devices. To ad-
dress this problem, sufficient model compression techniques
have been proposed, such as network pruning [18,35,37,73],
quantization [8,12,40], lightweight model design [21,38,51],
and knowledge distillation [20].

Knowledge distillation, which aims to improve the per-
formance of a lightweight student model by training it to
mimic a pre-trained and over-parameterized teacher model,
has evolved into one of the most popular and effective model
compression methods in both computer vision and natu-
ral language processing [20, 50, 52, 66]. Sufficient theoret-
ical and empirical results have demonstrated its effective-
ness in image-based visual tasks such as image classifica-
tion [20, 50], semantic segmentation [33] and object detec-
tion [1, 5, 28, 71]. However, compared with images, point
clouds have their properties: (i) Point clouds inherently lack
topological information, which makes recovering the local
topology information crucial for the visual tasks [26, 39, 65].
(ii) Different from images that have a regular structure, point
clouds are irregularly and sparsely distributed in the metric
space [13, 15].

These differences between images and point clouds have
hindered the image-based knowledge distillation methods
from achieving satisfactory performance on point clouds and
also raised the requirement to design specific knowledge dis-
tillation methods for point clouds. Recently, a few methods
have been proposed to apply knowledge distillation to 3D
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Figure 2. Distribution of the voxels with different number of points
inside them. Voxels with no points are not included here.

detection [17, 53]. However, most of these methods focus
on the choice of student-teacher in a multi-modal setting,
e.g., teaching point clouds-based student detectors with an
images-based teacher or vice versa, and still ignore the pe-
culiar properties of point clouds. To address this problem,
we propose a structured knowledge distillation framework
named PointDistiller, which involves local distillation to
distill teacher knowledge in the local geometric structure of
point clouds, and reweighted learning strategy to handle the
sparsity of point clouds by highlight student learning on the
relatively more crucial voxels or points.
Local Distillation Sufficient recent studies show that captur-
ing and making use of the semantic information in the local
geometric structure of point clouds have a crucial impact on
point cloud representation learning [47, 64]. Hence, instead
of directly distilling the backbone feature of teacher detec-
tors to student detectors, we propose local distillation, which
firstly clusters the local neighboring voxels or points with
KNN (K-Nearest Neighbours), then encodes the semantic
information in local geometric structure with dynamic graph
convolutional layers [64], and finally distill them from teach-
ers to students. Hence, the student detectors can inherit the
teacher’s ability to understand point clouds’ local geometric
information and achieve better detection performance.
Reweighted Learning Strategy One of the mainstream meth-
ods for processing point clouds is to convert them into volu-
metric voxels and then encode them as regular data. How-
ever, due to the sparsity and the noise in point clouds, most
of these voxels contain only a single point. For instance, as
shown in Figure 2, on the KITTI dataset, around 68% voxels
in point clouds contain only one point, which has a high
probability of being a noise point. Hence, the representative
features in these single-point voxels have relatively lower im-
portance in knowledge distillation compared with the voxels
which contain multiple points. Motivated by this observation,
we propose a reweighted learning strategy, which highlights
student learning on the voxels with multiple points by giv-
ing them larger learning weights. Besides, the similar idea
can also be easily extended to raw points-based detectors
to highlight knowledge distillation on the points with more
considerable influence on the prediction.

Extensive experiments on both voxels-based and raw-
points based detectors have been conducted to demonstrate
the effectiveness of our method over the previous seven
knowledge distillation methods. As shown in Figure 1, on
PointPillars and SECOND detectors, our method leads to 4×
compression and 0.9∼1.8 mAP improvements at the same
time. On PointRCNN, our method leads to 8× compression
with only 0.2 BEV mAP drop. Our main contributions be
summarized as follows.

• We propose local distillation, which firstly encodes the
local geometric structure of point clouds with dynamic
graph convolution and then distills them to students.

• We propose reweighted learning strategy to handle the
sparsity and noise in point clouds. It highlights stu-
dent learning on the voxels, which have more points
inside them, by giving them higher learning weights in
knowledge distillation.

• Extensive experiments on both voxels-based and raw
points-based detectors have been conducted to demon-
strate the performance of our method over seven previ-
ous methods. Besides, we have released our codes to
promote future research.

2. Related Work
2.1. Knowledge Distillation

The idea of training a small model with a large pre-trained
model was firstly proposed by Buciluǎ et al. for ensemble
model compression [2]. Then, with the excellent break-
throughs of deep learning, Hinton et al. propose the concept
of knowledge distillation which strives to compress an over-
parameterized teacher model by transferring its knowledge
to a lightweight student model [20]. Early knowledge distil-
lation methods usually train the students to mimic the pre-
dicted categorical probability distribution of teachers [20,74].
Then, extensive methods have been proposed to learn teacher
knowledge in the backbone features [50] or its variants, such
as attention [69, 71], relation [31, 42, 45, 60], task-oriented
information [72] and so on. Following its success in classifi-
cation, abundant works have applied knowledge distillation
to object detection [5, 28, 61, 71], segmentation [33], image
generation [22, 27, 29, 31, 49, 70], pre-trained language mod-
els [52, 66], semi-supervised learning [24, 58] and lead to
consistent effectiveness.

Knowledge Distillation on Object Detection Recently,
designing specific knowledge distillation methods to im-
prove the efficiency and accuracy of object detection has
become a rising and popular topic. Chen et al. first propose
to apply the naive prediction and feature-based knowledge
distillation methods to object detection [5]. Then, Wang et
al. show that the imbalance between foreground objects
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and background objects hinders knowledge distillation from
achieving better performance in object detection [61]. To
address this problem, abundant knowledge distillation meth-
ods have tried to find the to-be-distilled regions based on
the ground-truth [61], detection results [11], spatial atten-
tion [71], query-based attention [23] and gradients [16].
Moreover, recent methods have also been proposed to dis-
till the pixel-level and object-level relation from teachers
to students [11, 34, 71]. Besides knowledge distillation for
2D detection, some cross-modal knowledge distillation have
been introduced to transfer knowledge from RGB-based
teacher detectors to lidar-based student detectors or vice
versa [9, 17, 53]. However, most of these methods focus on
the choice of students and teachers in a multi-modal frame-
work, while the design of specific knowledge distillation
optimization methods on point clouds based pure 3D detec-
tion has not been well-explored.

2.2. 3D Object Detection on Point Clouds

The rapid development of deep learning has firstly
boosted the research in 2D object detection and then recently
increased the research trend in point clouds-based 3D object
detection. PointNet [46] is firstly proposed to extract the fea-
ture of points with multi-layer perception in an end-to-end
manner. Then, PointNet++ is further proposed to capture
the local structures in a hierarchical fashion with density
adaptive sampling and grouping [47]. Zhou et al. propose
VoxelNet, a single-stage detector that divides a point cloud
into equally spaced 3D voxels and processes them with voxel
feature encoding layers [77]. Then, SECOND is proposed to
improve VoxelNet with sparse convolutional layers and focal
loss [67]. PointPillars is proposed to divide point clouds into
several pillars and then convert them into a pseudo image,
which can be further processed with 2D convolutional lay-
ers [25, 41]. Shi et al. propose PointRCNN, a two-stage
detection method that firstly generates bottom-up 3D pro-
posals based on the raw point clouds and then refines them
to obtain the final detection results [55]. Afterward, Fast
Point R-CNN and PV-RCNN are proposed to utilize both
voxel representation and raw point clouds to exploit their
respective advantages [7, 54]. Recently, Qi et al. propose to
perform offboard 3D detection with point cloud sequences,
which is able to make use of the temporal points and achieve
comparable performance with human labels [48]. The graph
convolutional neural network is another rising star in point
cloud detection [56, 64]. Following [4], Wang and Solomon
propose to model 3D detection as graph message passing
with set-to-set prediction, which removes post-processing
necessity [63]. Zhou et al. propose adaptive graph convo-
lution, which generates adaptive kernels according to the
learned features [76].

Efficient 3D Object Detectors Unfortunately, the signifi-
cant 3D detection performance usually comes at the expense

of high computational and storage costs, making them unaf-
fordable in real-time applications such as self-driving cars.
To address this issue, recent research attention has been paid
to designing efficient 3D detectors. Tang et al. propose to ap-
ply neural architecture search to 3D detection by using sparse
point-voxel convolution [57]. Li et al. propose Lidar-RCNN,
which resorts to a point-based approach and remedies the
problem of uncorrected proposal sizes [32]. Liu et al. pro-
pose voxel-point cnn to represent the 3D input data in points
while performing the convolutions in voxels to reduce the
memory accessing consumption [36]. Recently, Li et al.
propose to improve the efficiency of graph convolution for
point clouds by simplified KNN and graph shuffling [30].

3. Methodology
3.1. Preliminaries

Given a set of point clouds X = {x1, x2, ..., xn} and
the corresponding label set Y = {y1, y2, ..., ym}, the object
detector can be formulated as F = f ◦ g, where f is the
feature encoding layer to extract representation features from
inputs and g is the detection head for prediction. Then, the
representation feature on the sample x can be written as
f(x) ∈ Rn×C , where n indicates the number of voxels
for voxels-based detectors or the number of points for raw
points-based detectors. C indicates the number of channels.
Besides, for voxels-based detectors, we define vij(x) = 1
if the j-th point of x belongs to the i-voxel else 0. Then,
the number of points in the i-th voxel can be denoted as∑

j vij(x). Usually, knowledge distillation involves a to-be-
trained student detector and a pre-trained teacher detector,
and we distinguish them with scripts S and T , respectively.

3.2. Our Method

Sampling Top-N To-be-distilled Voxels (Points) As dis-
cussed in previous sections, since the point clouds are over-
whelmingly sparse while the voxels are usually equally
spaced, most of the voxels only contain very few and even
single point. Thus, these single-point voxels have much
less value to be learned by students in knowledge distilla-
tion. Even in raw points-based detectors, there usually exist
some points which are relatively more crucial and some
points which are not meaningful (e.g., the noise points).
Thus, instead of distilling all the voxels or points in point
clouds, we propose to distill the voxels or points which are
more valuable for knowledge distillation. Concretely, for
voxels-based detectors, we define the importance score of i-
th voxel as

∑
j vij(x), which indicates the number of points

inside it. For point-based detectors, motivated by previous
works which localized the crucial pixels in images with at-
tention, we define the importance score for i-th point as its
permutation-invariant maximal value along the channel di-
mension, which can be formulated as max (f(x)[i]). Based
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and how they contribute to the distillation loss.

on the importance score, we can sample the top-N signifi-
cant voxels or points for knowledge distillation based on the
importance score computed from fT (x). For simplicity in
writing, we denote the selected student and teacher features
in top-N important voxels or points as AT (x) ∈ RN×CT

and AS(x) ∈ RN×CS , respectively, where CS and CT indi-
cate the number of channels in student and teacher features.

Extracting Local Geometric Information As pointed out
by abundant previous works, the local geometric information
has a crucial influence on the performance of point cloud
detectors [47, 64]. Thus, instead of directly distilling the
representative feature, we propose local distillation which
extracts the local geometric information of point clouds with
dynamic graph convolution layers and distills it to the stu-
dent detector. Concretely, denoting zi = A(x)[i] as the
feature of the i-th to-be-distilled voxel or point, we can build
a graph based on this voxel or point and its K neighboring
voxels or points clustered by KNN (K-Nearest Neighbours).
By denoting the features of zi and its K − 1 neighbours as

zi,1 and Ni = {zi,2, zi,3, ..., zi,K} respectively, motivated
by previous methods [46, 64], we firstly update the feature
of each voxel (or point) in this graph by concatenating them
with the global centroid voxel (or point) feature zi,1, which
can be formulated as ẑi,j = cat

(
[zi,1, zi,j ]

)
for all zi,j ∈ Ni.

Then, we apply a dynamic graph convolution as the aggre-
gation operation upon them, which can be formulated as
Gi = γ(ẑi,1, ..., ẑi,K), where γ is the aggregation operator.
Following previous graph-based point cloud networks, we
set γ as a nonlinear layer with ReLU activation and batch nor-
malization. Then the training objective of local distillation
can be formulated as

argmin
θS ,θγ

E x

[
1

N

N∑
i=1

∥∥GS
i (x)− GT

i (x)
∥∥] , (1)

where θS indicates the parameters of student encoding layer
fS . θγ = [θγS , θγT ] indicates the parameters of dynamic
graph convolution layers for the student and teacher detec-
tors. Note that these layers are trained with the student
simultaneously and can be discarded during inference.

Reweighting Knowledge Distillation Loss Usually, com-
pared with the teacher detector, the student detector has much
fewer parameters, implying inferior learning capacity. Thus,
it is challenging for the student detector to inherit teacher
knowledge in all points or voxels. As discussed above, differ-
ent voxels and points in point cloud object detection have dif-
ferent values in knowledge distillation. Thus, we propose to
reweight the learning weight of each voxel or point based on
the importance score introduced in previous paragraphs. De-
note the learning weight for the N to-be-distilled as ϕ ∈ RN .
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Model F P KD
Car Pedestrians Cyclists

mAP
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointPillars

34.3 4.8 × 94.3 88.1 83.6 57.9 51.8 47.6 86.5 65.0 61.1 68.3

9.0 1.3 × 92.4 88.2 83.6 53.0 47.9 44.1 81.8 63.1 59.0 66.4
9.0 1.3 ✓ 93.1 89.0 86.3 59.8 52.8 48.2 83.8 65.8 62.0 69.2

2.5 0.3 × 91.3 84.8 82.2 50.1 44.4 41.6 74.2 56.1 52.5 61.8
2.5 0.3 ✓ 92.5 85.2 81.9 50.8 45.8 42.5 77.2 59.5 55.6 63.5

SECOND

69.8 5.3 × 93.1 88.9 85.9 64.9 58.1 51.9 84.3 69.9 65.7 72.3

17.8 1.4 × 93.1 86.6 85.7 64.7 57.8 52.8 84.1 68.5 64.5 71.0
17.8 1.4 ✓ 93.2 88.6 86.0 65.1 58.1 53.1 87.4 72.9 68.5 73.2

4.6 0.4 × 95.0 86.2 83.3 61.6 54.9 49.2 80.9 63.6 59.6 68.3
4.6 0.4 ✓ 95.4 88.3 83.7 64.5 57.6 52.2 85.2 68.8 64.4 71.6

PointRCNN

104.9 4.1 × 95.0 86.7 84.3 69.8 64.5 58.1 92.8 74.6 70.4 75.3

13.7 0.5 × 93.5 85.9 83.5 71.6 65.4 59.1 91.1 71.0 67.2 74.1
13.7 0.5 ✓ 93.3 85.7 83.5 74.0 67.2 60.5 94.6 72.3 67.9 75.1

7.1 0.3 × 95.8 85.4 81.7 72.9 65.5 58.6 91.8 69.3 65.9 73.4
7.1 0.3 ✓ 95.2 84.3 81.7 72.6 64.8 57.7 92.6 72.9 68.5 74.0

Table 1. Experimental results of our method for BEV (Bird-Eye-View) object detection. F and P indicate the number of float operations
(/G) and parameters (/M) of the detector, respectively. mAP indicates the mean average precision of moderate difficulty. KD indicates
whether our method is utilized. The reported result in the first line of each detector is the performance of the teacher detector.

Model F P KD
Car Pedestrians Cyclists

mAP
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointPillars

34.3 4.8 × 87.3 75.9 71.1 52.0 45.9 41.4 78.6 59.2 55.8 60.3

9.0 1.3 × 87.4 75.9 71.0 48.2 43.0 38.7 74.1 57.2 53.3 58.7
9.0 1.3 ✓ 88.1 76.9 73.8 54.6 47.5 42.3 80.3 62.0 58.8 62.1

2.5 0.3 × 83.1 69.8 65.4 44.0 38.7 35.3 70.9 52.1 48.7 53.5
2.5 0.3 ✓ 83.7 69.8 65.3 45.3 40.3 36.5 72.7 54.7 51.1 54.9

SECOND

69.8 5.3 × 88.6 79.3 75.7 60.1 53.2 47.0 79.8 65.7 61.6 66.1

17.8 1.4 × 89.2 77.4 74.0 58.8 51.3 45.5 80.5 65.4 61.3 64.7
17.8 1.4 ✓ 88.9 76.9 73.6 60.0 53.0 47.4 83.2 68.6 64.2 66.2

4.6 0.4 × 86.3 72.6 66.0 53.6 47.8 41.8 76.7 58.7 55.1 59.7
4.6 0.4 ✓ 87.0 73.3 68.1 57.0 51.0 45.4 81.0 63.5 59.3 62.6

PointRCNN

104.9 4.1 × 92.1 80.1 77.4 66.8 60.3 54.3 92.1 72.3 67.8 70.9

13.7 0.5 × 89.8 76.8 72.7 67.9 60.9 54.0 88.1 68.0 64.4 68.6
13.7 0.5 ✓ 91.4 75.6 72.9 70.1 63.5 56.1 92.0 69.8 65.4 69.6

7.1 0.3 × 89.8 75.3 70.7 68.7 60.7 53.4 91.1 67.2 63.9 67.7
7.1 0.3 ✓ 89.6 75.6 72.6 69.4 61.0 53.5 91.0 70.2 65.5 69.0

Table 2. Experimental results of our method for 3D object detection. F and P indicate the number of float operations (/G) and parameters
(/M) of the detector, respectively. mAP indicates the mean average precision of moderate difficulty. KD indicates whether our method is
utilized. The reported result in the first line of each detector is the performance of the teacher detector.

Similar with the importance score defined during sampling,
we define the learning weight of each graph as the maximal
value on the corresponding features after a softmax function,
which can be formulated as ϕ = softmax

(
max(GT (x))/τ

)
,

where τ is the temperature hyper-parameter in softmax func-
tion. For voxels-based methods, we define ϕ as the number
of points in the voxel after a softmax function, which can

be formulated as ϕi = softmax
(∑

j vi,j/τ
)

. Then, with
the reweighting strategy, the training objective of knowledge
distillation can be formulated as

argmin
θS ,θγ

E x

[
1

N

N∑
i=1

ϕi ·
∥∥GS

i (x)− GT
i (x)

∥∥] . (2)
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Task Method
Car Pedestrians Cyclists

mAP
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

BEV

Teacher w/o KD 94.3 88.1 83.6 57.9 51.8 47.6 86.5 65.0 61.1 68.3

Student w/o KD 92.4 88.2 83.6 53.0 47.9 44.1 81.8 63.1 59.0 66.4
+ Romero et al. [50] 91.5 85.6 83.1 57.5 51.0 46.3 82.8 65.1 61.1 67.2
+ Zagoruyko et al. [69] 92.6 88.0 83.6 56.7 50.9 47.3 81.4 64.4 60.5 67.7
+ Zheng et al. [75] 92.7 87.9 83.2 57.7 51.0 46.8 78.1 61.8 57.9 66.9
+ Tung et al. [60] 92.8 88.0 83.3 54.5 48.7 45.2 84.2 64.3 60.7 67.0
+ Tian et al. [59] 92.7 87.8 83.2 56.6 50.4 46.8 80.3 61.9 57.9 66.7
+ Heo et al. [19] 92.6 87.9 83.5 57.6 51.0 46.8 78.1 61.8 57.8 66.9
+ Zhang et al. [71] 92.3 85.7 83.0 59.7 52.0 47.6 71.0 64.3 60.5 67.5
+ Ours 93.1 89.0 86.3 59.8 52.8 48.2 83.8 65.8 62.0 69.2

3D

Teacher w/o KD 87.3 75.9 71.1 52.0 45.9 41.4 78.6 59.2 55.8 60.3

Student w/o KD 87.4 75.9 71.0 48.2 43.0 38.7 74.1 57.2 53.3 58.7
+ Romero et al. [50] 84.9 73.4 70.6 50.9 44.2 39.3 75.9 58.5 54.6 58.7
+ Zagoruyko et al. [69] 87.6 75.7 71.4 51.0 44.8 40.7 74.4 57.8 54.2 59.5
+ Zheng et al. [75] 87.3 75.5 71.5 52.6 45.6 40.8 74.9 58.6 54.9 59.9
+ Tung et al. [60] 87.5 76.0 71.3 50.1 43.3 39.2 79.2 59.5 55.3 59.6
+ Tian et al. [59] 85.6 74.2 71.0 49.5 43.5 39.0 76.4 58.4 54.7 58.7
+ Heo et al. [19] 87.7 76.1 71.7 52.6 45.6 40.8 74.9 58.6 54.9 60.1
+ Zhang et al. [71] 87.5 75.8 71.6 53.4 45.8 40.9 76.1 59.0 55.2 60.2
+ Ours 88.1 76.9 73.8 54.6 47.5 42.3 80.3 62.0 58.8 62.1

Table 3. Comparison between our method and previous knowledge distillation methods on PointPillars. The teacher and the student
detectors have 34.3 and 9.0 GFLOPs, respectively. mAP indicates the mean average precision of moderate difficulty.

BEV Detection 3D Detection

LD RL
Car Pedestrians Cyclists

mAP
Car Pedestrians Cyclists

mAP
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

× × 92.4 88.2 83.6 53.0 47.9 44.1 81.8 63.1 59.0 66.4 87.4 75.9 71.0 48.2 43.0 38.7 74.1 57.2 53.3 58.7
✓ × 92.7 88.2 83.7 58.2 51.0 47.0 84.3 66.9 63.1 68.7 87.6 76.0 71.5 52.6 45.9 40.7 79.8 61.6 58.0 61.2
× ✓ 93.1 88.5 85.7 55.6 49.6 45.7 84.2 67.3 62.9 68.4 87.8 76.5 72.0 49.4 43.7 39.4 78.7 61.5 57.5 60.6
✓ ✓ 93.1 89.0 86.3 59.8 52.8 48.2 83.8 65.8 62.0 69.2 88.1 76.9 73.8 54.6 47.5 42.3 80.3 62.0 58.8 62.1

Table 4. Ablation study on 4× compressed PointPillars students. LD and RL indicates local distillation and the reweighted learning strategy,
respectively. mAP is measured on the moderate difficulty.

As shown in the above loss function, with a higher ϕi, the
knowledge distillation loss between student and teacher fea-
tures at the i-th graph will have a more extensive influence on
the overall loss, and thus student learning on the i-th graph
can be highlighted. As a result, the proposed reweighting
strategy allows the student detector to pay more attention
to learning teacher knowledge in the relatively more cru-
cial voxel graphs (point graphs). Moreover, Equation 2 also
implies that our method is a feature-based knowledge distil-
lation method that is not correlated with the architecture of
detectors and the label set Y . Hence, it can be directly added
to the origin training loss of all kinds of 3D object detectors
for model compression.

4. Experiment
4.1. Experiment Setting

We have evaluated our method in both voxels-based ob-
ject detector including PointPillars [25], SECOND [67] and

CenterPoint [68], and the raw points based object detector
including PointRCNN [55]. Most experiments are conducted
on KITTI [14] and nuScenes [3], which consist of samples
that have both lidar point clouds and images. Our models
are trained with only the lidar point clouds. For KITTI, we
report the average precision calculated by 40 sampling recall
positions for BEV (Bird’s Eye View) object detection and
3D object detection on the validation split. Following the
typical protocol, the IoU threshold is set as 0.7 for class Car
and 0.5 for class Pedestrians and Cyclists. We have mainly
compared our methods with seven previous knowledge dis-
tillation methods, including methods proposed by Remero et
al. [50], Zagoruko et al. [69], Tung et al. [60], Heo et al. [19],
Zheng et al. [75], Tian et al. [59], and Zhang et al. [71]. All
the experiments are conducted with mmdetection3d [10]
and PyTorch [44]. We keep the training and evaluation set-
tings in mmdetection3d as default. The teacher model is
the origin model before compression. The student model
shares the same architecture and neural network depth as
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Model FLOPs (/G) #Params (/M) KD Method mAP(↑) NDS(↑)

PointPillars

34.3 4.8 Teacher w/o KD 39.3 53.2

17.1 (2.00×) 2.4 (2.00×)

Student w/o KD 36.0 50.5
+ Heo et al. [19] 36.2+0.2 50.6+0.1

+ Tian et al. [59] 35.7−0.3 50.4−0.1

+ Wang et al. [62] 36.2+0.2 50.7+0.2

+ Ours 36.7+0.7 51.0+0.5

9.0 (3.8×) 1.3 (3.69×)

Student w/o KD 32.2 47.3
+ Heo et al. [19] 32.4+0.2 47.6+0.3

+ Tian et al. [59] 32.3+0.1 47.2+0.4

+ Wang et al. [62] 32.5+0.3 47.8+0.5

+ Ours 32.8+0.6 48.6+1.3

CenterPoint

121.2 9.2 Teacher w/o KD 57.3 65.6

45.6 (2.66×) 4.8 (1.92×)

Student w/o KD 55.4 64.2
+ Heo et al. [19] 55.7+0.3 64.4+0.2

+ Tian et al. [59] 55.9+0.5 64.6+0.4

+ Wang et al. [62] 55.8+0.4 64.6+0.4

+ Ours 56.4+1.0 65.1+0.9

71.7 (1.69×) 6.3 (1.46×)

Student w/o KD 56.0 64.5
+ Heo et al. [19] 56.3+0.3 64.8+0.3

+ Tian et al. [59] 56.5+0.5 65.0+0.4

+ Wang et al. [62] 56.3+0.3 64.9+0.4

+ Ours 57.0+1.0 65.3+0.8

Table 5. Experimental results on nuScenes dataset with PointPillars
and CenterPoint. A higher mAP and NDS is better.

its teacher but with fewer channels. Note that experiments
on students with less neural layers are also provided in the
appendix. Following previous works, the average precision
of three difficulties and the three categories are reported as
the performance metrics [14]. Please refer to our codes in
the supplementary material for more details.

4.2. Experimental Results

Table 1 shows the performance of detectors trained with
and without our method for BEV detection and 3D detec-
tion, respectively. It is observed that: (i) Significant average
precision improvements on all kinds of detectors and all
compression ratios for both BEV and 3D detection. On
average, 2.4 and 1.0 moderate mAP improvements can be
observed for the voxel and raw points-based detectors, re-
spectively. On BEV and 3D detection, 1.9 and 1.9 moderate
mAP improvements can be obtained, respectively. (ii) On
the BEV detection of PointPillars and SECOND detectors,
the 4× compressed and accelerated students trained with
our method outperform their teachers by 0.9 and 0.9 mAP,
respectively. On the 3D detection of PointPillars and SEC-
OND detectors, the 4× compressed and accelerated students
trained with our method outperform their teachers by 1.8
and 0.1 mAP, respectively. (iii) Consistent average precision
boosts can be observed in detection results of all difficulties.
For instance, on BEV detection of PointPillars students, 2.4,
2.3, and 2.3 mAP improvements can be observed for easy,
moderate, and hard difficulties, respectively. These observa-
tions demonstrate that our method can successfully transfer
teacher knowledge to the student detectors. (iv) Consistent
average precision boosts can be observed in detection results
of all categories. For instance, on moderate BEV detection
of PointPillars students, 0.6, 3.2 and 3.1 mAP improvements

))

Ours BEV

K N

Ours 3D Baseline 3D Baseline BEV

Figure 5. A sensitivity study to hyper-parameters in our method on
KITTI with 4× compressed PointPillars detctors. mAP is measured
on the moderate difficulty.

Figure 6. Visualization on importance scores for PointPillars. Red
points indicate the voxels with high importance scores.

can be obtained on cars, pedestrians and cyclists, respectively.
(v) On PointRCNN, on average 1.3 and 1.2 moderate mAP
improvements can be observed on BEV and 3D detection,
respectively, indicating that our method is also effective for
raw points-based detectors. In summary, these experiment
results demonstrate that our method can successfully transfer
the knowledge from teacher detectors to student detectors
and lead to significant and consistent performance boosts.
Student Latency We have also measured the latency of
teachers and students on RTX 2080Ti. Our experiments
show that the 4× compressed PointPillars and SECOND,
the 8× compressed PointRCNN achieves 2.2×, 2.5×, 3.4×
acceleration compared with their teachers in terms of latency,
indicating the acceleration of our method is also effective on
hardware. Please refer to our appendix for more details.

Comparison with Other KD Methods Comparison be-
tween our method and previous knowledge distillation meth-
ods is shown in Table 3. It is observed that: (i) Our method
outperforms the previous methods by a clear margin. On
BEV and 3D detection, our method outperforms the second-
best KD method by 1.5 and 1.9 moderate mAP, respectively.
(ii) Our method achieves the best performance for all cat-
egories of all difficulties. (iii) Besides, our method is the
only knowledge distillation method that enables the student
detector to outperform its teacher detector.

Experiments on nuScenes Experiments of around
2× and 4× compressed PointPillars and CenterPoint on
nuScenes are shown in Table 5. It is observed that our
method leads to 0.83 and 0.88 improvements on mAP and
NDS on average, respectively, outperforming the other KD
methods by a large margin. These observations indicate that
our method is also effective on the large-scale dataset.
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Figure 7. Comparison between the detection results of students trained with and without KD. Greens and blue boxes indicate the bounding
boxes from prediction and ground-truths, respectively. Red points are the points insides the predicted bounding boxes.

5. Discussion

5.1. Ablation Study and Sensitivity Study

Ablation Study The proposed PointDistiller is mainly
composed of two components, including the reweighted
learning strategy (RL) and local distillation (LD). Ablation
studies with 4× compressed PointPillars students on KITTI
are shown in Table 4. It is observed that: (i) 2.0 and 1.9 mAP
improvements can be obtained by only using the reweighted
learning strategy to distill the backbone features on BEV
detection and 3D detection, respectively. (ii) 2.3 and 2.5
mAP boosts can be gained by using local distillation without
reweighted learning on BEV detection and 3D detection, re-
spectively. (iii) By combining the two methods together, 0.5
and 0.9 further mAP improvements can be achieved on BEV
detection and 3D detection, respectively. These observations
indicate that each module in PointDistiller has its individ-
ual effectiveness and their merits are orthogonal. Besides,
they also implies that the proposed local distillation and
reweighted learning may be combined with other knowledge
distillation methods to achieve better performance.

Sensitivity Study Our method mainly introduces two
hyper-parameters, K and N , indicating the number of nodes
in a graph for local distillation and the number of to-be-
distilled voxels (points) respectively. A hyper-parameter
sensitivity study on them is shown in Figure 5. It is observed
that our method with different hyper-parameter values consis-
tently outperforms the baseline by a large margin, indicating
our method is not sensitive to hyper-parameters.

5.2. Visualization Analysis

Visualization on Importance Score In the reweighted learn-
ing strategy, the importance scores of each voxel or point are
utilized to determine whether it should be distilled. Visual-
ization of the importance scores in PointPillars is shown in
Figure 6. It is observed that they successfully localize the

foreground objects (e.g., cars and pedestrians) and the hard-
negative objects (e.g., walls), indicating that the importance
score in our method is able to find the voxels or points which
are relatively more important.

Visualization on Detection Results In this subsection,
we have visualized the detection results of the student model
trained with and without our method for comparison. Note
that both student models are 4× compressed PointPillars
trained on KITTI. The green and blue boxes indicate the
boxes of the model prediction and the ground truth. As
shown in Figure 7, the student model without knowledge
distillation tends to have much more false-positive (FP) pre-
dictions. In contrast, this excessive FP problem is alleviated
in the student trained with our method. This observation
is consistent with our experimental results that the distilled
PointPillars has 3.4 mAP improvements.

6. Conclusion

This paper proposes a structured knowledge distillation
framework named PointDistiller for point clouds-based ob-
ject detection. It is composed of local distillation to first
encode the semantic information in local geometric struc-
ture in point clouds and distill it to students, and reweighted
learning to handle the sparsity and noise in point clouds by
assigning different learning weights to different points and
voxels. Extensive experiments on both voxels-based detec-
tors and raw points-based detectors have demonstrated the
superiority over seven previous KD methods. Our ablation
study has shown the individual effectiveness of each module
in PointDistiller. Besides, the visualization results demon-
strate that PointDistiller can significantly improve detection
performance by reducing false-positive predictions, and the
importance score is able to reveal the more significant voxels.
To the best of our knowledge, this work initiates the first step
to exploring KD for efficient point clouds-based 3D object
detection, and we hope this could spur future research.

21798



References
[1] Mohammad Farhadi Bajestani and Yezhou Yang. Tkd: Tem-

poral knowledge distillation for active perception. In IEEE
Winter Conf. Appl. Comput. Vis. (WACV), pages 953–962,
2020. 1

[2] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-
Mizil. Model compression. In ACM SIGKDD Int. Conf.
Knowl. Discov. Data Min. (KDD), pages 535–541. ACM,
2006. 2

[3] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. In IEEE/CVF Conf. Comput.
Vis. Pattern Recog. (CVPR), pages 11618–11628. Computer
Vision Foundation / IEEE, 2020. 1, 6

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors,
Eur. Conf. Comput. Vis. (ECCV), volume 12346 of Lecture
Notes in Computer Science, pages 213–229. Springer, 2020.
3

[5] Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Man-
mohan Chandraker. Learning efficient object detection mod-
els with knowledge distillation. In Adv. Neural Inform. Pro-
cess. Syst. (NIPS), pages 742–751, 2017. 1, 2

[6] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
Multi-view 3d object detection network for autonomous driv-
ing. In IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR),
pages 6526–6534. IEEE Computer Society, 2017. 1

[7] Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Fast point
r-cnn. In Int. Conf. Comput. Vis. (ICCV), pages 9775–9784,
2019. 3

[8] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. PACT: parameterized clipping activation for
quantized neural networks. CoRR, abs/1805.06085, 2018. 1

[9] Zhiyu Chong, Xinzhu Ma, Hong Zhang, Yuxin Yue, Haojie
Li, Zhihui Wang, and Wanli Ouyang. Monodistill: Learning
spatial features for monocular 3d object detection. In Int.
Conf. Learn. Represent. (ICLR), 2022. 3

[10] MMDetection3D Contributors. MMDetection3D: Open-
MMLab next-generation platform for general 3D object
detection. https://github.com/open-mmlab/
mmdetection3d, 2020. 6

[11] Xing Dai, Zeren Jiang, Zhao Wu, Yiping Bao, Zhicheng
Wang, Si Liu, and Erjin Zhou. General instance distillation
for object detection. In IEEE/CVF Conf. Comput. Vis. Pattern
Recog. (CVPR), pages 7842–7851, 2021. 3

[12] Runpei Dong, Zhanhong Tan, Mengdi Wu, Linfeng Zhang,
and Kaisheng Ma. Finding the task-optimal low-bit sub-
distribution in deep neural networks. In Proc. Int. Conf. Mach.
Learn. (ICML), volume 162 of Proceedings of Machine Learn-
ing Research, pages 5343–5359. PMLR, 2022. 1

[13] Lue Fan, Ziqi Pang, Tianyuan Zhang, Yu-Xiong Wang, Hang
Zhao, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang. Em-
bracing single stride 3d object detector with sparse trans-

former. In IEEE/CVF Conf. Comput. Vis. Pattern Recog.
(CVPR), 2022. 1

[14] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–1237,
2013. 1, 6, 7

[15] Ben Graham. Sparse 3d convolutional neural networks. In
Xianghua Xie, Mark W. Jones, and Gary K. L. Tam, editors,
Brit. Mach. Vis. Conf. (BMVC), pages 150.1–150.9. BMVA
Press, 2015. 1

[16] Jianyuan Guo, Kai Han, Yunhe Wang, Han Wu, Xinghao
Chen, Chunjing Xu, and Chang Xu. Distilling object detectors
via decoupled features. In IEEE/CVF Conf. Comput. Vis.
Pattern Recog. (CVPR), pages 2154–2164. Computer Vision
Foundation / IEEE, 2021. 3

[17] Xiaoyang Guo, Shaoshuai Shi, Xiaogang Wang, and Hong-
sheng Li. Liga-stereo: Learning lidar geometry aware repre-
sentations for stereo-based 3d detector. In Int. Conf. Comput.
Vis. (ICCV), pages 3133–3143. IEEE, 2021. 2, 3

[18] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. In Int. Conf. Learn.
Represent. (ICLR), 2016. 1

[19] Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park,
Nojun Kwak, and Jin Young Choi. A comprehensive overhaul
of feature distillation. In Int. Conf. Comput. Vis. (ICCV),
pages 1921–1930, 2019. 6, 7

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling
the knowledge in a neural network. In Adv. Neural Inform.
Process. Syst. (NeurIPS), 2014. 1, 2

[21] Andrew Howard, Ruoming Pang, Hartwig Adam, Quoc V. Le,
Mark Sandler, Bo Chen, Weijun Wang, Liang-Chieh Chen,
Mingxing Tan, Grace Chu, Vijay Vasudevan, and Yukun Zhu.
Searching for mobilenetv3. In Int. Conf. Comput. Vis. (ICCV),
pages 1314–1324. IEEE, 2019. 1

[22] Qing Jin, Jian Ren, Oliver J Woodford, Jiazhuo Wang, Geng
Yuan, Yanzhi Wang, and Sergey Tulyakov. Teachers do
more than teach: Compressing image-to-image models. In
IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR), pages
13600–13611, 2021. 2

[23] Zijian Kang, Peizhen Zhang, Xiangyu Zhang, Jian Sun, and
Nanning Zheng. Instance-conditional knowledge distilla-
tion for object detection. Adv. Neural Inform. Process. Syst.
(NeurIPS), 34, 2021. 3

[24] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. In Int. Conf. Learn. Represent. (ICLR).
OpenReview.net, 2017. 2

[25] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In IEEE/CVF Conf.
Comput. Vis. Pattern Recog. (CVPR), pages 12697–12705,
2019. 1, 3, 6

[26] Guohao Li, Matthias Mueller, Guocheng Qian, Itzel Carolina
Delgadillo Perez, Abdulellah Abualshour, Ali Kassem Thabet,
and Bernard Ghanem. Deepgcns: Making gcns go as deep
as cnns. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI),
pages 1–1, 2021. 1

21799



[27] Muyang Li, Ji Lin, Yaoyao Ding, Zhijian Liu, Jun-Yan Zhu,
and Song Han. Gan compression: Efficient architectures for
interactive conditional gans. In IEEE/CVF Conf. Comput. Vis.
Pattern Recog. (CVPR), pages 5284–5294, 2020. 2

[28] Quanquan Li, Shengying Jin, and Junjie Yan. Mimicking very
efficient network for object detection. In IEEE/CVF Conf.
Comput. Vis. Pattern Recog. (CVPR), pages 6356–6364, 2017.
1, 2

[29] Shaojie Li, Jie Wu, Xuefeng Xiao, Fei Chao, Xudong Mao,
and Rongrong Ji. Revisiting discriminator in GAN com-
pression: A generator-discriminator cooperative compression
scheme. In Adv. Neural Inform. Process. Syst. (NeurIPS),
pages 28560–28572, 2021. 2

[30] Yawei Li, He Chen, Zhaopeng Cui, Radu Timofte, Marc
Pollefeys, Gregory S Chirikjian, and Luc Van Gool. Towards
efficient graph convolutional networks for point cloud han-
dling. In Int. Conf. Comput. Vis. (ICCV), pages 3752–3762,
2021. 3

[31] Zeqi Li, Ruowei Jiang, and Parham Aarabi. Semantic relation
preserving knowledge distillation for image-to-image trans-
lation. In Eur. Conf. Comput. Vis. (ECCV), pages 648–663.
Springer, 2020. 2

[32] Zhichao Li, Feng Wang, and Naiyan Wang. Lidar r-cnn: An
efficient and universal 3d object detector. In IEEE/CVF Conf.
Comput. Vis. Pattern Recog. (CVPR), pages 7546–7555, 2021.
3

[33] Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin, Zhenbo Luo,
and Jingdong Wang. Structured knowledge distillation for
semantic segmentation. In IEEE/CVF Conf. Comput. Vis.
Pattern Recog. (CVPR), pages 2604–2613, 2019. 1, 2

[34] Yifan Liu, Changyong Shu, Jingdong Wang, and Chunhua
Shen. Structured knowledge distillation for dense prediction.
IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), 2020. 3

[35] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin
Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta
learning for automatic neural network channel pruning. In
Int. Conf. Comput. Vis. (ICCV), October 2019. 1

[36] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-
voxel cnn for efficient 3d deep learning. In Adv. Neural Inform.
Process. Syst. (NeurIPS), volume 32, 2019. 3

[37] Christos Louizos, Max Welling, and Diederik P. Kingma.
Learning sparse neural networks through l_0 regularization.
In Int. Conf. Learn. Represent. (ICLR). OpenReview.net, 2018.
1

[38] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn archi-
tecture design. In Eur. Conf. Comput. Vis. (ECCV), pages
116–131, 2018. 1

[39] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu.
Rethinking network design and local geometry in point cloud:
A simple residual mlp framework. In Int. Conf. Learn. Repre-
sent. (ICLR), 2021. 1

[40] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and
Max Welling. Data-free quantization through weight equal-
ization and bias correction. In Int. Conf. Comput. Vis. (ICCV),
October 2019. 1

[41] Anshul Paigwar, David Sierra-Gonzalez, Özgür Erkent, and
Christian Laugier. Frustum-pointpillars: A multi-stage ap-
proach for 3d object detection using rgb camera and lidar. In
Int. Conf. Comput. Vis. (ICCV), pages 2926–2933, 2021. 3

[42] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Rela-
tional knowledge distillation. In IEEE/CVF Conf. Comput.
Vis. Pattern Recog. (CVPR), pages 3967–3976, 2019. 2

[43] Youngmin Park, Vincent Lepetit, and Woontack Woo. Mul-
tiple 3d object tracking for augmented reality. In 7th IEEE
and ACM International Symposium on Mixed and Augmented
Reality, ISMAR 2008, Cambridge, UK, 15-18th September
2008, pages 117–120. IEEE Computer Society, 2008. 1

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin
Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
Adv. Neural Inform. Process. Syst. (NeurIPS), pages 8024–
8035, 2019. 6

[45] Baoyun Peng, Xiao Jin, Jiaheng Liu, Dongsheng Li, Yichao
Wu, Yu Liu, Shunfeng Zhou, and Zhaoning Zhang. Corre-
lation congruence for knowledge distillation. In Int. Conf.
Comput. Vis. (ICCV), pages 5007–5016, 2019. 2

[46] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In IEEE/CVF Conf. Comput. Vis. Pattern
Recog. (CVPR), pages 652–660, 2017. 1, 3, 4

[47] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Adv. Neural Inform. Process.
Syst. (NIPS), volume 30, 2017. 1, 2, 3, 4

[48] Charles R Qi, Yin Zhou, Mahyar Najibi, Pei Sun, Khoa Vo,
Boyang Deng, and Dragomir Anguelov. Offboard 3d object
detection from point cloud sequences. In IEEE/CVF Conf.
Comput. Vis. Pattern Recog. (CVPR), pages 6134–6144, 2021.
1, 3

[49] Yuxi Ren, Jie Wu, Xuefeng Xiao, and Jianchao Yang. Online
multi-granularity distillation for GAN compression. In Int.
Conf. Comput. Vis. (ICCV), pages 6773–6783. IEEE, 2021. 2

[50] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. In Int. Conf. Learn. Represent.
(ICLR), 2015. 1, 2, 6

[51] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In IEEE/CVF Conf. Comput.
Vis. Pattern Recog. (CVPR), pages 4510–4520, 2018. 1

[52] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas
Wolf. Distilbert, a distilled version of bert: smaller, faster,
cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.
1, 2

[53] Corentin Sautier, Gilles Puy, Spyros Gidaris, Alexandre
Boulch, Andrei Bursuc, and Renaud Marlet. Image-to-lidar
self-supervised distillation for autonomous driving data. In
IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR), 2022.
2, 3

21800



[54] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping
Shi, Xiaogang Wang, and Hongsheng Li. PV-RCNN: point-
voxel feature set abstraction for 3d object detection. In
IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR), pages
10526–10535. Computer Vision Foundation / IEEE, 2020. 3

[55] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
cnn: 3d object proposal generation and detection from point
cloud. In IEEE/CVF Conf. Comput. Vis. Pattern Recog.
(CVPR), pages 770–779, 2019. 3, 6

[56] Dong Wook Shu, Sung Woo Park, and Junseok Kwon. 3d
point cloud generative adversarial network based on tree struc-
tured graph convolutions. In Int. Conf. Comput. Vis. (ICCV),
pages 3859–3868, 2019. 3

[57] Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Ji
Lin, Hanrui Wang, and Song Han. Searching efficient 3d
architectures with sparse point-voxel convolution. In Eur.
Conf. Comput. Vis. (ECCV), pages 685–702. Springer, 2020.
3

[58] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In Adv. Neural Inform.
Process. Syst. (NIPS), pages 1195–1204, 2017. 2

[59] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive
representation distillation. In Int. Conf. Learn. Represent.
(ICLR). OpenReview.net, 2020. 6, 7

[60] Frederick Tung and Greg Mori. Similarity-preserving knowl-
edge distillation. In Int. Conf. Comput. Vis. (ICCV), pages
1365–1374, 2019. 2, 6

[61] Tao Wang, Li Yuan, Xiaopeng Zhang, and Jiashi Feng. Dis-
tilling object detectors with fine-grained feature imitation. In
IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR), pages
4933–4942, 2019. 2, 3

[62] Yue Wang, Alireza Fathi, Jiajun Wu, Thomas Funkhouser,
and Justin Solomon. Multi-frame to single-frame: knowl-
edge distillation for 3d object detection. arXiv preprint
arXiv:2009.11859, 2020. 7

[63] Yue Wang and Justin M. Solomon. Object DGCNN: 3d
object detection using dynamic graphs. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan, editors, Adv. Neural Inform.
Process. Syst. (NeurIPS), pages 20745–20758, 2021. 3

[64] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Trans. Graph.,
38(5):1–12, 2019. 2, 3, 4

[65] Wenxuan Wu, Zhongang Qi, and Fuxin Li. Pointconv: Deep
convolutional networks on 3d point clouds. In IEEE/CVF
Conf. Comput. Vis. Pattern Recog. (CVPR), pages 9621–9630.
Computer Vision Foundation / IEEE, 2019. 1

[66] Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei, and
Ming Zhou. Bert-of-theseus: Compressing BERT by progres-
sive module replacing. In Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 7859–7869.
Association for Computational Linguistics, 2020. 1, 2

[67] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-
ded convolutional detection. Sensors, 18(10):3337, 2018. 3,
6

[68] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-
based 3d object detection and tracking. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11784–11793, 2021. 6

[69] Sergey Zagoruyko and Nikos Komodakis. Paying more atten-
tion to attention: Improving the performance of convolutional
neural networks via attention transfer. In Int. Conf. Learn.
Represent. (ICLR), 2017. 2, 6

[70] Linfeng Zhang, Xin Chen, Xiaobing Tu, Pengfei Wan, Ning
Xu, and Kaisheng Ma. Wavelet knowledge distillation: To-
wards efficient image-to-image translation. In IEEE/CVF
Conf. Comput. Vis. Pattern Recog. (CVPR), 2022. 2

[71] Linfeng Zhang and Kaisheng Ma. Improve object detection
with feature-based knowledge distillation: Towards accurate
and efficient detectors. In Int. Conf. Learn. Represent. (ICLR),
2021. 1, 2, 3, 6

[72] Linfeng Zhang, Yukang Shi, Zuoqiang Shi, Kaisheng Ma, and
Chenglong Bao. Task-oriented feature distillation. In Adv.
Neural Inform. Process. Syst. (NeurIPS), 2020. 2

[73] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie
Wen, Makan Fardad, and Yanzhi Wang. A systematic dnn
weight pruning framework using alternating direction method
of multipliers. In Eur. Conf. Comput. Vis. (ECCV), September
2018. 1

[74] Ying Zhang, Tao Xiang, Timothy M Hospedales, and
Huchuan Lu. Deep mutual learning. In IEEE/CVF Conf.
Comput. Vis. Pattern Recog. (CVPR), pages 4320–4328, 2018.
2

[75] Wu Zheng, Weiliang Tang, Li Jiang, and Chi-Wing Fu. SE-
SSD: self-ensembling single-stage object detector from point
cloud. In IEEE/CVF Conf. Comput. Vis. Pattern Recog.
(CVPR), pages 14494–14503. Computer Vision Foundation /
IEEE, 2021. 6

[76] Haoran Zhou, Yidan Feng, Mingsheng Fang, Mingqiang Wei,
Jing Qin, and Tong Lu. Adaptive graph convolution for point
cloud analysis. In Int. Conf. Comput. Vis. (ICCV), pages
4965–4974, 2021. 3

[77] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. In IEEE/CVF Conf.
Comput. Vis. Pattern Recog. (CVPR), pages 4490–4499, 2018.
3

21801


