PromptCAL: Contrastive Affinity Learning via Auxiliary Prompts for Generalized Novel Category Discovery

Sheng Zhang†‡ Salman Khan†⋄ Zhiqiang Shen†⋆ Muzammal Naseer†
Guangyi Chen†‡ Fahad Shahbaz Khan†∗
†Mohamed bin Zayed University of AI ⋄Hong Kong University of Science and Technology
⋆Australian National University ∗Linköping University ‡Carnegie Mellon University
{firstname.lastname}@mbzuai.ac.ae

Abstract

Although existing semi-supervised learning models achieve remarkable success in learning with unannotated in-distribution data, they mostly fail to learn on unlabeled data sampled from novel semantic classes due to their closed-set assumption. In this work, we target a pragmatic but under-explored Generalized Novel Category Discovery (GNCD) setting. The GNCD setting aims to categorize unlabeled training data coming from known and novel classes by leveraging the information of partially labeled known classes. We propose a two-stage Contrastive Affinity Learning method with auxiliary visual Prompts, dubbed PromptCAL, to address this challenging problem. Our approach discovers reliable pairwise sample affinities to learn better semantic clustering of both known and novel classes for the class token and visual prompts. First, we propose a discriminative prompt regularization loss to reinforce semantic discriminativeness of prompt-adapted pre-trained vision transformer for refined affinity relationships. Besides, we propose contrastive affinity learning to calibrate semantic representations based on our iterative semi-supervised affinity graph generation method for semantically-enhanced supervision. Extensive experimental evaluation demonstrates that our PromptCAL method is more effective in discovering novel classes even with limited annotations and surpasses the current state-of-the-art on generic and fine-grained benchmarks (e.g., with nearly 11% gain on CUB-200, and 9% on ImageNet-100) on overall accuracy. Our code is available at https://github.com/sheng-eatamatmath/PromptCAL.

1. Introduction

The deep neural networks have demonstrated favorable performance in the Semi-Supervised Learning (SSL) setting [15,29,40,46,49]. Some recent works can even achieve comparable performance to their fully-supervised counter-

Figure 1. PromptCAL Overview. In contrast to previous method based on semi-supervised contrastive learning, PromptCAL constructs affinity graph on-the-fly to guide representation learning of the class token and prompts. Meanwhile, our prompt-adapted backbone can be tuned to enhance semantic discriminativeness. PromptCAL can discover reliable affinities from a memory bank, especially for novel classes. Therefore, our PromptCAL is better task-aligned and discriminative to novel semantic information.
Our work focuses on GNCD problem. The key challenge of GNCD is to discriminate among novel classes when only the ground truths of known classes are accessible in the training set. Recent studies show that self-supervised pre-trained representations are conducive to discovering novel semantics [4, 5, 11, 41, 53]. A typical work on GNCD [41] takes advantage of the large-scale pre-trained visual transformer (ViT) [37], and learns robust clusters for known and novel classes through semi-supervised contrastive learning on downstream datasets. However, we discover that the remarkable potential of pre-trained ViT is actually suppressed by this practice, due to the class collision [52] issue induced by abundant false negatives in contrastive loss, i.e., considering different unlabeled images from the same or similar semantic class as false negatives. As supported by empirical studies, abundant false negatives in contrastive training can deteriorate the compactness and purity of semantic clustering [5, 16, 21, 52]. Based on empirical investigation, we show that this issue is particularly severe in category discovery. Furthermore, although the existing commonly adopted practice [4, 41] of freezing most parts of the pre-trained backbone can alleviate overfitting on known classes, it constrains the flexibility and adaptability of backbones [18]. Lack of adaptability inhibits models from learning discriminative semantic information on downstream datasets.

To address above limitations and learn better semantically discriminative representations, we propose Prompts-based Contrastive Affinity Learning (PromptCAL) framework to tackle GNCD problem. To be specific, our approach aims to discover semantic clusters in unlabeled data by simultaneous semantic prompt learning based on our Discriminative Prompt Regularization (DPR) loss and representation calibration based on our Contrastive Affinity Learning (CAL) process. Firstly, CAL discovers abundant reliable pseudo positives for DPR loss and contrastive loss based on generated affinity graphs. These semantic-aware pseudo labels further enhance the semantic discriminativeness of DPR supervision. Secondly, DPR regularizes semantic representations of ensembled prompts, which facilitates the discovery of more accurate pseudo labels at the next-step of CAL. Therefore, as model and prompt representations are iteratively enhanced, we can obtain higher quality pseudo positives for further self-training as well as acquire better semantic clustering.

Our PromptCAL achieves State-Of-The-Art (SOTA) performance in extensive experimental evaluation on six benchmarks. Specifically, PromptCAL remarkably surpasses previous SOTA by more than 10% clustering accuracy on the fine-grained CUB-200 and StandfordCars datasets; it also significantly outperforms previous SoTAs by nearly 4% on ImageNet-100 and 7% on CIFAR-100. Interestingly, we identify that both DPR supervised prompts and unsupervised prompts of PromptCAL can learn semantic discriminativeness, which advances the flexibility of the pre-trained backbone. Furthermore, PromptCAL still achieves the best performance in challenging low-labeling and few-class setups.

Our contributions include: (1) We propose a two-stage framework for the generalized novel category discovery problem, in which semantic prompt tuning and contrastive affinity learning mutually reinforce and benefit each other during the learning process. (2) We propose two synergistic learning objectives, contrastive affinity loss and discriminative prompt regularization loss, based on our semi-supervised adapted affinity graphs to enhance semantic discriminativeness. (3) We comprehensively evaluate our method on three generic (i.e., CIFAR-10, CIFAR-100, and ImageNet-100) and three fine-grained benchmarks (i.e., CUB-200, Aircraft, and StandfordCars), achieving state-of-the-art performance, thereby showing its effectiveness. (4) We further showcase generalization ability of PromptCAL and its effectiveness in more challenging low-labeling and few-class setups.

2. Related Work

Generalized Novel Category Discovery (GNCD) problem, first proposed in [41], further extends NCD under a more realistic assumption that unlabeled data can be both sampled from novel classes and known classes. Specifically, the model learns to categorize unlabeled training data containing known and novel classes based on the knowledge of labeled known classes. Besides, a concurrent work, ORCA [4] proposes an uncertainty adaptive margin loss to
reduce the intra-class variances between known and novel classes. GCD [41] addresses this challenging problem via proposed semi-supervised contrastive learning on large-scale pre-trained visual transformer (ViT) followed by constraint KMeans [1, 2]. However, GCD still has limitations: first, the frozen backbone lacks the adaptability to downstream tasks; besides, abundant false negatives will degenerate the semantic representation [7, 16, 21, 52]. To fully unleash the potential of pre-trained ViT, we address these two critical issues via our proposed prompt-based contrastive affinity learning.

Positive Mining in Neighborhoods. Some recent works in self-supervised learning discovered that mining positives to antagonize the side effect of abundant false negatives in the sample-wise contrastive loss is essential to the downstream performance [8, 16, 21, 35, 52]. FNC [16] comprehensively analyzes the adverse effect of false-negatives on contrastive learning SoTAs and performs positive mining based on ensemble similarities on local patch pairs. LA [55] proposes to learn better representation through soft clusters in neighborhoods at different scales. NNCLR [8], NCL [53], and WCL [52] conduct positive mining based on K-Nearest Neighbors (KNN) as pseudo positives to improve contrastive learning. We find one work in SSL [17] also leverages a graph diffusion algorithm to propagate pseudo labels. But there exist major differences between their work and ours: first, features in our context are prone to open-set noises [10] and thus more challenging than SSL; second, we conduct an efficient online diffusion per iteration via a graph subsampling strategy, while they conduct diffusion per epoch on the entire dataset; third, we compute affinity propagation on consensus affinity graph with prior knowledge, while they conduct propagation on naive KNN graph. Our framework incorporates and generalizes consensus KNN [34], which was originally built upon non-learnable SIFT [31] features of synthetic datasets, while our method exploits deep features and can guide end-to-end training, which suits the GNC context.

Visual prompt learning. Prompt learning originates from the field of Natural Language Processing (NLP) [30]. Visual prompt learning (VPT) [18] tunes embedded visual prompts with a frozen pre-trained ViT backbone supervised by downstream objectives, which achieves better transfer. However, based on our experimental analysis, VPT [18] does not exhibit significant benefits especially on fine-grained datasets. Our objective acts as prompt regularization or a weaker semantic supervision signal, which is distinct from the learning goals of prompt ensembling [20, 36] and prompt composition [13] in NLP [30].

3. Method

The challenging aspect of GNC in comparison to SSL is clustering novel semantics under both semantic shifts and missing annotations [40, 47]. However, existing methods [11, 41, 51, 53] cannot reliably discover and employ semantic affinities on pre-trained representations. Meanwhile, recent SoTAs [4, 41] lack suitable strategies to adapt the pre-trained backbone to learn discriminative semantic information without overfitting on known classes.

To this end, we propose PromptCAL, which consists of two synergistic learning objectives: discriminative prompt regularization (DPR) and contrastive affinity learning (CAL). The whole framework is displayed in Fig. 2. Specifically, in the first stage, we learn warm-up representation (in Sec. 3.2) for further tuning. Our DPR loss which is applied to both stages for prompt regularization is also explained. In the second stage, we discover reliable pseudo positives on generated affinity embedding graphs based on semi-supervised affinity generation (SemiAG) mechanism (in Sec. 3.3). Next, we propose our contrastive affinity loss (in Sec. 3.4) on pseudo labels generated by online SemiAG with the support of embedding memories. Lastly, we also present PromptCAL training algorithm in Appendix E.

3.1. Preliminaries

Before introducing our method, we formulate the GNCD problem and present some preliminaries.

Problem Definition. Our GNCD setting follows [41]. Specifically, we assume that the training dataset \(D = D_l \cup D_u \) comprises two subsets: a labeled set \(D_l = \{x_i, y_i\}_{i=1}^{N_l} \subset \mathcal{X} \times \mathcal{Y} \) with its label space \(\mathcal{Y} \), and an unlabeled set \(D_u = \{x_i\}_{i=1}^{N_u} \subset \mathcal{X}_u \) with its underlying label space \(\mathcal{Y}_u = \mathcal{C} = \mathcal{C}_{kwn} \cup \mathcal{C}_{new} \). Here, \(\mathcal{C} \), \(\mathcal{C}_{kwn} \), and \(\mathcal{C}_{new} \) denote the label set for All, Known, and New classes, respectively. Following [41], we assume |\(\mathcal{C} \)| is known.

Architecture. We take a self-supervised pre-trained ViT as our backbone [37]. We denote our visual prompt-adapted ViT backbone [18] as \(f(\cdot; \theta_p, \theta_k) \) parameterized by prompts \(\theta_p \) and last block weights \(\theta_k \). In each mini-batch \(B \), there are two augmented views for each sample. Given a sample vector \(x \in B \), we can extract its embedding \(\mathbf{h} = f(x|\theta_p, \theta_k) \in \mathcal{H} \) and project \(\mathbf{h} \) into feature vector \(\mathbf{z} = g(\mathbf{h}|\theta_k) \in \mathcal{Z} \) through a projection head \(g(\cdot|\theta_k) \) with parameters \(\theta_k \). Here, \(\mathcal{H} \), \(\mathcal{Z} \) denote embedding and feature spaces.

Contrastive Loss. To simplify notations of PromptCAL, we extend the definition of the standard supervised contrastive loss [22] as follows. Given a \(l_2 \)-normalized query vector \(\mathbf{t}_q \) and a set of \(l_2 \)-normalized key vectors \(\mathbf{T}_k \) (which can be from the embedding or feature space), we define:

\[
L_{con}(\mathbf{t}_q, \mathbf{T}_k; \tau, \mathcal{P}, \mathcal{A}) = -\frac{1}{|\mathcal{P}(\mathbf{t}_q)|} \sum_{\mathbf{t}^+_n \in \mathcal{P}(\mathbf{t}_q)} \sum_{\mathbf{t}^+_m \in \mathcal{A}(\mathbf{t}_q)} \exp\left(\frac{\mathbf{t}_q \cdot \mathbf{t}^+_n}{\tau}\right) \exp\left(\frac{\mathbf{t}_q \cdot \mathbf{t}^+_m}{\tau}\right)
\]

where \(\tau \) is the temperature parameter of the contrastive loss, and \(\cdot \) denotes the cosine similarity operation. Here, \(\mathcal{P}(\mathbf{t}_q) \)
and \(A(t_a) \) represent the positive set and anchor set of the query \(t_q \), respectively, which are subsets of \(T_k \).

3.2. Warm-up Phase with Discriminative Prompt Regularization

Discriminative Prompt Regularization. Although computation overheads are largely reduced by only tuning the last block [41], it restricts the backbone from better learning semantic representations and adapting to diverse downstream datasets. Counterintuitively, we discover that naively adapting the class token and visual prompts [18] overfits small datasets (refer to ablations on CUB-200 [42] in Sec. 4.5).

Motivated by [27, 43], we propose a discriminative prompt regularization loss to regularize and force prompts to learn semantically discriminative features with a task-related auxiliary loss. We investigate the superiority of DPR supervision on our prompt-adapted backbone in ablation study (Sec. 4.5). (c) We generate affinity graphs for the class embedding and prompt embedding respectively via affinity propagation with label constraints on their corresponding consensus KNN graphs.

Warm-up Training. Since randomly initialized prompts are not ready for contrastive affinity learning, we include warm-up training to prepare the class token and prompts with dataset-specific representation. The overall training objective in this stage is formulated as:

\[
L_1(x) = L^{\text{CLS}}_\text{semi}(z) + \gamma L^P_\text{semi}(z_P)
\]

where \(L^{\text{CLS}}_\text{semi} \) and \(L^P_\text{semi} \) represent the semi-supervised contrastive loss (SemiCL) on [CLS] and its DPR counterpart on \([P]\), respectively. Here, \(\gamma \) is DPR loss weight. Further, based on extended contrastive loss (Eq. 1), the SemiCL on [CLS] feature \(z \in Z_B \) is written as:

\[
L^{\text{CLS}}_\text{semi}(z) = (1 - \alpha) L_{\text{con}}(z, z_B; \tau, \beta, A_{\text{self}}) + \alpha L_{\text{con}}(z, z_B; \tau_a, \beta_{\text{sup}}, A_{\text{sup}}) I(z \in Z_B)
\]

where \(\tau, \tau_a \) are temperature parameters, and \(I \) is an indicator function. The first and second terms denote self-supervised and supervised contrastive loss on projected features of an entire batch \(Z_B \) and only labeled samples \(Z_{B_l} \), respectively. Following [14, 22], we define \(P_{\text{self}}(z) \) as the augmented counterpart of \(z \) in \(Z_B \), and define \(P_{\text{sup}}(z) \) as all other features in \(Z_{B_l} \) that shares the same class label with \(z \). Besides, we have \(A_{\text{sup}}(z) = Z_{B_l} - \{z\} \) and \(A_{\text{self}}(z) = Z_B - \{z\} \). Similar to Eq. 3, we can define the DPR loss function \(L^P_\text{semi} \) on ensembled prompt feature \(z_P \) in the overall loss (Eq. 2).

3.3. Semi-supervised Affinity Generation

Once the warmed-up semantic representation for the class token and prompts are obtained, abundant positive samples can be discovered by reliable pseudo-labeling methods for enhanced clustering and supervision signals at
next iteration. However, pseudo-labeling techniques in recent works (e.g., naive nearest neighbors, pair-wise predictions as positives [4, 9, 11, 21, 53]) are not robust enough to semantic shifts [33]. To address this issue, we propose a semi-supervised affinity generation method under the assumption that consensus local neighbors share the same semantics. Specifically, we first construct an affinity graph in \(\mathcal{H} \) based on neighborhood statistics [34]. Then, we conduct affinity propagation on the entire graph to calibrate affinities. Lastly, we incorporate the semi-supervised prior from \(\mathcal{D}_t \) into the graph. We explain these steps below.

An illustrative example is presented in Fig. 3. The workflow of SemiAG operations is presented in Fig. 2 (c).

Consensus KNN graph. Given an embedding graph \(\mathcal{G}_\mathcal{H} = (\mathcal{V}, \mathcal{E}) \) whose node set \(\mathcal{V} = \{h_i\}_{i=1}^{N_\mathcal{H}} \) contains \(N_\mathcal{H} \) embeddings and edge set is \(\mathcal{E} = \{e_{i,j} = h_i \cdot h_j\}_{i,j=1}^{N_\mathcal{H}} \), we build a consensus graph \(\mathcal{G}_c = (g_{i,j})_{i,j=1}^{N_\mathcal{H}} \) on \(\mathcal{V} \) via consensus statistics. Each edge \(g_{i,j} \) of \(\mathcal{G}_c \) is defined as:

\[
g_{i,j} = \begin{cases}
\left(\|h_i\|_2, h_j \in \mathcal{O}_K(h_i), \forall h_c \in \mathcal{V}\right) & i \neq j \\
0 & i = j,
\end{cases}
\]

where \(\mathcal{O}_K(h_c) = \text{argtopK}_{h_c}(\{h_j \cdot h_c | h_j \in \mathcal{V}\}) \) denotes the \(K \)-neighborhood of \(h_c \in \mathcal{V} \). Then, we convert it into \(\mathcal{G}_c \) by row normalization. However, consensus graph has a defect: the neighborhood consensus condition is rigorous and only considers local information, which means abundant potential positives are still unretrieved.

Affinity propagation with SemiPriori. To overcome this issue, we leverage the graph diffusion algorithm [48] on the probabilistic matrix \(\mathcal{G}_c \) to propagate local affinities along multi-hop paths to characterize higher-order structural information and avoid degenerated solutions. Specifically, we apply TPG diffusion algorithm [48], which iteratively computes the diffused graph \(\mathcal{G}_d^{(t)} \) as:

\[
\mathcal{G}_d^{(t+1)} = \mathcal{G}_d^{(t)} \mathcal{G}_c^T + \mathcal{I}, \ t = 1, \ldots, \eta
\]

where \(\mathcal{I} \) is an identity matrix, and \(\eta \) is the total diffusion step. \(\mathcal{G}_d^{(t)} \) denotes the \(t \)-th step diffused graph and \(\mathcal{G}_d^{(0)} = \mathcal{G}_c \). We denote the final diffused graph as \(\mathcal{G}_d \).

In Appendix A, we provide more detailed descriptions.

However, the consensus graph and affinity propagation neglect abundant prior information in the labeled data. To address the issue, we incorporate SemiPriori, i.e., add sample-wise class labels as pairwise constraints to \(\mathcal{G}_d \).

We set the edge to 1 if two nodes have the same labels (i.e., \(y_i = y_j \)) and prune the edge if \(y_i \neq y_j \). Meanwhile, we sparsify \(\mathcal{G}_d \) with a pre-defined quantile \(q \), then the generated binarized affinity graph \(\mathcal{G}_b \) is denoted as:

\[
\mathcal{G}_b(i, j) = \begin{cases}
1 & (y_i = y_j) \lor \left(\mathcal{G}_d(i, j) > q\right) \\
0 & (y_i \neq y_j)
\end{cases}
\]

On binarized affinity graph \(\mathcal{G}_b \), positive/negative pairs are regarded as reliable pseudo positives/negatives in noisy embedding space for further contrastive affinity learning (in Sec. 3.4). Therefore, pseudo-labels of both labeled and unlabeled data are computed; while, those of labeled data are calibrated by SemiPriori. Note that we compute two binarized graphs for [CLS] and [P] embeddings, respectively.

3.4. Contrastive Affinity Learning Phase

In this section, given reliable pseudo positives identified from an embedding graph, we introduce two critical components for the second phase learning: online graph sampling strategy and our proposed CAL loss. The overall framework of contrastive affinity learning is illustrated in Fig. 2 (b).

Graph sampling with memory. One practical issue arises (in Sec. 3.3): SemiAG on mini-batches is not effective due to sampling insufficiency; while conducting SemiAG offline on the entire dataset is time-consuming and memory inefficient [17]. To strike a balance between the graph size and computation resources, inspired by [28], we dynamically construct a sub-graph \(\mathcal{G}_H \) sub-sampled from the entire graph \(\mathcal{G}_H \) supported by an extra embedding memory bank \(\mathcal{M} \) and an exponentially moving averaged (EMA) teacher \((f_T, g_T) \), like MoCo [14]. Specifically, for each input batch, the EMA teacher produces stable embeddings,
The target of CAL loss is to gradually calibrate the semantic representation by learning from generated affinity constraints in graphs. Given the sub-graph \(G'_{ht}\) and its corresponding binarized graph \(G''_{ht}\) by SemiAG (in Sec. 3.3), we formulate CAL loss with [CLS] embedding \(h_i\) as a query, embeddings in sub-graph node set \(\mathcal{V}(G'_{ht})\) as keys:

\[
L^{\text{CAL}}_{\text{CLS}}(h_i, G'_b) = L_{\text{con}}(h_i, \mathcal{V}(G'_{ht}), \tau_a, P_a, A_a)
\]

where \(\tau_a\) is a hyper-parameter, and the positive set is defined as \(P_a(h_i) = \{h_{t,j} | G''_{ht}(i,j) = 1, \forall h_{t,j} \neq i \in \mathcal{V}(G'_{ht})\} \cup \{h'_{t,1}\}\) where \(h'_{t,1}\) is \(h_i\) augmented counterpart. Note that \(P_a\) is always non-empty. Since the whole \(\mathcal{V}(G'_{ht})\) is too large, we define the anchor set \(A_a(h_i)\) as the union of \(P_a(h_i)\) and \(N_{\text{neg}}\) randomly sampled pseudo-negatives for each query. For \(L^{\text{CAL}}_{\text{CLS}}\) loss, we also define its corresponding DPR counterpart of CAL loss as \(L^{DPR}_{\text{CAL}}\).

Overall optimization objective. At CAL stage, we also preserve SemiCL loss in feature space to retain the model capability of instance-wise discrimination. To further increase the consistency between the teacher and student, we adapt supervised and self-supervised term of SemiCL (Eq. 3) as:

\[
L^{\text{SELF}}_{\text{CLS}}(z) = L_{\text{con}}(z, Z_{B,T}; \tau, P_{\text{self}}, A_{\text{self}})
\]

\[
L^{\text{SUP}}_{\text{CLS}}(z) = L_{\text{con}}(z, Z_{B,T}; \tau_a, P_{\text{sup}}, A_{\text{sup}}) \mathbb{I}(z \in Z_{B,t})
\]

Here, we use student feature \(z\) as a query and teacher features \(Z_{B,T}\) as keys to strengthen consistencies. The positive and anchor sets follow the same definition as in Eq. (3) but are defined in the teacher feature space.

Then, the overall loss for [CLS] token at CAL stage is formulated as:

\[
L^2_{\text{CLS}} = (1 - \alpha)L^{\text{SUP}}_{\text{CLS}} + \alpha \left(\beta L^{\text{CAL}}_{\text{CLS}} + (1 - \beta) L^{\text{SELF}}_{\text{CLS}} \right)
\]

where \(\beta\) is an adjustable weight. Its corresponding DPR counterpart can be similarly defined, denoted as \(L^2_{\text{DPR}}\).

Finally, since we also adopt DPR at CAL stage, the overall optimization objective is formulated as:

\[
L_2 = L^2_{\text{CLS}} + \gamma L^2_{\text{DPR}}
\]

During the inference, the [CLS] embeddings are adopted as final predictions.

4. Experiments

4.1. Datasets

We evaluate PromptCAL on three generic datasets (i.e., CIFAR-10/100 [25] and ImageNet-100 [26]) and three fine-grained datasets (i.e., CUB-200 [42], StandfordCars [24], and Aircraft [32]). A summary of datasets is listed in Appendix B. For each dataset, we first subsample \(|\text{known}\) classes from all classes. Then, a pre-defined ratio of images for known classes are sampled to form the labeled set \(D_l\). Follow GCD [41], we set labeling ratio to 80% for CIFAR-100 and 50% for other datasets unless otherwise specified. All unsampled images constitute \(D_u\). In practice, we adopt the same dataset split of \(D_l\) and \(D_u\) as in [41]. (See Table 6 in Appendix B for more details on known class numbers and labeling ratios for all dataset). Besides, we adopt fewer \(|\text{known}\) classes and smaller labeling ratios in more challenging setups for ablation study (Sec. 5).

4.2. Evaluation Protocol

We follow GCD [41] evaluation protocol in all experiments unless otherwise specified. Specifically, we perform SemiKMeans clustering [41] on the predicted embeddings. Then, all clusters are mapped through the optimal assignment solved by Hungarian algorithm [44] to their ground-truth classes. The accuracy scores for All, Known, and New classes are reported. The predicted embeddings from the student class token are evaluated during inference.

4.3. Implementation Details

Following GCD [41], we use ViT-B/16 pre-trained DINO [6] on ImageNet-1K [26] as our backbone for evaluation. For all experiments, we fix the batch size to 128 and use the same data augmentation strategies as [41]. We present complete implementation details in Appendix C.

4.4. Main Results

Evaluation on generic datasets. We evaluate both stages of PromptCAL on three generic datasets (i.e., CIFAR-10/100 [25], and ImageNet-100 [26]). Table 1 shows that our PromptCAL consistently and significantly surpasses previous SoTAs, i.e., ViT-adapted ORCA [4], our baseline GCD [41], and adopted NCD SOTA methods (UNO+ [9] and RankStats+ [11]) in terms of overall accuracy on all three datasets. Specifically, PromptCAL surpasses GCD by 6.4% on CIFAR-10, 8.2% on CIFAR-100, and 9.0% on ImageNet-100 on All classes; it also remarkably outperforms ORCA by 7% on CIFAR-100 and 3.9% on ImageNet-100. Besides, in contrast to ORCA and UNO+ which suffer from severe overfitting on Known classes, PromptCAL manifests substantial advantages over other methods on New classes (about 10% improvements on three datasets).
By comparing the 1st stage (PromptCAL-1st) with the 2nd stage (PromptCAL-2nd), we observe major performance boosts, especially on New classes. In addition, we also notice that both stages of our PromptCAL have significant contributions to the final performance on generic datasets. Specifically, PromptCAL-1st improves 5.6\% and 3.0\% over GCD on CIFAR-10/100, respectively; while the PromptCAL-2nd further improves by 5.2\% and 9.0\% on CIFAR-100 and ImageNet-100, respectively. Besides, we also achieve ~ 7\% boost of overall accuracy on CIFAR-100 and 4\% on ImageNet-100 when compared with ORCA. Therefore, above results validate advantages and effectiveness of our two-stage PromptCAL in category discovery.

Evaluation on fine-grained datasets. We also report results on fine-grained datasets to demonstrate the PromptCAL effectiveness in Table 2. Apparently, the low performance of KMeans illustrates the challenging nature of fine-grained category discovery caused by larger intra-class and lower inter-class variations. Notice that ORCA performance degrades substantially on three fine-grained datasets. In contrast, our PromptCAL consistently exceeds NCD SOTA and ORCA, and outperforms GCD by ~ 11\% on All classes on CUB-200 and StanfordCars and ~ 7\% on Aircraft. Different from results in Table 1, the results on fine-grained datasets show that the major performance gain of PromptCAL originates from the 2nd CAL stage. Noticeably, PromptCAL-1st performance even drops compared with GCD on CUB-200 and Aircraft datasets; while, PromptCAL-2nd achieves remarkable and consistent improvements, especially on New classes.

4.5. Ablation and analysis

In this section, we conduct extensive ablation experiments to reveal and investigate contributions of each component. Next, we present in-depth analysis on the effectiveness of SemiAG in CAL stage on CUB-200 [42] dataset. Here, cKNN: consensus KNN graph; AP: affinity propagation; SemiPriori: semi-supervised prior knowledge; SemiCL: semi-supervised contrastive loss in projected feature space on [CLS] and [P]. Scores reported in clustering accuracy. Each proposed component favorably contributes to the overall performance.

Table 1. Evaluation on three generic datasets. Accuracy scores are reported. ‡denotes adapted methods. Both stages of PromptCAL are evaluated.

<table>
<thead>
<tr>
<th>Method</th>
<th>CIFAR-10 New</th>
<th>CIFAR-10 All</th>
<th>ImageNet-100 New</th>
<th>CIFAR-100 New</th>
<th>CIFAR-100 All</th>
<th>ImageNet-100 New</th>
</tr>
</thead>
<tbody>
<tr>
<td>KMeans [1]</td>
<td>83.6</td>
<td>58.7</td>
<td>25.2</td>
<td>52.2</td>
<td>50.8</td>
<td>72.7</td>
</tr>
<tr>
<td>RankStates [11]</td>
<td>46.8</td>
<td>19.2</td>
<td>60.5</td>
<td>58.2</td>
<td>19.3</td>
<td>37.1</td>
</tr>
<tr>
<td>UNO [9]</td>
<td>48.6</td>
<td>96.3</td>
<td>55.8</td>
<td>69.5</td>
<td>47.2</td>
<td>70.3</td>
</tr>
<tr>
<td>GCD [41]</td>
<td>91.5</td>
<td>97.9</td>
<td>88.2</td>
<td>73.0</td>
<td>66.5</td>
<td>74.1</td>
</tr>
<tr>
<td>ORCA [4]</td>
<td>96.9</td>
<td>95.1</td>
<td>97.8</td>
<td>74.2</td>
<td>67.2</td>
<td>79.2</td>
</tr>
</tbody>
</table>

PromptCAL-1st (Ours) 97.1 ± 9.7 ± 98.6 ± 76.0 ± 80.8 ± 66.6 ± 75.4 ± 94.2 ± 66.0

PromptCAL-2nd (Ours) 97.9 ± 96.6 ± 98.5 ± 81.2 ± 84.2 ± 75.3 ± 83.1 ± 92.7 ± 78.3

Table 2. Evaluation on three fine-grained datasets. Accuracy scores are reported. ‡denotes adapted methods. Both stages of PromptCAL are evaluated.

<table>
<thead>
<tr>
<th>Method</th>
<th>CUB-200 New</th>
<th>CUB-200 All</th>
<th>StanfordCars New</th>
<th>StanfordCars All</th>
<th>Aircraft New</th>
<th>Aircraft All</th>
</tr>
</thead>
<tbody>
<tr>
<td>KMeans [1]</td>
<td>54.3</td>
<td>78.9</td>
<td>32.1</td>
<td>12.8</td>
<td>11.8</td>
<td>12.9</td>
</tr>
<tr>
<td>RankStates [11]</td>
<td>33.3</td>
<td>51.6</td>
<td>24.2</td>
<td>28.3</td>
<td>12.1</td>
<td>27.9</td>
</tr>
<tr>
<td>UNO [9]</td>
<td>55.1</td>
<td>49.0</td>
<td>28.1</td>
<td>35.5</td>
<td>18.6</td>
<td>28.3</td>
</tr>
<tr>
<td>GCD [41]</td>
<td>51.3</td>
<td>56.6</td>
<td>48.7</td>
<td>39.0</td>
<td>29.9</td>
<td>45.0</td>
</tr>
<tr>
<td>ORCA [4]</td>
<td>36.3</td>
<td>43.8</td>
<td>32.6</td>
<td>31.9</td>
<td>26.9</td>
<td>31.6</td>
</tr>
</tbody>
</table>

PromptCAL-1st (Ours) 51.1 ± 55.4 ± 48.9 ± 42.6 ± 62.8 ± 32.9 ± 44.5 ± 44.6 ± 44.5

PromptCAL-2nd (Ours) 62.9 ± 64.4 ± 62.1 ± 58.2 ± 70.1 ± 40.6 ± 52.2 ± 52.3 ± 52.3

Table 3. Ablation study on effectiveness of SemiAG in CAL stage on CUB-200 [42] dataset. Here, cKNN: consensus KNN graph; AP: affinity propagation; SemiPriori: semi-supervised prior knowledge; SemiCL: semi-supervised contrastive loss in projected feature space on [CLS] and [P]. Scores reported in clustering accuracy. Each proposed component favorably contributes to the overall performance.

<table>
<thead>
<tr>
<th>Method</th>
<th>CIFAR-10</th>
<th>CIFAR-100</th>
<th>ImageNet-100</th>
<th>CIFAR-100</th>
<th>CIFAR-100</th>
<th>ImageNet-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>KMeans [1]</td>
<td>80.1</td>
<td>70.1</td>
<td>58.8</td>
<td>70.1</td>
<td>55.1</td>
<td>70.1</td>
</tr>
<tr>
<td>RankStates [11]</td>
<td>61.7</td>
<td>63.6</td>
<td>60.7</td>
<td>63.6</td>
<td>60.7</td>
<td>60.7</td>
</tr>
<tr>
<td>UNO [9]</td>
<td>57.3</td>
<td>56.8</td>
<td>55.1</td>
<td>56.8</td>
<td>55.1</td>
<td>55.1</td>
</tr>
<tr>
<td>GCD [41]</td>
<td>54.6</td>
<td>65.5</td>
<td>49.1</td>
<td>65.5</td>
<td>49.1</td>
<td>49.1</td>
</tr>
</tbody>
</table>

(a) (b) (c) (d)

Figure 4. The t-SNE [39] visualization of ViT embeddings on CIFAR-10 test set. (a) is [CLS] embeddings from naive VPT model; (b) denotes our PromptCAL [CLS] embeddings; (c) denotes our PromptCAL embedded [P] embeddings; (d) represents embeddings of an arbitrary PromptCAL unsupervised prompt. All figures share the same axis scale. The complete visualization is presented in Appendix D.
Table 4. Ablation study on effectiveness of prompt-related components on CUB-200 dataset. Here, Prompt: prompt-adapted backbone; \(L_{\text{semi}}^P \): semi-supervised contrastive loss on \([P]\) prompts; \(L_{\text{CAL}}^P \): CAL loss on \([P]\); CAL stage: second-stage training. Scores reported in clustering accuracy. Each component favorably contributes to the overall performance gain.

<table>
<thead>
<tr>
<th>Prompt</th>
<th>(L_{\text{semi}}^P)</th>
<th>(L_{\text{CAL}}^P)</th>
<th>CAL stage</th>
<th>All Known New</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (\times) (\times) (\times) (\times)</td>
<td>51.3</td>
<td>56.7</td>
<td>58.8</td>
<td>48.7</td>
</tr>
<tr>
<td>(2) (\checkmark) (\times) (\times) (\times) (\times)</td>
<td>51.1</td>
<td>55.4</td>
<td>59.9</td>
<td>48.9</td>
</tr>
<tr>
<td>(3) (\checkmark) (\checkmark) (\times) (\times) (\times)</td>
<td>61.6</td>
<td>63.9</td>
<td>62.5</td>
<td>58.0</td>
</tr>
<tr>
<td>(4) (\checkmark) (\checkmark) (\checkmark) (\checkmark) (\times)</td>
<td>61.2</td>
<td>62.5</td>
<td>65.2</td>
<td>59.2</td>
</tr>
<tr>
<td>(5) (\checkmark) (\checkmark) (\checkmark) (\checkmark) (\checkmark)</td>
<td>60.3</td>
<td>62.6</td>
<td>64.8</td>
<td>58.0</td>
</tr>
<tr>
<td>(6) (\checkmark) (\checkmark) (\checkmark) (\checkmark) (\checkmark)</td>
<td>62.9</td>
<td>64.4</td>
<td>62.1</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Ablation study on few-annotation GNCD on CIFAR-100 [25] dataset. Digits following ‘C’ and ‘L’ stand for percentages of known classes and labeling ratios. † denotes adapted methods. Scores reported in accuracy.

<table>
<thead>
<tr>
<th>Method</th>
<th>C50-L10</th>
<th>C25-L50</th>
<th>C10-L50</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCD [41]</td>
<td>70.7</td>
<td>60.1</td>
<td>54.2</td>
</tr>
<tr>
<td>ORCA (ResNet) [4]</td>
<td>67.8</td>
<td>54.3</td>
<td>48.0</td>
</tr>
<tr>
<td>ORCA (ViT) [4]</td>
<td>65.6</td>
<td>52.2</td>
<td>46.9</td>
</tr>
<tr>
<td>PromptCAL-1st (Ours)</td>
<td>61.7</td>
<td>57.2</td>
<td>52.7</td>
</tr>
<tr>
<td>PromptCAL-2nd (Ours)</td>
<td>63.2</td>
<td>60.7</td>
<td>56.2</td>
</tr>
<tr>
<td>PromptCAL-3rd (Ours)</td>
<td>66.9</td>
<td>71.5</td>
<td>65.7</td>
</tr>
</tbody>
</table>

Table 5. Ablation study on few-annotation GNCD on CIFAR-100 [25] dataset. Digits following ‘C’ and ‘L’ stand for percentages of known classes and labeling ratios. † denotes adapted methods. Scores reported in accuracy.

Table 5. Ablation study on few-annotation GNCD on CIFAR-100 [25] dataset. Digits following ‘C’ and ‘L’ stand for percentages of known classes and labeling ratios. † denotes adapted methods. Scores reported in accuracy.

5. Conclusion

In this paper, we propose a two-stage framework, PromptCAL, to tackle challenging GNCD problem. After the warm-up stage of semi-supervised contrastive learning, we iteratively and simultaneously conduct contrastive affinity learning and discriminative prompt regularization to calibrate semantic representations. Specifically, at each iteration, we leverage discovered pseudo affinities on generated affinity graphs to guide optimization of the class token and to reinforce the semantic discriminativeness of prompts and our prompt-adapted ViT backbone. Extensive experiments on multiple generic and fine-grained benchmarks showcase that PromptCAL achieves state-of-the-art performance. Additional evidences illustrates that our discriminative prompt regularization and contrastive affinity learning objectives achieve a synergistic effect. Moreover, PromptCAL exhibits remarkable gains on few-class and low-label settings for categorizing novel classes.
References

[38] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. Advances in neural information processing systems, 30, 2017. 1
[41] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Generalized category discovery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7492–7501, 2022. 1, 2, 3, 4, 6, 7, 8