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(a) Uncertainty = 0.63
Rotation error = 0.05◦, Translation error = 6.30◦

(b) Uncertainty = 7.61
Rotation error = 4.81◦, Translation error = 21.12◦

Figure 1. Two example pairs where, even though the relative pose estimation found a large number of correct inliers (shown by green
line segments), the quality of the estimated poses differs greatly. The uncertainties, used as weighting terms, help in rotation averaging to
account for this quality difference. Here, the shown numbers as the uncertainties are the traces of the covariance matrices.

Abstract

In this paper, we revisit the rotation averaging problem
applied in global Structure-from-Motion pipelines. We ar-
gue that the main problem of current methods is the mini-
mized cost function that is only weakly connected with the
input data via the estimated epipolar geometries. We pro-
pose to better model the underlying noise distributions by
directly propagating the uncertainty from the point corre-
spondences into the rotation averaging. Such uncertain-
ties are obtained for free by considering the Jacobians
of two-view refinements. Moreover, we explore integrat-
ing a variant of the MAGSAC loss into the rotation av-
eraging problem, instead of using classical robust losses
employed in current frameworks. The proposed method
leads to results superior to baselines, in terms of accu-
racy, on large-scale public benchmarks. The code is public.
https://github.com/zhangganlin/GlobalSfMpy

1. Introduction
Building large 3D reconstructions from unordered im-

age collections is an essential component in any system that
relies on crowd-sourced mapping. The current paradigm
is to perform this reconstruction via Structure-from-Motion
[29] which jointly estimates the camera parameters and the
scene geometry represented with a 3D point cloud. Meth-

ods for Structure-from-Motion can generally be categorized
into two classes; Incremental methods [29, 32, 33, 38] that
sequentially grows a seed reconstruction by alternating tri-
angulation and registering new images, and Global meth-
ods [8, 22, 24, 27] which first estimate pairwise geometries
and then aggregate them in a bottom-up approach. Histor-
ically, incremental methods are more robust and accurate,
but the need for frequent bundle adjustment [35] comes with
significant computational cost which limits their scalabil-
ity. In contrast, global (or non-sequential) methods require
much lower computational effort and can in principle scale
to larger image collections. However, in practice, current
methods are held back by the lack of accuracy and have not
enjoyed the same level of success as incremental methods.

Global methods work by first estimating a set of pair-
wise epipolar geometries between co-visible images. Next,
via rotation averaging, a set of globally consistent rotations
are estimated by ensuring they agree with the pairwise rel-
ative rotations. Once the rotations are known, the camera
positions and 3D structure are estimated, and refined jointly
in a single final bundle adjustment.

Rotation averaging has a long history in computer vision
(see e.g. [16,22] for early works) and is a well-studied prob-
lem. Most methods formulate it as an optimization problem,
finding the rotation assignment that minimizes some energy.
A common choice is the chordal distance, measuring the
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discrepancy in the rotation matrices in the L2-sense

min
{Ri}N

i=1

N∑
i=1

∑
j∈N (i)

∥R̂ijRi −Rj∥2F (1)

where R̂ij is the relative rotation estimated between image
i and j. There are also other choices such as using angle-
axis [34] or quaternion [16] as rotation representation, or
optimising over a Lie algebra [17], however the overall idea
(measuring some consistency with the relative estimates)
remains the same. Many works have focused on the opti-
mization problem itself, both theoretically [11, 36] and by
providing new algorithms [9], but did not consider whether
the cost itself is suitable for the task. In (1), each relative ro-
tation measurement is given the same weight. However in
practice, the quality of the epipolar geometries varies sig-
nificantly. Figure 1 shows two images with wildly different
uncertainties (and errors) in the rotation estimate. To ad-
dress this problem, there is a line of work [6, 18, 31] which
augment the cost in (1) with robust loss functions that give
a lower weight to large residuals. However, the same loss
function is generally applied to each residual, independent
of the measurement uncertainty.

In this paper we revisit the rotation averaging problem.
We argue that the main problem in current methods is that
the cost functions that are minimized are only weakly con-
nected with the input data via the estimated epipolar ge-
ometries. We propose to better model the underlying noise
distributions (coming from the keypoint detection noise and
spatial distribution) by directly propagating the uncertainty
from the point correspondences into the rotation averaging
problem, as shown in Figure 2. While the idea itself is sim-
ple, we show that this allows us to get significantly more
accurate estimates of the absolute rotations; reducing the
gap between incremental and global methods. Note that the
uncertainties we leverage are essentially obtained for free
by considering the Jacobians of the two-view refinement.

As a second contribution, we explore integrating a vari-
ant of the MAGSAC [3] loss into the rotation averaging
problem, instead of using the classical robust losses em-
ployed in current frameworks. MAGSAC [3] was originally
proposed as a threshold-free estimator for two-view epipo-
lar geometry, where the idea is to marginalize over an in-
terval of acceptable thresholds, i.e., noise range. We show
that this fits well into the context of rotation-averaging, as it
is not obvious how to set the threshold for deciding on in-
lier/outlier relative rotation measurements, especially in the
uncertainty-reweighted cost that we propose.

2. Related Work

Rotation averaging is a long standing problem in com-
puter vision with some of the early works dating back more

Figure 2. Global Structure from Motion pipeline with the pro-
posed uncertainty-based rotation averaging. In the yellow box, the
opacity of the view graph edges indicates uncertainty difference.

than two decades. Govindu [16] proposes an approxima-
tion in which the problem becomes linear in terms of the
quaternions, after heuristically resolving the sign ambigu-
ity. Similarly, Martinec and Pajdla [22] parameterize the
problem in terms of the full 3× 3 matrix, but drop the non-
linear constraints to obtain a tractable problem. Wilson et
al. [36] investigate, more generally, under what conditions
the rotation averaging problem is easy.

When the chordal distance is used, i.e. (1), the optimiza-
tion problem can be solved via an SDP-based relaxation,
see Arie et al. [2] and Fredriksson et al. [13] for some of the
earlier papers in this line of work. For this particular relax-
ation, Eriksson et al. [11] show that under some noise as-
sumptions, the SDP relaxation obtains the globally optimal
solution. In [11], the authors propose a block-coordinate
descent method specialized for the dual formulation of the
rotation averaging problem. Dellaert et al. [9] propose an
optimization scheme based on sequentially lifting the prob-
lem into higher-dimensional rotations SO(n). The method,
named Shonan rotation averaging, is shown to avoid some
local minima in which standard optimization techniques,
such as Levenberg-Marquardt [23], might be stuck in. In
our work, our contributions are related to changing the cost
function minimized, and it is possible that the methods from
these works could be applied in our setting as well.

To deal with outliers in the relative rotation measure-
ments, Hartley et al. [18] propose a generalization of the
Weiszfeld-algorithm to minimize the L1-loss over the ro-
tation residuals. This method was later extended by Chat-
terjee and Govindu in [6]. To obtain more robust estima-
tions other robust losses have been explored, e.g. L0.5 [7]
and Geman-McClure [31]. In our work, we experimen-
tally evaluate these loss-functions (in addition to many oth-
ers [19,20]) and compare against the loss function based on
MAGSAC [3] that we propose. In [14], Gao et al. propose
an iterative scheme for solving the rotation averaging prob-
lem where they weight the view graph edges based on the
two-view inliers. In our experiments, we compare against
this re-weighting scheme as well.
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Figure 3. View graph with its vertices representing images and
its edges 3D rotations and translations between the views. Edge
weight Σij comes from the uncertainty of the pair-wise estimation.

Global Structure-from-Motion builds the reconstruc-
tion by aggregating pair-wise estimates of epipolar geome-
tries. In most cases, this is done via rotation averag-
ing [24, 27], but there are also works that perform the aver-
aging in SE(3) instead [8]. Once rotations are known, there
are different approaches for recovering the translations and
structure. Wilson and Snavely [37] solve the translation av-
eraging problem using an outlier filter based on projecting
the translations onto 1D subspaces. Moulon et al. [24] for-
mulates the problem as an L∞-optimization. Olsson and
Enqvist [27] also rely on L∞-optimization but solve jointly
for both 3D points and camera positions.

There are several open-source frameworks for global
Structure-from-Motion, such as Theia [34] and Open-
MVG [25]. In our experiments, we integrate our updated
optimization objectives into the framework from Theia [34],
and use the remaining pipeline unchanged. Our contribu-
tions are, however, not specific to this pipeline.

3. Rotation Averaging with Uncertainties
In this paper, we propose a way to leverage uncertainties,

coming from pair-wise relative pose estimations, in rotation
averaging. This additional signal indicating the quality of
the input relative poses allows to further improve 3D recon-
struction by global Structure from Motion (SfM) methods.

Overview of Rotation Averaging. Rotation averaging is
one of the main components of global SfM algorithms al-
lowing to estimate the global rotation in such a way that it
is decoupled from the translations. It is usually formalized
as a graph optimization problem, where the vertices are the
image poses and the edges are relative poses estimated as
a preliminary step. See Fig. 3. Each edge imposes a con-
straint on the global poses of its neighboring vertices (i.e.,
images). The primary goal is to use these constraints to find
the absolute poses of the cameras.

Standard rotation averaging proceeds as follows: first, a
vertex is chosen as the origin. Second, the orientations of all
vertices that fall into the same connected component as the
origin-defining one are initialized by a maximum spanning
tree. Finally, the rotations are optimized jointly, leveraging
the information coming from the relative rotations. Rotation
R∗

i of the ith camera is calculated as

{R∗
i }ni=1 = argmin

{Ri}n
i=1

∑
(i,j)∈E

ρ
(
∥Le(Ri, Rj , Rij)∥2

)
, (2)

where E is the set of edges in the view graph G = (E ,V),
function Le measures the error of the relative rotation R̄ij =
RiR

T
j coming from the optimized global orientations Ri

and Rj of the ith and jth views w.r.t. the estimated rota-
tion Rij . Function ρ(·) : R → R is the robust loss used
to deal with potential outliers in the data. The optimization
procedure outputs {R∗

i }ni=1, the estimated absolute orienta-
tions of all the n views in the same connected component.
In case multiple disjoint graphs are generated from the im-
ages, the procedure runs on all of them independently.

Uncertainty-Aware Rotation Averaging. In Eq. (2), ev-
ery edge (i, j) ∈ E of the view graph G is treated equally.
However, the estimated relative poses depend on many fac-
tors in practice (e.g., inlier number, baseline) and thus, they
are of different quality. This quality measure can be cap-
tured by the uncertainty of the two-view estimation. In ro-
tation averaging, the uncertainty in each measurement can
be considered in a weighting scheme as follows:

{R∗
i }ni=1 = argmin

{Ri}ni=1

∑
(i,j)∈E

ρ

(∥∥∥DT
ijLe(Ri, Rj , Rij)

∥∥∥2
)
, (3)

where term Dij depicts the uncertainty of edge (i, j).

Relative Rotation Uncertainty. To propagate the uncer-
tainty from the features to the estimated relative rotation,
we first express the rotation via the 2D-2D point correspon-
dences. The relative rotation Rij and translation tij be-
tween the ith and jth views is written as follows:

Rij , tij =argmin
R,t

Lij

=argmin
R,t

∑
(p,p′)∈Mij

Ls
2(R, t, p, p′,Ki,Kj),

(4)

where Mij = {(p, p′) | p ∈ viewi ∧ p′ ∈ viewj} is the set
of point correspondences in views i and j. Matrices Ki and
Kj contain the intrinsic parameters, e.g. focal length and
principal point, of the cameras. Ls is the point-to-model
residual, e.g., Sampson distance or symmetric epipolar er-
ror. Due to its robustness, we use Sampson distance as Ls
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(a) Example image from scene Gendarmenmarkt. (b) Ground truth.

(c) Baseline. (d) Ours.

Figure 4. Scene Gendarmenmarkt from the 1DSfM dataset, containing a concert hall in the middle and two cathedrals on both sides. Fig. 4a
is an image from the scene. Fig. 4b is the ground truth reconstruction. Fig. 4c and Fig. 4d are results of the baseline [34] and the proposed
method, respectively. The camera poses are drawn as red cones. Compared to the baseline, our method has achieve better reconstruction.
Example differences are shown by colored boxes in Fig. 4c and Fig. 4d. Green boxes: walls of the concert hall are missing in the baseline,
while being reconstructed in ours. Blue boxes: the bottom of the right cathedral is almost missing in the baseline, but is well-preserved in
ours. Brown box: baseline reconstructs an additional concert hall which does not exist. Fig. 4d shows that the proposed method is correct.

written as follows:

Ls(Rij , tij , p, p
′,Ki,Kj) =

pT′Fijp

((Fp)21 + (Fp)22 + (F Tp′)21 + (F Tp′)22)
1/2

, (5)

where Fij is the fundamental matrix as

Fij = Kj
−TRij [tij ]×Ki

−1, (6)

and the lower-indices refer to coordinates of Fp and F Tp′.
The angle-axis representation of rotation RA

ij is used to
avoid singularity. The uncertainty propagation to get co-
variance C(RA

ij) of relative rotation RA
ij is done as

C(RA
ij) = (JT(RA

ij)J(R
A
ij))

−1 (7)

where J(RA
ij) is the Jacobian of Lij

Covariances are plugged into Eq. 3 by calculating Dij as
the LLT decomposition of C(RA

ij)
−1 [26] that equals to

C(RA
ij)

−1 = DijD
T
ij . (8)

Using such weighting scheme in the optimization procedure
allows us to consider the pair-wise uncertainties of the ro-
tations to reason about their qualities in a theoretically jus-
tifiable manner. In practice, Ls, and thus Jacobian J(Rij),
is calculated only on the inlier correspondences after the ro-
bust estimation, e.g. RANSAC [12], finishes.

3.1. Marginalizing over the Noise Scale

In MAGSAC++ [3], a robust loss function is designed
by marginalizing over the noise standard deviation to re-
duce the dependence on a manually set inlier-outlier thresh-
old parameter. The MAGSAC++ loss assumes that the in-
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lier residuals follow a χ2-distribution and does not make
any assumptions about the outliers. While the MAGSAC++
loss has only been applied to residual functions measuring
the consistence of point correspondences with a projective
transformation (e.g., homography and essential matrix), it
can be used as a general robust loss like the Huber loss [20].

Let us define the MAGSAC++ loss for rotation averag-
ing. The data points, in our case, are a set of relative rota-
tions, and the models to estimate are the global orientations
of the cameras. This means that for a pair of global rotations
Ri and Rj , we are given relative rotation Rij constraining
both. The inlier weight of Rij is

w(r(RiR
T
j , Rij)) =

∫ +∞

0

P(Rij | Ri, Rj , σ)f(σ)dσ, (9)

where r(RiR
T
j , Rij) is the residual, σ is the noise standard

deviation, f(σ) is the prior distribution of σ assumed to be
uniform on range [0, σmax].

By rewriting Eq. (9) as the marginal density of the inlier
residual, we can get

w(r) =

∫ +∞

0

g(r | σ)f(σ)dσ, (10)

where g(r | σ) is the density of the residual r given σ.
Assume that σ is uniformly distributed σ ∼ U(0, σmax),
then Eq. (10) becomes

w(r) =
1

σmax

∫ σmax

0

g(r | σ)dσ. (11)

Assume that the residual r is in some ν-dimensional
space and the error along each axis of this ν-dimensional
space is independent and normally distributed with the same
variance σ2. Then r2/σ2 has χ2-distribution with ν degrees
of freedom. For a given σ, r has the trimmed χ-distribution
with ν degrees of freedom. Let τ(σ) = kσ be the chosen
quantile of the χ-distribution.

For r ≥ kσmax, w(r) = 0. For 0 ≤ r ≤ kσmax

w(r) =
1

σmax

∫ σmax

r/k

g(r | σ)dσ =

1

σmax
M(ν)2

ν−1
2

(
Γ

(
ν − 1

2
,

r2

2σ2
max

)
− Γ

(
ν − 1

2
,
k2

2

))
.

(12)
Here, M is the normalizing constant as follows:

M(ν) =
(
2

ν
2 Γ

(ν
2
α
))−1

, (13)

where α means that τ(σ) is set to the α-quantile, i.e.
CDF(k) = α. The CDF here is the cumulative distribution
function of χ-distribution with ν degrees of freedom. In

0 10 20 30 40 50
absolute orientation error (degree)

0.6

0.7

0.8

0.9

1.0
CDF of the error distribution of 1DSfM

0 1 2 3 4 5
absolute orientation error (degree)
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0.98

1.00

CDF of the error distribution of ETH3D
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Soft L1+Covariance
MAGSAC Baseline
MAGSAC+Inliers
MAGSAC+Covariance

Figure 5. Cumulative distribution functions of the rotation errors
(in degrees) after the rotation averaging on the 1DSfM [37] (left;
8824 poses) and ETH3D datasets [30] (right; 451 poses). Being
close to the top-left corner is preferred.

our case, ν = 3. Function Γ(a, x) is the upper-incomplete
gamma function

Γ(a, x) =

∫ +∞

x

ta−1 exp (−t)dt, (14)

and

Γ(a) = Γ(a, 0) =

∫ +∞

0

ta−1 exp (−t)dt. (15)

From Eq. (12), we can calculate the weight of each edge
by passing its residual to the formula. In order to convert
it to a robust loss that can be used in the optimization pro-
cedure while keeping its beneficial properties, we use loss

ρ(r) = w(0)− w(r), (16)

where w(0) is the weight if Rij = RiR
T
j . It is the maxi-

mal weight. Scalar w(r) is the robust weight that residual
r implies. Loss ρ(r) is positive and increasing on interval
(0, kσmax). Therefore, it can be minimized by IRLS and
each iteration guarantees a non-increase in the loss ( [21],
chapter 9). Consequently, it converges to a local minimum.

4. Experiments
In this section, we test the global SfM implemented in

the Theia [34] library with and without considering the un-
certainties coming from the estimated relative poses in the
proposed way. Moreover, we evaluate popular loss func-
tions, including Soft L1 loss which is used in Theia. For
rotation averaging, Theia uses angle-axis rotation parame-
terization to minimize the relative rotation error via a nu-
merical optimization implemented in the Ceres [1] library.
It then performs the 1DSfM translation averaging [37].

Benchmarks. We test the proposed uncertainty-based ro-
tation averaging on the 1DSfM [37] and ETH3D [30]
datasets. The 1DSfM dataset consists of 14 different land-
marks with images, collected from the Internet, of varying
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Soft L1 [5] MAGSAC [3]
Baseline + Inliers + Covariance Baseline + Inliers + Covariance

Ellis Island 68.2 70.0 67.1 73.8 76.4 76.3
Gendarmenmarkt 8.9 7.0 6.1 49.6 54.0 54.2

Montreal Notre Dame 77.2 76.4 74.0 79.3 78.6 79.3
Notre Dame 77.5 80.2 73.9 80.1 78.7 79.5

NYC Library 59.0 61.7 60.6 63.7 68.6 65.4
Piazza del Popolo 60.2 59.3 62.1 60.3 62.2 60.7

Roman Forum 57.7 50.8 60.3 62.5 65.5 70.2
Tower of London 48.8 49.4 66.8 51.9 57.8 67.2

Union Square 27.2 24.6 31.3 28.0 38.0 35.0
Yorkminster 63.3 64.0 64.5 62.3 64.1 67.1

Vienna Cathedral 67.1 66.8 60.6 62.9 46.8 66.7
Piccadilly 33.2 33.6 30.6 46.7 50.0 51.6

Alamo 63.3 65.4 62.4 65.4 65.4 66.8
Average 54.7 54.6 55.4 60.5 62.0 64.6

Table 1. The Area Under the recall Curve (AUC) at 5◦of estimated rotations after rotation averaging by [6] (Baseline) with different losses
(Soft L1 [5] and MAGSAC [3]) and weighting strategies: by the number of inliers (+ Inliers), by the proposed covariance (+ Covariance).

(a) Image of Scene Roman Forum. (b) Ground truth. (c) Inliers [14]. (d) Covariance.

Figure 6. Scene Roman Forum from the 1DSfM dataset [30]. Fig. 6a is an example image. Fig. 6b is the ground truth reconstruction.
Fig. 6c and Fig. 6d are the reconstructions when the pose graph edges are weighted by the inlier number [14] or by the proposed covariance,
respectively. The cameras are represented by red cones. Green box: In Fig. 4c, [14] reconstructs an additional roof which does not exist.

Setting AUC α (%) ↑
α=2◦ α=5◦ α=10◦ α=20◦

Soft L1

[5]

Baseline 37.4 59.4 72.5 82.0
+ Inliers 35.9 58.9 72.3 81.9

+ Covariance 39.6 60.3 71.5 79.2

MAGSAC
[3]

Baseline 41.1 65.0 77.4 85.6
+ Inliers 39.2 62.3 74.9 83.3

+ Covariance 44.6 67.6 79.4 87.2

Table 2. AUC scores of rotation errors after the full global SfM
pipeline [34] averaged over all scenes of the 1DSfM dataset [37].

sizes and capturing conditions, e.g., day and night. It pro-

vides 2-view matches with epipolar geometries and a refer-
ence reconstruction from incremental SfM (computed with
Bundler [32, 33]) for measuring error. Since Bundler was
published more than ten years ago, we reconstructed the
scenes with COLMAP [29] to get a better reconstruction
that can be considered as ground truth. We tune the hyper-
parameters of the tested methods on scene Madrid Metropo-
lis, which are the inlier-outlier threshold of loss function in
different settings: baseline 0.02, baseline+inlier 0.06, base-
line+covariance 0.02. Therefore, we only report results on
the other scenes.

The ETH3D Stereo Muti-view is an indoor-outdoor
dataset of 13 scenes with high-resolution images
(6000×4000), keypoints, LiDAR depth, and ground
truth poses. We use the 13 scenes of the training set,
and use all image pairs with at least 500 GT keypoints
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in common. For this dataset, we run SuperPoint [10]
and SuperGlue [28] to obtain point correspondences from
which the relative poses are estimated. As baseline, we also
run COLMAP on exactly the same features.

Setting AUC α (%) ↑
α=2◦ α=5◦ α=10◦ α=20◦

COLMAP [29] 86.7 90.9 92.8 93.8

Soft L1

[5]

Baseline 88.6 95.2 97.6 98.8
+ Inliers 89.2 95.2 97.3 98.8

+ Covariance 84.5 91.4 95.6 97.6

MAGSAC
[3]

Baseline 86.9 94.5 97.3 98.6
+ Inliers 89.5 94.9 96.9 98.3

+ Covariance 91.2 95.9 97.7 98.6

Table 3. AUC scores of rotation errors after the full global SfM
pipeline [34] averaged over all scenes of the ETH3D dataset [30].

The rotations in two reconstructions are not directly
comparable since the global rotation of the view-graph is
unknown. Therefore, we first align the reconstructed and
the ground truth graphs with rotation

R̂align = argmin
Ralign

i=|V|∑
i=1

ρ
(
∥Le(Ri, R

′
i, Ralign)∥2

)
. (17)

The loss function ρ(·) we used here is Cauchy loss. We do
not use MAGSAC here to avoid bias when comparing meth-
ods to the ground truth. Rotations Ri and R′

i are the orienta-
tions of view i in GT and reconstructed graph, respectively.
Finally, we rotate the reconstructed graph by R̂align.

Uncertainties in Rotation Averaging. To explore the in-
fluence of considering the uncertainties of two-view geom-
etry estimation in rotation averaging, we compare the fol-
lowing weighting schemes. The baseline is using a con-
stant weight for all rotations. We test using the inlier num-
ber of the estimated relative pose as weight in the optimiza-
tion [14]. We use the proposed uncertainty-based weighting
with covariance matrices as described in Sec. 3. To show its
impact on multiple configurations, we run rotation averag-
ing with Soft L1 [5] and MAGSAC losses [3].

In Tab. 1, the Area Under the recall Curve (AUC) at 5◦ is
reported on the scenes of the 1DSfM dataset. The last row
shows the average AUC scores. On average, using any of
the compared weighting strategies improves the accuracy.
Using the proposed uncertainties leads to the highest AUC
score with both robust losses. MAGSAC clearly leads to
better results than Soft L1. The absolute best is obtained by
MAGSAC loss and the proposed covariance-based weight-
ing. Compared to the original Theia code (i.e., Baseline

Weight AUC α (%) ↑
α=2◦ α=5◦ α=10◦ α=20◦

Covariance 38.3 62.5 75.8 84.9
Trace 38.1 58.8 70.9 79.7

F -norm 37.5 58.2 70.4 79.4

Table 4. Area Under the recall Curve (AUC) of the errors of the
rotation averaging, on the 1DSfM dataset, when using the trace,
the F-norm of the inverse covariance and proposed approach (Co-
variance) for weighting the view-graph edges.

Loss Function AUC α (%) ↑
α=2◦ α=5◦ α=10◦ α=20◦

MAGSAC [3] 35.9 60.9 75.0 84.0
Soft L1 [5] 30.4 54.6 72.0 80.8

L0.5 [7] 29.8 55.2 71.3 81.8
Tukey [21] 29.0 56.2 73.7 84.7
Cauchy [4] 28.9 53.7 70.3 81.4
Huber [20] 21.6 45.7 63.4 76.7

GM [15] 13.7 42.2 65.3 79.0
Trivial 11.2 30.2 49.2 66.1

Table 5. Area Under the recall Curve (AUC) of the rotation errors
of different robust losses inside the rotation averaging of [6] aver-
aged over all scenes in the 1DSfM dataset [37].

Downsample Baseline Ours ImprovementFactor

1 88.61 91.19 +2.58
4 81.23 84.74 +3.51
8 80.69 84.62 +3.93

Table 6. The AUC@2◦ scores of the rot. errors of global SfM [34]
on the ETH3D [30] dataset when the images are downsampled.

with Soft L1), the proposed algorithm leads to a more than
10 points increase in the AUC score.

The left plot of Fig. 5 shows the rotation error distri-
bution over all the scenes of the 1DSfM dataset. The
MAGSAC loss with covariance method outperforms all
other methods in all error ranges. Soft L1 loss with co-
variance performs well when the error is smaller than 5◦,
but not as good as the Soft L1 loss baseline when error get
larger. One reason is that there are still some outlier edges
in the view graph with small uncertainty, in this case, the
optimization process would be dragged to the sub-optimal
results because of the lack of robustness of the Soft L1 loss.

We also show the AUCs of rot. errors after the full global
SfM pipeline. As shown in Tab. 2, MAGSAC with covari-
ance is still the best. The strategy weighting by the inlier
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Setting Ori. Err Pos. Err # Reconst. # Common Time Reproj. Err
Med (degree) Med (meter) Views Views (minute) Avg (pixel)

COLMAP [29] - - 14097 - 2852

Soft L1 [5]
Baseline 1.44 1.63 9413 8824 27 1.24
+ Inliers 1.72 1.65 9398 8806 34 1.21

+ Covariance 1.45 1.60 9191 8668 29 1.18

MAGSAC [3]
Baseline 1.33 1.72 9404 8814 31 1.04
+ Inliers 1.18 1.79 9424 8797 55 1.21

+ Covariance 1.00 1.64 9361 8767 46 0.99

Table 7. Performance of different settings for full SfM pipeline. We report the median orientation (in degrees) and position errors (in
meters), the number of reconstructed views and views common with the ground truth, the processing time (in minutes), and the reprojection
average error (in pixels). The COLMAP reconstruction (with default parameters) is considered ground truth. Time is the total running time
of all scenes in 1DSfM dataset without the time of the feature extraction and matching. It is measured on a laptop with Intel i7-12700H.

numbers is worse than the baseline with both losses. This
means that in a large-scale dataset like 1DSfM, the final
bundle adjustment step could make up the gap of the infor-
mation provided by the inlier numbers, which means that a
stronger uncertainty extraction method (covariance) is nec-
essary to improve the reconstruction quality.

The results of ETH3D dataset are shown in the right plot
of Fig. 5 and in Tab. 3. The combination of MAGSAC and
the proposed uncertainties leads to the most accurate re-
sults. Another interesting observation is that our global SfM
outperforms COLMAP method, confirming the potential in
global SfMs over their incremental counterparts.

Tab. 4 shows the results of rotation averaging by differ-
ent uncertainty-based weighting strategies. We compare us-
ing the trace and Frobenius-norm of the covariance matrix
to using it directly. The direct strategy, in Eq. (3), clearly
outperforms both other tested algorithms.

Robust Loss Functions. We compared the impact of us-
ing different loss functions for non-linear optimization in
rotation averaging. In Tab. 5, we compare the MAGSAC
loss function with other 7 popular loss functions on the
scenes from the 1DSfM dataset. We report the AUC scores
at 2◦, 5◦, 10◦, and 20◦. MAGSAC is the best by a large mar-
gin on AUC at 2◦, 5◦ and 10◦. It is second best, in terms
of AUC 20◦, being slightly behind Tukey weighting by 0.7
AUC points. For example, the AUC@2◦ of MAGSAC is
5.5 points higher that of the second best, i.e., Soft L1.

Image Downsampling. We test the reconstruction on the
ETH3D dataset by downsampling the input high resolution
images. The AUC 2◦ scores are reported in Tab. 6 at dif-
ferent downsampling factors. We observe that the proposed
pipeline is more accurate than the baseline in all cases. Ac-
tually, the larger the downsampling factor (i.e., image qual-
ity reduction), the bigger the improvement compared to the

baseline [34]. This clearly demonstrates the potential in us-
ing the uncertainties of the estimated two-view geometries
and the importance of choosing the best loss function.

Full Global SfM Pipeline Results. In Tab. 7, the results
after the full global SfM pipeline (finishing with a bundle
adjustment) are shown on the 1DSfM dataset. The lowest
median orientation error is achieved by the proposed algo-
rithm. The median position errors, the number of recon-
structed views, and the number of views that are common
with the ground truth, are similar in case of all methods.

Since the complexity of evaluating MAGSAC loss is
marginally larger than that of the L1 loss and, also, we
need to invert and decompose the covariance matrix, the
proposed algorithm is slightly (i.e., by a few minutes)
slower than other combinations. The benefit from global ap-
proaches is clear in this figure as their run-time is two order-
of-magnitude lower than that of COLMAP. COLMAP runs
for 48 hours. Global approaches run for 30 minutes.

5. Conclusion

In this paper, we revisit the rotation averaging problem
applied in global Structure-from-Motion pipelines by lever-
aging uncertainties in two-view epipolar geometries and
investigating robust losses. Our experiments demonstrate
that integrating the covariance matrices of the uncertainties
directly in the optimization procedure largely improves
reconstruction quality. Moreover, carefully choosing the
employed robust loss also gives a boost in the accuracy. We
believe our work helps in closing the accuracy gap between
incremental and global approaches.
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