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Abstract

Current stack-based inverse tone mapping (ITM) meth-
ods can recover high dynamic range (HDR) radiance by
predicting a set of multi-exposure images from a single
low dynamic range image. However, there are still some
limitations. On the one hand, these methods estimate a
fixed number of images (e.g., three exposure-up and three
exposure-down), which may introduce unnecessary com-
putational cost or reconstruct incorrect results. On the
other hand, they neglect the connections between the up-
exposure and down-exposure models and thus fail to fully
excavate effective features. In this paper, we revisit the
stack-based ITM approaches and propose a novel method
to reconstruct HDR radiance from a single image, which
only needs to estimate two exposure images. At first, we de-
sign the exposure adaptive block that can adaptively adjust
the exposure based on the luminance distribution of the in-
put image. Secondly, we devise the cross-model attention
block to connect the exposure adjustment models. Thirdly,
we propose an end-to-end ITM pipeline by incorporating
the multi-exposure fusion model. Furthermore, we propose
and open a multi-exposure dataset that indicates the opti-
mal exposure-up/down levels. Experimental results show
that the proposed method outperforms some state-of-the-art
methods.

1. Introduction
The luminance distribution in nature spans a wide range,

from the starlight (10−5cd/m2) to the direct sunlight
(108cd/m2). The low dynamic range (LDR) devices can
not cover the full range of luminance of the real scene, and
thus fail to reproduce the realistic visual experience. High
dynamic range imaging (HDRI) technology [1] [26] can
solve this problem, which takes multiple LDR images of
the same scene with different shutter time, and then gener-
ates the high dynamic range (HDR) image via the multi-
exposure fusion (MEF) method [4] [19] [32]. However,
HDRI cannot handle the images that have already been cap-
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Figure 1. (a) The influences of different stack lengths demonstrate
that the stack length is important to the quality of reconstructed
HDR image. However, the previous ITM methods [7] [11] [12]
[10] simply set a fixed length, which cannot be the optimal choice
for every scene. (b) The comparison between the MES predicted
by the state-of-the-art stack-based method [10] and the proposed
method. Our method only needs to estimate two exposure im-
ages to recover more realistic details in highlights and shadows
and achieves a higher HDR-VDP-2.2 Q-score. The HDR images
are tone mapped by [15] for LDR display.

tured, such as a large number of LDR images and videos on
the Internet. The inverse tone mapping (ITM) technique is
thus designed to recover the HDR radiance from a single
LDR image, which is an ill-posed problem because the de-
tails in the highlights and shadows are almost lost and dif-
ficult to be restored. Fortunately, the development of deep
learning [6] [7] provides a solution by learning and predict-
ing the distribution of the lost information from the huge
amount of training examples.
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There are two main deep-learning-based ITM ap-
proaches, i.e., direct mapping methods [6] [17] [22] [28]
[34] and stack-based methods [7] [10] [11] [12] [13]. The
direct mapping methods learn an end-to-end model to re-
cover the HDR radiance from the LDR input straightfor-
wardly. By contrast, the stack-based methods simulate the
HDRI technology by increasing and decreasing the expo-
sure value (EV) of the input image to obtain the multi-
exposure stack (MES). Compared to the direct mapping
methods, the stack-based methods simulate the generation
process of HDR images in the real world and perform the
learning stage in the same LDR space, which avoids the
sophisticated changes between the LDR and HDR domain
[10] [11] [13].

The process of the previous stack-based based ITM
methods can be roughly summarized in the following three
main steps: (1) Training an up-exposure model and a down-
exposure model separately and independently. (2) Gen-
erating a fixed number of exposure adjusted images (e.g.,
three up-exposure and three down-exposure images) with
the trained models. (3) Merging these images by a clas-
sic multi-exposure fusion (MEF) approach [4]. However,
each of these three steps has limitations that may cause in-
accurate results. Specifically, (1) the process of increasing
and decreasing the exposure should not be independent. For
instance, when decreasing the exposure, some useful infor-
mation of the under-exposed regions may become subtle,
while the features in the opposite increasing process can
compensate for it. (2) The times of exposure adjustment are
important to the quality of reconstructed HDR images and
a fixed length of MES will cause incomplete information
recovery or introduce an unnecessary computational cost,
as shown in Fig. 1 (a). (3) The classic MEF approaches
cannot be integrated into the entire end-to-end training pro-
cess. Although Kim et al. [10] proposed a differentiable
HDR synthesis layer, it is time-consuming and highly de-
pends on the shutter time and therefore cannot be applied to
general scenes.

In this paper, we propose a novel HDR reconstruction
method with adaptive exposure adjustment, which provides
an effective solution to the existing limitations in the field
of stack-based ITM. At first, we design an efficient encoder
equipped with the luminance-guided convolution (LGC)
and cross-model attention block (CMAB) to extract useful
information from local and cross-model features. With the
help of CMAB, valid information on the entire up-exposure
and down-exposure process can be fully explored to help
their reconstruction. Secondly, the proposed up-exposure
and down-exposure models can adjust the input LDR im-
age only once to obtain the corresponding optimal expo-
sure adjusted result. In this way, we can avoid the difficulty
of determining the length of the MES and get the desired
exposure adjustment directly. For this purpose, appropri-

ate ground truth is needed to indicate the optimal exposure
level. Therefore, we improve the SICE [2] dataset to form
a new MES dataset with optimal exposure labels. On the
other hand, since the exposure levels of the labels are dif-
ferent, the models need to be able to generate different re-
sults adaptively based on different inputs. Consequently,
we devise the exposure adaptive block (EAB) to extract the
global information and remap the features of the decoder.
The features extracted from EAB are used to normalize the
features in the decoder, which results in the image-adaptive
capability. Thirdly, we propose a lightweight and fast multi-
exposure fusion model (MEFM), which can merge the ex-
posure adjusted results with the input image into the de-
sired HDR image and thus make the whole pipeline end-to-
end. Furthermore, we propose progressive reconstruction
loss and mask-aware generative adversarial loss to avoid the
artifacts in the restored textures of over/under-exposed re-
gions. As Fig. 1 (b) shows, the proposed method only needs
to estimate two exposure values to recover the lost infor-
mation in the shadows and highlights respectively, which is
more concise and effective. Experiments show that our ITM
algorithm outperforms the state-of-the-art ITM methods in
both quantitative and qualitative evaluations.

This paper has the following main contributions:
(1). We propose a novel stack-based ITM framework,

which only needs to estimate two exposure images to form
the MES. In this way, the lost information can be recov-
ered more efficiently and precisely. Moreover, the exposure
adaptive block is designed to adaptively adjust the exposure
based on LDR inputs with different luminance distributions.

(2). We connect the up-exposure and down-exposure
models with the designed cross-model attention block,
which can fully extract the effective features of the image
regions with different luminance.

(3). A lightweight and fast multi-exposure fusion net-
work is proposed that can merge the generated results and
makes the entire training pipeline end-to-end.

(4). A more concise MES dataset is proposed and opened
based on the SICE dataset [2], which contains the optimal
exposure-up/down labels to train the adaptive exposure ad-
justment networks.

2. Related Work
Direct mapping inverse tone mapping. Eilertsen et al. [6]
use the fixed inverse camera response function to linearize
the input image and propose an end-to-end network that can
predict the lost information in the saturated image areas.
Marnerides et al. [22] propose the ExpandNet which uses
a multiscale architecture that avoids the use of upsampling
layers to improve image quality. Liu et al. [17] incorpo-
rate the domain knowledge of the LDR image formation
pipeline into their method and learn specialized networks to
reverse it. Santo et al. [28] propose attention masks that can
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reduce the contribution of useless features in saturated ar-
eas. Zheng et al. [34] propose an ultra-high-definition HDR
reconstruction method via a collaborative learning manner
that learns the content and color details. Chen et al. [3] use a
spatially dynamic network to learn an HDR reconstruction
with denoising and dequantization.
Stack-based inverse tone mapping. Endo et al. [7] pro-
pose the first deep stack-based method by estimating LDR
images taken with different exposures and reconstructing
an HDR image by merging them. Lee et al. [11] propose a
stack-based ITM method that produces the MES from the
single LDR input using a deep neural network with a chain
structure. Lee et al. [12] then reconfigure the deep chain
structure by using the generative adversarial network and
repeating it recursively to generate the MES. Kim et al. [10]
devise the differentiable HDR synthesis layer to replace the
conventional fusion method [4] and thus form the end-to-
end stack-based ITM network.
Low-light enhancement and image inpainting. The in-
creasing exposure of the stack-based ITM methods is sim-
ilar to the low-light enhancement. Jiang et al. [9] pro-
pose the unsupervised learning method and devise the self-
regularized attention mechanism. The decreasing exposure
aims to recover the lost details of the over-exposed regions,
which is similar to the image inpainting that restores the
textures in the masked regions. Liu et al. [16] propose the
partial convolution which is masked and re-normalized to
be conditioned on valid pixels. Yu et al. [33] propose the
gated convolution layer which provides a learnable dynamic
feature selection mechanism.

3. Methodology
3.1. Problem formulation

Given a single LDR image I , our goal is to predict the
exposure-up image Iup and the exposure-down image Idown

with the proposed adaptive up-exposure model (AUEM)
and adaptive down-exposure model (ADEM), respectively.
Then the predicted images and the input LDR will be
merged into the target HDR radiance by the proposed multi-
exposure fusion model. The structure of ADEM and AUEM
is the same and shown in Fig. 2. We will introduce each
component in detail as follows.

3.2. Luminance-guided convolution

The aim of the up-exposure or down-exposure model is
to adjust the luminance distribution of the input LDR im-
age and recover the lost details in the under-exposed or
over-exposed regions. Therefore, the encoder should pay
more attention to these regions to extract useful features.
We design the luminance-guided convolution (LGC) where
the input features are first multiplied by the correspond-
ing luminance-guided map L, and then fed to the follow-

ing convolutional layer, where L = max(R,G,B) in the
down-exposure model and L = 1 − min(R,G,B) in the
up-exposure model. Note that the “luminance” here is the
max/min value of RGB channel instead of the commonly
used physical luminance.

3.3. Cross-model attention block

As specified in Section 1, the previous stack-based meth-
ods neglect the connections between the up-exposure and
down-exposure models. To take advantage of useful fea-
tures in the other model, we design the cross-model atten-
tion block (CMAB). Specifically, the input features of the
current model Fcur and the corresponding features from
the same level of the opposite model Fref are fed into two
1 × 1 convolutional layers respectively to reduce the chan-
nels first.

F̃q = g(Fq), (1)

where q ∈ {cur, ref} and g denotes the 1×1 convolutional
layer. Then F̃cur and F̃ref are concatenated into F̃cat and
processed by the another two 1 × 1 convolutional layers to
calculate the attention scores Mq that indicates which re-
gion of the corresponding features is more important. The
over/under-exposed regions usually contain very little use-
ful information, e.g., there may be totally saturated pixels
for each RGB channel (the pixel values of all three RGB
channels are 255). In order to extract long-distance fea-
tures that may help restore the lost textures, there are four
3 × 3 convolutional layers with dilated factors {1, 5, 9, 13}
respectively to enlarge the receptive fields without introduc-
ing extra parameters:

Fdi = hdi(cat(Mcur ⊙ F̃cur,Mref ⊙ F̃ref )), (2)

where hdi
denotes 3 × 3 convolutional layer with dilated

factor di, cat means concatenation along the channel di-
mension and ⊙ denotes the element-wise multiplication. Fi-
nally, we concatenate the output features Fdi with different
dilated factors and perform the channel attention mecha-
nism [31] to exploit the inter-channel relationship of fea-
tures. Another 1 × 1 convolutional layer is added to pro-
duce the residual which is added to the input current feature
Fcur:

Fout = g(CA(cat(Fd1
, Fd5

, Fd9
, Fd13

))) + Fcur, (3)

where CA denotes the channel attention [31] and Fout

means the output features of the proposed CMAB. Fig. 2
(b) illustrates the details of the proposed CMAB.

3.4. Exposure adaptive block

The previous stack-based methods only need to learn the
relative changes between each EV, which is easier for the
model to predict. However, in the proposed pipeline, the lu-
minance and contrast distributions of the input LDR images
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Figure 2. (a) The framework of the proposed adaptive down-exposure model. (b) The details of the proposed cross-model attention block.
(c) The details of the proposed exposure adaptive block (the details of the swin transformer block can be found in the supplementary
materials). (d) The details of the proposed global feature fusion block.

are different, which leads to a wide variation in the levels
of the ground truth exposures. For instance, if the input im-
age contains extremely dark areas, the up-exposure model
needs to increase a large EV to recover the textures of the
under-exposed regions. On the contrary, if the input image
is relatively not so dark, the up-exposure model only needs
to increase the EV by a small amount to obtain better de-
tails. The commonly used network architecture such as U-
Net [27] cannot handle this wide variation, whose weights
of convolution kernel are fixed after being trained. In this
paper, we design the exposure adaptive block (EAB) to ex-
tract the high-level and global information of the input im-
age such as the overall luminance distribution, the scene
information, and semantic features. Then we remap the
features of the decoder according to the extracted features.
Note that the AUEM and ADEM share the same EAB. The
input of EAM is the down-sampled LDR image with the
resolution of 256× 256. There are three 3× 3 with strides
2, 2, 1 to extract the local features first. Then we incorporate
the Swin-Transformer Block [18] [14] into EAB, which has
been proven to have impressive performance on modeling
the global dependency, to get the global features Fglo. Af-
ter that, the Fglo is concatenated with the features of the last
encoder layer Fenc of AUEM or ADEM and processed by
the global feature fusion block (GFFB) to get F̃glo, which
enriches the global information of the encoded features of
AUEM or ADEM. On the other hand, the Fglo and Fenc are

concatenated and processed by the linear layers which map
them into the corresponding representations:

S1 = f(cat(AAPool(Fglo), AAPool(Fenc))), (4)

Sj = f(Sj−1), (5)

where f denotes the linear layer, AAPool means an adap-
tive average pool layer where the resolution of features is
pooled to 1 × 1, and Sj denotes the output features of the
corresponding linear layer. After that we first calculate the
mean µj for each individual feature channel of the decoder
layers and remap it with the corresponding Sj :

F̃Dj
= FDj

− µj + Sj , (6)

where FDj
is the output feature of the j − th decoder layer

and F̃Dj
is the remapped feature. By incorporating the EAB

into the AUEM and ADEM, we extract the global features
of the input image and use it to control the strength of ex-
posure adjustment to achieve adaptive exposure adjustment.
The details of EAB and GFFB are shown in Fig. 2 (c) and
(d) separately.

3.5. Multi-exposure fusion model

Previous stack-based ITM methods use the classic MEF
method [4] to merge the predicted results and the input LDR
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into the HDR image. However, it is not differentiable and
thus cannnot be incorporated into the end-to-end training
process. Although Kim et al. [10] revise it into a differ-
entiable synthesis layer, it is time-consuming due to recov-
ering camera response function by the classic least square
method and highly depends on the shutter time. However,
the shutter time cannot be accessed in ITM, and an unsuit-
able shutter time will cause inaccurate results. Meanwhile,
although the proposed method can obtain impressive results
by estimating only two images that have optimal exposure
levels, compared to HDR images reconstructed by the en-
tire MES, using only two exposure-adjusted images may re-
sult in that in some scenes with too large dynamic range,
there are some areas where the details are not well recon-
structed. Therefore, we further design a lightweight but ef-
ficient multi-exposure fusion model (MEFM). The ground
truth for training MEFM is the HDR images reconstructed
with the full MES by the HDR tool Photomatix. In this
way, the MEFM can correct the defects caused by estimat-
ing only two images and make the whole process end-to-
end. The MEFM is based on the ExpandNet [22], which
extracts the local, dilated, and global features separately and
merges them to generate the result. Instead of predicting the
HDR directly, the MEFM estimates three masks M which
combine the exposure adjusted images with the input LDR
image into Ifuse:

Ifuse = Mup ⊙ Iup +Mmid ⊙ I +Mdown ⊙ Idown, (7)

and four parameters ai, i ∈ [0, 3] which forms a non-linear
curve to map the fused LDR into linear HDR radiance H:

H = a3 · I3fuse + a2 · I2fuse + a1 · Ifuse + a0. (8)

The structure of MEFM is shown in Fig. 3.
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Figure 3. The details of the proposed multi-exposure fusion model.
“CxSyDz” denotes convolution layer with kernel size x, stride y
and dilation factor z.

3.6. Mask-aware discriminator

It is easy to introduce artifacts into the restored textures
of over/under-exposed regions. The previous ITM meth-
ods [12] [24] introduce GAN to improve results, where they

ADEM
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Fake 
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Figure 4. The details of the proposed mask-aware discrimina-
tor. The proposed discriminator classifies the input images on per-
pixel level, which only focuses on the under/over-exposed regions
to achieve more realistic results.

use the discriminator to distinguish the entire real image
from the entire fake image. However, the textures in well-
exposed areas are easy to adjust and natural enough. Con-
sequently, the discriminator should focus on the under/over-
exposed regions to avoid artifacts and achieve more realis-
tic results. Motivated by [29], we design the mask-aware
discriminator. The discriminator is based on the 5-levels U-
Net [27], which classifies the input images on a global and
local per-pixel level. The fake image to be classified is ob-
tained by fusing the under/over-exposed areas of the gener-
ated image with the rest of the areas of the ground-truth im-
age through the soft under/over-exposed mask Mexp. Cor-
respondingly, the pixel-level label of the fake image then
becomes 1 −Mexp, which means the mask-aware discrim-
inator needs to judge the under/over-exposed areas as fake
and the other areas as true if the input is the mixed fake
image. With the mask-aware discriminator, the adversarial
loss can effectively make the details of under/over-exposed
areas more realistic. The soft under/over-exposed masks
are calculated as in [6] [17] and the details of the proposed
mask-aware discriminator are shown in Fig. 4.

3.7. Loss function

The objective loss function contains the progressive re-
construction loss, the mask-aware adversarial loss, and the
HDR fusion loss.
Progressive reconstruction loss. The reconstruction loss
contains the pixel-wise L1 loss between the generated im-
age Ig (i.e., Iup and Idown) and its corresponding ground
truth Îg:

Lpix(Ig, Îg) =
∣∣∣Ig − Îg

∣∣∣ , (9)

and the perceptual loss which can force the model to gener-
ate images semantically closer to the ground truth:

Lper(Ig, Îg) =

5∑
l=3

(
∣∣∣ϕl(Ig)− ϕl(Îg)

∣∣∣) (10)

where ϕl denotes the feature maps extracted by the l-th
max-pooling layer of the VGG-16 [30] pre-trained on Im-
ageNet [5]. Directly recovering the textures of over/under-
exposed regions is a difficult task. To avoid this problem,
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we adopt the progressive generation process and calculate
the corresponding reconstruction loss. Specifically, the out-
put features of GFFB FGFFB are mapped into an RGB im-
age Ig1 by 1 × 1 convolution. After that for each decoder
block, there is a 1× 1 convolution which maps the decoded
features F̃Dj into a residual map which is added to the up-
sampled RGB image predicted by the previous layer:

Igj = g(F̃Dj
) + Igj−1

↑ . (11)

The final progressive reconstruction loss is calculated as:

Lprog(Ig, Îg) =

5∑
j=1

Lpix(Igj , Îgj ) + λLper(Igj , Îgj ).

(12)
Adversarial loss. We adopt the least-square GAN [21] as
the adversarial loss. The loss function of the pixel-level de-
coder of the discriminator Dd are:

LDd
=

1

2
[(D(Îg)− 1)2] +

1

2
[(D(z))− b)2], (13)

where z = Ig·Mexp+Îg·(1−Mexp) is the mixed fake image
and b = 1−Mexp is the mixed fake label. Correspondingly,
the generator objective becomes:

LGd
=

1

2
[(D(z)− 1)2]. (14)

HDR fusion loss. The classic L1 or L2 is not applicable
to the HDR domain, which will make the network focus
on high luminance values and underestimate the impact of
lower luminance values. Therefore, we calculate the L1 loss
LH between the tone-mapped images by µ-law as in [17]:

LH(H, Ĥ) =
∣∣∣τ(H)− τ(Ĥ)

∣∣∣ , (15)

where τ(H) = log(1+µH)/log(1+µ) and Ĥ is the HDR
image reconstructed with the full MES by the HDR tool
Photomatix. Therefore, the total training loss is:

Ltotal = Lprog + λgan(LGd
+ LDd

) + λHLH , (16)

where µ, λper, λgan, and λH are set to 5000, 0.5, 0.1, and
1 separately.

4. Experimental Results
4.1. Implementation details

Dataset The SICE-S dataset contains 589 multi-exposure
stacks that cover several common HDR scenes such as in-
door, skyline, and so on. Because there are some pub-
licly available datasets in SICE-S, e.g., HDR-EYE [23] and
HDR-FAIRCHILD [8], we remain them for testing and ran-
domly divide the others into training dataset HDR-TRAIN

that contains 360 multi-exposure stacks and testing dataset
HDR-TEST that contains 90 multi-exposure stacks. Thus,
there are three testing datasets: HDR-TEST, HDR-EYE
[23], and HDR-FAIRCHILD [8]. The details of the SICE-S
dataset can be found in the supplementary materials.
Experiment setup The implementation environment is Py-
Torch 1.9 version and the Adam optimizer is applied to train
the model with the learning rate of 0.0002. We first resize
the training pairs in the training dataset to 512 × 512 and
augment them by randomly cropping to 384 × 384. The
training images are randomly flipped and rotated. The pre-
dicted and ground truth MES in the testing datasets are
fused into the HDR images by Photomatix for all of the
compared methods with the size of 512 × 512.
Evaluation metrics The commonly used HDR-VDP-2.2
[20] is adopted to measure the quality of HDR reconstruc-
tion. The normalization and parameter settings of evalua-
tion are the same as in [17]. Furthermore, we also evaluate
the PSNR and SSIM scores between the tone-mapped LDR
images of the ground truth HDR and the predicted HDR by
the tone mapping algorithm [15] as in [17].

4.2. Comparisons on the predicted HDR images

The proposed method is compared with seven recent
state-of-the-art CNN-based approaches: HDRCNN [6],
DrTMO [7], Deep Recursive HDRI [12], Deep Single
HDRI [17], Deep Synth HDRI [10], Deep Mask [28], and
Deep HDRUNet [3]. For fair comparisons, we re-train these
models with the same training dataset. For the stack-based
methods, the number of predicted images is consistent with
the original paper to achieve the best performance. For the
direct mapping methods, we use the ground-truth HDR im-
ages fused by Photomatrix to train them directly. (Because
the previous stack-based ITM methods are not designed for
SICE-S, we use the full MES in SICE to train them for bet-
ter results.)
Quantitative comparisons. Table 1 shows the average
HDR-VDP-2.2, PSNR, and SSIM scores on the HDR-
TEST, HDR-EYE, and HDR-FAIRCHILD datasets. The
proposed method performs favorably against the state-of-
the-art methods on all three datasets.
Visual comparisons. Fig. 5 and Fig. 6 show the results
of these ITM methods on two LDR images with signifi-
cantly different exposures. The HDRCNN [6] and Deep
Mask [28] may cause over-bright images because of the use
of a fixed camera response function. The DrTMO [7] intro-
duces checkerboard artifacts due to the de-convolution [25].
The Deep Recursive HDRI [12] is easy to blur the images.
The Deep Single HDRI [17] and Deep HDRUNet [3] in-
troduce halo artifacts in the over-exposed regions, and the
Deep Synth HDRI [10] fails to reconstruct the correct lumi-
nance distribution. On the contrary, the proposed method
can recover pleasure results both in the under- and over-
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Table 1. Quantitative comparison on HDR images with existing methods. Because the training code of Deep Mask [28] is not released, we
use the pre-trained model for comparison.

HDR-VDP-2.2 TM-PSNR/SSIM
TEST [2] EYE [23] FAIR [8] TEST [2] EYE [23] FAIR [8]

HDRCNN [6] 63.27 55.14 58.15 21.46/0.85 17.54/0.72 18.73/0.81
DrTMO [7] 62.46 56.68 59.51 21.97/0.84 19.96/0.77 22.07/0.85

Deep Recur [12] 62.94 57.30 59.21 22.37/0.82 20.51/0.76 21.66/0.82
Deep Mask [28] * 64.01 55.30 58.40 21.10/0.84 17.23/0.73 18.73/0.81
Deep Single [17] 64.28 57.28 59.55 24.12/0.86 20.48/0.79 22.13/0.86
Deep Synth [10] 63.71 57.12 59.28 22.92/0.83 20.17/0.77 21.67/0.83

Deep HDRUNet [3] 63.87 57.24 58.96 23.17/0.84 20.23/0.78 21.42/0.81
Proposed 65.20 58.92 60.48 25.17/0.88 21.81/0.82 22.48/0.87

Input LDR (a) HDRCNN [6] (b) DrTMO [7] (c) Deep Recursive [12]

(e) Deep Single [17] (f) Deep Synth [10] (h) ProposedGround truth

(d) Deep Mask [28]

(g) Deep HDRUNet [3]

Figure 5. Visual comparison on the dark night scene. The predicted HDR images are tone mapped by [15] for LDR display.

exposed areas. Furthermore, the comparisons between the
running time, model parameters, and more visual results can
be found in the supplementary materials.

4.3. Ablation studies

We evaluate the contributions of individual components
and the quantitative experimental results on the HDR-TEST
dataset are shown in Table 2.
Exposure adaptive block. As shown in Fig. 7, due to the
lack of adaptive capacity, the down-exposure model fails
to reconstruct uniform and natural luminance and leads to
severe artifacts. With the help of the EAB, the decoded fea-
tures can be modified and thus avoid these artifacts.
Cross-model attention block. As Fig. 8 shows, restoring
the lost textures in the over/under-exposed regions is a hard
task. With the help of the proposed CMAB, the encoder
can utilize useful features from the current model and the
opposite model, and restore more realistic details. Fig. 9
shows the spatial attention masks calculated by the CMAB
of the ADEM, where the Mcur focuses on the over-exposed
regions to extract the useful features and Mref pays atten-
tion to the low-light regions to provide available informa-
tion from the AUEM. We also remove the Fref from the
opposite model to validate the role of the cross-model fea-

Table 2. Quantitative ablation study of each individual component.

Baseline EAB LGC CMAB MEFM HDR-VDP-2
✓ - - - - 62.35
✓ ✓ - - - 63.89
✓ ✓ ✓ - - 64.14
✓ ✓ ✓ ✓ - 64.97
✓ ✓ ✓ ✓ ✓ 65.20

Table 3. Quantitative ablation study of each training loss.

L1 Perceptual Progressive MAGAN
63.37 64.14 64.69 65.20

tures, and the HDR-VDP-2.2 result is: w/o Fref (64.52) and
with Fref (64.97).
Multi-exposure fusion model. As shown in Table 2, with
the proposed MEFM, the defects caused by estimating only
two images can be compensated with more precise results.
Meanwhile, we also compare the proposed MEFM with
the non-learning-based MEF method [4] [10]. Fig. 10
shows the tone-mapped HDR images fused by the pro-
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Input LDR (a) HDRCNN [6] (b) DrTMO [7] (c) Deep Recursive [12]

(e) Deep Single [17] (f) Deep Synth [10] (h) ProposedGround truth

(d) Deep Mask [28]

(g) Deep HDRUNet [3]

Figure 6. Visual comparison on the daytime scene.

(a) Input LDR (b) w/o EAB (c) with EAB

Figure 7. The ablation study of the exposure adaptive block
(exposure-down image).

(a) Input LDR (b) w/o CMAB (c) with CMAB

Figure 8. The ablation study of the cross-model attention block.

(a) Input LDR (b) ���� (c) ����

Figure 9. Visual results of the CMAB attention masks.

posed method and [10]. We also compare the running time
for merging three multi-exposure images on Tesla V100:
MEFM (5ms) and Debevec et al. [4] [10] (1807ms), which
demonstrates that the proposed MEFM can generate more
accurate results with much less time-complexity.
Training losses. We evaluate the contributions of each
training loss and Table 3 shows the quantitative results on
the HDR-TEST dataset, where MAGAN denotes the mask-
aware generative adversarial loss. Due to the page limit,
more visual comparisons on the ablation study of training
losses can be found in the supplementary materials.

(a) MES (b) HDR fused by [11] (c) HDR fused by MEFM

Figure 10. Visual comparison on the multi-exposure fusion results.

5. Conclusions

In this paper, we propose a novel inverse tone mapping
method that only needs to estimate two exposure images,
i.e., one exposure-up and one exposure-down, solving the
problem that the optimal length of the multi-exposure stack
is difficult to be determined. At first, we propose and open
the SICE-S dataset, which can provide the optimal exposure
adjustment labels for future stack-based ITM works. Sec-
ondly, we design the exposure adaptive block which makes
the decoder generate desired results based on the different
luminance distributions of the inputs. Thirdly, we devise
the cross-model attention block to utilize the information
from both of the exposure adjustment models. Finally, we
design the learning-based multi-exposure fusion model to
produce more accurate HDR radiance fast. Experimental
results show that the proposed ITM method can outperform
the state-of-the-art ITM methods in both quantitative and
qualitative evaluations.
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