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Figure 1. The proposed SadTalker produces diverse, realistic, synchronized talking videos from input audio and a single reference image.

Abstract

Generating talking head videos through a face image
and a piece of speech audio still contains many challenges.
i.e., unnatural head movement, distorted expression, and
identity modification. We argue that these issues are mainly
caused by learning from the coupled 2D motion fields. On
the other hand, explicitly using 3D information also suffers
problems of stiff expression and incoherent video. We present
SadTalker, which generates 3D motion coefficients (head
pose, expression) of the 3DMM from audio and implicitly
modulates a novel 3D-aware face render for talking head
generation. To learn the realistic motion coefficients, we

* Equal Contribution
† Corresponding Author

explicitly model the connections between audio and differ-
ent types of motion coefficients individually. Precisely, we
present ExpNet to learn the accurate facial expression from
audio by distilling both coefficients and 3D-rendered faces.
As for the head pose, we design PoseVAE via a conditional
VAE to synthesize head motion in different styles. Finally,
the generated 3D motion coefficients are mapped to the un-
supervised 3D keypoints space of the proposed face render
to synthesize the final video. We conducted extensive experi-
ments to demonstrate the superiority of our method in terms
of motion and video quality. 1

1The code and demo videos are available at https://sadtalker.
github.io.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Animating a static portrait image with speech audio is

a challenging task and has many important applications
in the fields of digital human creation, video conferences,
etc. Previous works mainly focus on generating lip mo-
tion [2, 3, 28, 29, 49] since it has a strong connection with
speech. Recent works also aim to generate a realistic talking
face video containing other related motions, e.g., head pose.
Their methods mainly introduce 2D motion fields by land-
marks [50] and latent warping [37, 38]. However, the quality
of the generated videos is still unnatural and restricted by
the preference pose [16, 49], month blur [28], identity modi-
fication [37, 38], and distorted face [37, 38, 47].

Generating a natural-looking talking head video contains
many challenges since the connections between audio and
different motions are different. i.e., the lip movement has
the strongest connection with audio, but audio can be talked
via different head poses and eye blink. Thus, previous facial
landmark-based methods [2, 50] and 2D flow-based audio to
expression networks [37,38] may generate the distorted face
since the head motion and expression are not fully disentan-
gled in their representation. Another popular type of method
is the latent-based face animation [3, 16, 28, 49]. Their meth-
ods mainly focus on the specific kind of motions in talking
face animation and struggle to synthesize high-quality video.
Our observation is that the 3D facial model contains a highly
decoupled representation and can be used to learn each type
of motion individually. Although a similar observation has
been discussed in [47], their methods also generate inaccu-
rate expressions and unnatural motion sequences.

From the above observation, we propose SadTalker, a
Stylized Audio-Driven Talking-head video generation sys-
tem through implicit 3D coefficient modulation. To achieve
this goal, we consider the motion coefficients of the 3DMM
as the intermediate representation and divide our task into
two major components. On the one hand, we aim to generate
the realistic motion coefficients (e.g., head pose, lip motion,
and eye blink) from audio and learn each motion individu-
ally to reduce the uncertainty. For expression, we design a
novel audio to expression coefficient network by distilling
the coefficients from the lip motion only coefficients from
[28] and the perceptual losses (lip-reading loss [1], facial
landmark loss) on the reconstructed rendered 3D face [5].
For the stylized head pose, a conditional VAE [6] is used
to model the diversity and life-like head motion by learning
the residual of the given pose. After generating the realistic
3DMM coefficients, we drive the source image through a
novel 3D-aware face render. Inspired by face-vid2vid [40],
we learn a mapping between the explicit 3DMM coefficients
and the domain of the unsupervised 3D keypoint. Then, the
warping fields are generated through the unsupervised 3D
keypoints of source and driving and it warps the reference im-
age to generate the final videos. We train each sub-network

of expression generation, head poses generation and face
renderer individually and our system can be inferred in an
end-to-end style. As for the experiments, several metrics
show the advantage of our method in terms of video and
motion methods.

The main contribution of this paper can be summarized
as:

• We present SadTalker, a novel system for a stylized
audio-driven single image talking face animation using
the generated realistic 3D motion coefficients.

• To learn the realistic 3D motion coefficient of the
3DMM model from audio, ExpNet and PoseVAE are
presented individually.

• A novel semantic-disentangled and 3D-aware face ren-
der is proposed to produce a realistic talking head video.

• Experiments show that our method achieves state-of-
the-art performance in terms of motion synchronization
and video quality.

2. Related Work
Audio-driven Single Image Talking Face Generation.
Early works [3, 28, 29] mainly focus on producing accu-
rate lip motion with a perception discriminator. Since the
real videos contain many different motions, ATVGnet [2]
uses the facial landmark as the intermediate representation
to generate the video frames. A similar approach has been
proposed by MakeItTalk [50], differently, it disentangles the
content and speaker information from the input audio signal.
Since facial landmarks are still a highly coupled space, gen-
erating the talking head in the disentangled space is also pop-
ular recently. PC-AVS [49] disentangles the head pose and
expression using implicit latent code. However, it can only
produce low-resolution image and need the control signal
from another video. Audio2Head [37] and Wang et al. [38]
get inspiration from the video-driven method [34] to produce
the talking-head face. However, these head movements are
still not vivid and produce distorted faces with inaccurate
identities. Although there are some previous works [31, 47]
use 3DMMs as an intermediate representation, their method
still faces the problem of inaccurate expressions [31] and
obvious artifacts [47].

Audio-driven Video Portrait. Our task is also related to
visual dubbing, which aims to edit a portrait video through
audio. Different from audio-driven single image talking face
generation, this task is typically required to be trained and
edited on the specific video. Following previous work of deep
video portrait [18], these methods utilize 3DMM informa-
tion for face reconstruction and animation. AudioDVP [43],
NVP [36], AD-NeRF [11] learn to reenact the expression to
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Figure 2. Main pipeline. Our method uses the coefficients of 3DMM
as intermediate motion representation. To this end, we first generate
realistic 3D motion coefficients (facial expression β, head pose ρ)
from audio, then these coefficients are used to implicitly modulate
the 3D-aware face render for final video generation.

edit the mouth shape. Beyond lip movement, i.e., the head
motions [22, 46], emotional talking face [17] also get atten-
tion. The 3DMM-based method plays an important role in
these tasks since it is practical to fit the 3DMM parameters
from a video clip. Although these methods achieve satisfac-
tory results in personalized video, their method can not be
applied to arbitrary photos and in the wild audio.

Video-Driven Single Image Talking Face Generation.
This task is also known as face reenactment or face anima-
tion, which aims to transfer the motion of the source image
to the target person. It has been widely explored [14, 27, 31,
34, 35, 39, 40, 42, 45, 48] recently. Previous works also learn
a shared intermediate motion representation from the source
image and the target, which can be roughly divided into the
landmark [39] and the unsupervised landmark-based meth-
ods [14,34,40,48], 3DMM based methods [7,31,45] and the
latent animation [23, 42]. This task is much easier than our
task since it contains the motion in the same domain. Our
face render is also inspired by the method of unsupervised
landmark-based method [40] and 3DMM-based method [31]
to use coefficients to generate real videos. However, they are
not focused on generating realistic motion coefficients.

3. Method

As shown in Fig. 2, our system uses the 3D motion coef-
ficients as the intermediate representation for talking head
generation. We first extract the coefficients from the original
image. Then, the realistic 3DMM motion coefficients are
generated by ExpNet and PoseVAE individually. Finally, a
3D-aware face render is proposed to produce the talking
head videos. Below, we give a brief introduction to the 3D
face model as preliminaries in Sec. 3.1, the audio-driven mo-
tion coefficients generation and the coefficients-driven image
animator we design in Sec. 3.2 and Sec. 3.3, respectively.

3.1. Preliminary of 3D Face Model

3D information is crucial to improve the realness of the
generated video since the real video is captured in the 3D
environment. However, previous works [28, 49, 50] have
rarely been a consideration in 3D space since it is hard to
obtain accurate 3D coefficients from a single image and the
high-quality face render is also hard to design. Inspired by
the recent single image deep 3D reconstruction method [5],
we consider the space of the predicted 3D Morphable Mod-
els (3DMMs) as our intermediate representation. In 3DMM,
the 3D face shape S can be decoupled as:

S = S+ αUid + βUexp, (1)

where S is the average shape of the 3D face, Uid and Uexp

are the orthonormal basis of identity and expression of LSFM
morphable model [1]. Coefficients α ∈ R80 and β ∈ R64

describe the person identity and expression, respectively. To
preserve pose variance, coefficients r ∈ SO(3) and t ∈ R3

denote the head rotation and translation. To achieve identity
irrelevant coefficients generation [31], we only model the
parameters of motion as {β, r, t}. We learn the head pose
ρ = [r, t] and expression coefficients β individually from
the driving audio as introduced before. Then, these motion
coefficients are used to implicitly modulate our face render
for final video synthesis.

3.2. Motion Coefficients Generation through Audio

As introduced above, the 3D motion coefficients contain
both head pose and expression where the head pose is a
global motion and the expression is relatively local. To this
end, learning everything altogether will cause huge uncer-
tainty in the network since the head pose has a relatively
weak relationship with audio while the lip motion is highly
connected. We generate the motion of the head pose and
expression using the proposed PoseVAE and ExpNet, respec-
tively introduced below.

ExpNet Learning a generic model which produces accu-
rate expression coefficients from audio is extremely hard
for two reasons: 1) audio-to-expression is not a one-to-one
mapping task for different identities. 2) there are some audio-
irrelevant motions in the expression coefficients and it will
influence the prediction’s accuracy. Our ExpNet is designed
to reduce these uncertainties. As for the identity issue, we
connect the expression motion to the specific person via
the first frame’s expression coefficients β0 which also con-
trols the facial emotion of the generated video. To reduce
the disturbance of other facial components in real expres-
sion coefficients, we use the lip motion only coefficients
as the coefficient target through the pre-trained network of
Wav2Lip [28] and deep 3D reconstruction [5]. Then, other
minor facial motions (e.g., eye blink) can be leveraged via
the additional landmark loss on the rendered images.
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Figure 3. The structure of our ExpNet. We involve a monocular
3D face reconstruction model [5] (Re and Rd) to learn the realistic
expression coefficients. Where Re is a pretrained 3DMM coeffi-
cients estimator and Rd is a differentiable 3D face render without
learnable parameters. We use the reference expression β0 to reduce
the uncertainty of identity and the generated frame from pre-trained
Wav2Lip [28] and the first frame as target expression coefficients
since it only contains the lip-related motions.

As shown in Figure 3, we generate the t-frame expression
coefficients from an audio window a{1,..,t}, where the audio
feature of each frame is a 0.2s mel-spectrogram. For training,
we first design a ResNet-based audio encoder ΦA [12, 28] to
embed the audio feature to a latent space. Then, a linear layer
is added as the mapping network ΦM to decode the expres-
sion coefficients. Here, we also add the reference expression
β0 from the reference image to support emotions and reduce
the identity uncertainty as discussed above. Since we use the
lip-only coefficients as ground truth in the training, we ex-
plicitly add a blinking control signal zblink ∈ [0, 1] and the
corresponding eye landmark loss to generate the controllable
eye blinks. Formally, the network can be written as:

β{1,...,t} = ΦM (ΦA(a{1,...,t}), zblink, β0) (2)

As for the loss function, we first use Ldistill to evaluate
the differences between the lip only expression coefficients
Re(Wav2Lip(I0, a{1,...,t})) and the generated β{1,...,t}. No-
tice that, we only use the first frame I0 of the wav2lip to
generate the lip-sync video which reduces the influence of
the pose variant and other facial expressions apart from lip
movement. Besides, we also involve the differentiable 3D
face render Rd to calculate the additional perceptual losses
in explicit facial motions space. As shown in Figure 3, we
calculate the landmark loss Llks to measure the range of eye
blink and the overall expression accuracy. A pretrained lip
reading network Φreader is also used as temporal lip reading
loss Lread to keep the perceptual lip qualities [9, 28]. We
provide more training details in the supplementary materials.
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Figure 4. The pipeline of the proposed PoseVAE. We learn the
residual of the input head pose ρ0 via a conditional VAE structure.
Given the conditions: first frame ρ0, style identity Zstyle and the
audio clip a{1,...,t}, our method learns a distribution of the residual
head pose ∆ρ{1,...,t} = ρ{1,...,t} − ρ0. After training, we can
generate the stylized results through the pose decoder and the
conditions (cond.) only.

PoseVAE As shown in Figure 4, a VAE [20] based model
is designed to learn the realistic and identity-aware stylized
head movement ρ ∈ R6 of the real talking video. In training,
the pose VAE is trained on fixed n frames using an encoder-
decoder-based structure. Both the encoder and decoder are
two-layer MLPs, where the inputs contain a sequential t-
frame head poses and we embed it to a Gaussian distribution.
In the decoder, the network is learned to generate the t-frame
poses from the sampled distribution. Instead of generating
the pose directly, our PoseVAE learns the residual of the con-
dition pose ρ0 of the first frame, which enables our method
to generate longer, stable, and continuous head motion in
testing under the condition of the first frame. Besides, accord-
ing to CVAE [6], we add the corresponding audio feature
a{1,...,t} and style identity Zstyle as conditions for rhythm
awareness and identity style. The KL-divergence LKL is
used to measure the distribution of the generated motions.
The mean square loss LMSE and adversarial loss LGAN are
used to ensure the generated quality. We provide more details
about the loss function in the supplementary materials.

3.3. 3D-aware Face Render

After generating the realistic 3D motion coefficients, we
render the final video through a well-designed 3D-aware
image animator. We get inspiration from the recent image
animation method Face-vid2vid [40] because it implicitly
learns the 3D information from a single image. However, a
real video is required as the motions driving signal in their
method. Our face render makes it drivable through 3DMM
coefficients. As shown in Figure 5, we propose mappingNet
to learn the relationship between the explicit 3DMM motion
coefficients (head pose and expression) and the implicit unsu-
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Figure 5. The proposed FaceRender and comparison with face-
vid2vid [40]. Given source image Is and driving image Id, face-
vid2vid generates the motions in a unsupervised 3D keypoint spaces
of Xc, Xs and Xd. Then, the image can be generated via the appear-
ance A0 and the keypoints. Since we do not have driving image,
we use the explicit disentangled 3DMM coefficients as proxy and
map it to the unsupervised 3D keypoints space.

pervised 3D keypoints. Our mappingNet is built via several
1D convolutional layers. We use temporal coefficients from a
time window for smoothing as PIRenderer [31]. Differently,
we find the face alignment motion coefficients in PIRenderer
will hugely influence the motion naturalness of audio-driven
video generation and provide an experiment in Sec. 4.4. We
only use the coefficients of expression and head pose.

As for training, our method contains two steps. Firstly,
we train face-vid2vid [40] in a self-supervised fashion as
in the original paper. In the second step, we freeze all the
parameters of the appearance encoder, canonical keypoints
estimator, and image generator for tuning. Then, we train the
mapping net on the 3DMM coefficients of the ground truth
video in a reconstruction style. We give the supervision in the
domain of unsupervised keypoints using L1 loss and the fi-
nal generated video following their original implementation.
More details can be found in the supplementary materials.

4. Experiments
4.1. Implementation Details and Metrics

Datasets We use VoxCeleb [24] dataset for training which
contains over 100k videos of 1251 subjects. We crop the
original videos following previous image animation meth-
ods [34] and resize the video to 256×256. After preprocess-
ing, the data is used to train our FaceRender. We select 1890
aligned videos and audios of 46 subjects in VoxCeleb to
train our PoseVAE and ExpNet. The input audios are down-
sampled to 16kHz and transformed to mel-spectrograms with
the same setting as Wav2lip [28]. To test our method, we
use the 346 videos’ first 8-second video (around 70k frames
in total) from HDTF dataset [47] since it contains high res-
olution and in-the-wild talking head videos. These videos

are also cropped and processed following [34] and resized
to 256 ×256 for evaluation. We use the first frame of each
video as the reference image to generate videos.

Implementation Details All of ExpNet, PoseVAE, and
FaceRender are trained separately and we employ Adam op-
timizer [19] for all experiments. After training, our method
can be inferred in an end-to-end fashion without any man-
ual intervention. All the 3DMM parameters are extracted
through pre-trained deep 3D face reconstruction method [5].
We perform all the experiments on 8 A100 GPUs. ExpNet,
PoseVAE, and FaceRender are trained with a learning rate
of 2e−5, 1e−4, and 2e−4, respectively. As for the temporal
consideration, ExpNet uses continuous 5 frames to learn.
PoseVAE is learned via continuous 32 frames. The frames
in FaceRender are generated frame-by-frame with the coeffi-
cients of 27 continuous frames for stability.

Evaluation Metrics We demonstrate the superiority of
our method on multiple metrics. We employ Frechet In-
ception Distance (FID) [13, 33] and cumulative probability
blur detection (CPBD) [25] to evaluate the quality of the
images.To evaluate identity preservation, we calculate the
cosine similarity (CSIM) of identity embedding between
the source images and the generated frames, in which we
use ArcFace [4] to extract identity embedding of images.
To evaluate lip synchronization and mouth shape, we eval-
uate the perceptual differences of the mouth shape from
Wav2Lip [28], including the distance score (LSE-D) and
confidence score (LSE-C). We also conduct some metrics
to evaluate the head motions of generated frames. For the
diversity of the generated head motions, a standard devia-
tion of the head motion feature embeddings extracted from
the generated frames using Hopenet [26] is calculated. For
the alignment of the audio and generated head motions, we
compute Beat Align Score as in Bailando [21].

4.2. Compare with other state-of-the-art methods

We compare several state-of-the-art methods for talking-
head videos generation (MakeItTalk [50], Audio2Head [37]
and Wang et al. [38] 2) and audio to expression genera-
tion (Wav2Lip [28], PC-AVS [49]). The evaluation is per-
formed on their publicly available checkpoint directly. As
shown in Table 1, our method shows better overall video
qualities and head pose diversity and also shows comparable
performance with other fully talking-head generation meth-
ods in terms of the lip synchronization metrics. We argue
that these lip synchronization metrics are too sensitive to the
audio where the unnatural lip movement may get a better
score. However, our method achieves a similar score to the

2This method needs to extract the phoneme from audio, which only works
on the specific language.
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Method Eye Blink Lip Synchronization Learned Head Motion Video Quality
LSE-C↑ LSE-D↓ Diversity↑ Beat Align↑ FID↓ CPBD↑ CSIM↑

Real Video N./A. 8.211 6.982 0.259 0.271 0.000 0.428 1.000
Wav2Lip* [28] N./A. 10.221 5.535 N./A. N./A. 21.725 0.368 0.849
PC-AVS** [49] from ref. 9.053 6.355 N./A. N./A. 69.127 0.206 0.683
MakeItTalk [50] automatic 5.110 10.059 0.257 0.268 28.243 0.283 0.838
Audio2Head [37] automatic 7.357 7.535 0.181 0.267 24.392 0.281 0.823
Wang et al. [38] automatic 4.932 10.055 0.226 0.268 22.432 0.295 0.811
Ours controllable 7.290 7.772 0.278 0.293 22.057 0.335 0.843

Table 1. Comparison with the state-of-the-art method on HDTF dataset. We evaluate Wav2Lip [28] and PC-AVS [49] in the one-shot settings.
Wav2Lip* achieves the best video quality since it only animates the lip region while other regions are the same as the original frame.
PC-AVS** is evaluated using the fixed reference pose and fails in some samples.
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Figure 6. We compare our method with several state-of-the-art methods for single image audio-driven talking head generation. Our method
produces much higher quality results in terms of lip synchronization, identity preservation, head motion and image quality. We give the
target image above for both lip shape and identity reference. Please refer our supplementary video for better comparison.

real videos, which demonstrates our advantages. We also
illustrate the visual results of different methods in Figure 6.
Here, we give the lip reference to visualize the lip synchro-
nization of our method. From the figure, our method has a
very similar visual quality to the original target video and

with different head poses as we expect. Compared with our
method, Wav2Lip [28] produces blur half-face, PC-AVS [49]
and Audio2Head [37] are struggling for identity preserva-
tion, Audio2Head can only generate the front talking face.
Besides, MakeItTalk [50] and Audio2Head [37] generate the
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Reference Image

Ours

Joint learn Pose and Exp coefficients

Figure 7. We compare our method with a baseline method which
learn all the coefficients from a single network without any con-
dition (from Speech2Gesture [10]). Our method shows clear head
movements, identity preservation and diverse expressions.

distorted face video due to 2D warping.

4.3. User Studies

We conduct user studies to evaluate the performance of
all the methods. We generate overall 20 videos which con-
tain almost equal genders with different ages, poses and
expressions. Then 20 participants are invited to choose the
best method in terms of video sharpness, lip synchroniza-
tion, the diversity and naturalness of the head motion, and
overall quality. The results are shown in Table 2, where the
participants like our method mostly because of the video
and motion quality. We also find that 38% of the partici-
pants think our methods show better lip synchronization
than other methods, which is inconsistent with Table 1. We
think it might be because most of the participants focus on
the overall quality of the video, where the blurry and still
face videos [28, 49] influence their opinions.

Method Lip Motion Video Overall
Sync. Diversity Sharpness Naturalness

Wav2Lip [28] 15.6% 3.1% 2.0% 2.8%
PC-AVS [49] 18.1% 9.6% 3.4% 9.1%
MakeItTalk [50] 5.6% 5.3% 5.7% 6.9%
Wang et al. [38] 12.5% 12.1% 16.3% 11.6%
Audio2Head [37] 9.5% 12.1% 9.7% 14.7%
Ours 38.7% 57.9% 62.8% 54.8%

Table 2. User study.

4.4. Ablation Studies

Ablation of ExpNet For ExpNet, we mainly evaluate the
necessity of each component via the lip synchronization
metrics. Since there are no disentangled methods before,
we consider a baseline (Speech2Gesture [10], which is an
audio to keypoint generation network) to learn the head pose
and expression coefficients jointly. As shown in Table 3 and
Figure 7, learning all the motion coefficients altogether is
hard to generate truth-worthy talking head videos. We then
consider the variants of the proposed ExpNet, both the initial

Method LSE-C ↑ LSE-D ↓
Speech2Gesture [10] 0.878 13.889
OursFull (Lip coeffs. + β0 + Lread) 7.290 7.772
w/o β0 & Lread 5.241 9.532
w/o Lread 6.993 7.841
w/ real coeffs. 6.567 8.061

Table 3. Ablation for ExpNet. Both the initial expression β0, lip
reading loss Lread improve the performance a lot. However, the lip
synchronization metric drops a lot when using the real coefficients.
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Figure 8. The ablation of ExpNet. We choose four frames from
the generated video as comparison. Our method largely reduces
the uncertainty of audio to expression generation. The reference
β0 is used to provide the identity information while the lip only
coefficients generate better lip synchronization. Notice that, the
target image is provided as the identity and lip motion reference.

expression β0, lip reading loss Lread and the necessity of lip-
only coefficients are critical. The visual comparison is shown
in Figure 8, where our method w/o the initial expression β0

shows huge identity changes as expected. Also, if we use the
real coefficients to replace the lip-only coefficients we use,
the performance drops a lot in lip synchronization.

Ablation of PoseVAE We evaluate the proposed PoseVAE
in terms of motion diversities and audio beat alignments. As
shown in Table. 4, the baseline Speech2Gesture [10] also
performs worse in pose evaluation. As for our variants, since
our method contains several identity style labels, to better
evaluate other components, we first consider the perform the
ablation studies on a fixed one-hot style of our full method
for evaluation (OurFull, Single Fixed Style). Each condition
in our setting benefits the overall motion quality in terms of
diversity and beat alignment. We further report the results of
the mixed style of our full method, which uses the randomly-
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Method Diversity↑ Beat Align↑
Speech2Gesture [10] 0.1574 0.274
OurFull (Single Fixed Style) 0.2735 0.287
w/o Lgan 0.2500 0.271
w/o initial pose 0.2725 0.278
w/o audio 0.2566 0.274
w/o all conditions 0.2631 0.279
OursFull (Mixed Style) 0.2778 0.293

Table 4. Ablation the diversity and audio alignment of the proposed
PoseVAE. Each component or conditional contribute largely to
generate realistic head motions.

PIRenderer OursDriven TargetSource Image

Fixed Alignment
Coeff.

Ours
(w/o Alignment Coeff.)

Learned Alignment
Coeff. Real Video

Figure 9. Ablation studies of face render. In the first row, we directly
compare our method with PIRenderer [31] for face animation and
our method shows better expression modeling. The second row is a
trace map of the generated facial landmarks from the same motion
coefficients. Using additional face alignment coefficients as part
of motion coefficients [31] will generate unrealistic aligned head
video.

selected identity label as style and also shows better diversity
performance.

Ablation of Face Render We conduct the ablation study
on the proposed face render in two aspects. On the one
hand, we show the reconstruction quality of our method with
the PIRenderer [31], since both methods use 3DMM as an
intermediate representation. As shown in the first row of
Fig. 9, the proposed face render shows better expression
reconstruction qualities and lip synchronization. Besides,
we evaluate the pose unnaturalness caused by the additional
alignment coefficients used in PIRenderer [31]. As shown
in the second row of Fig. 9, we plot the trace map of the
landmarks from the generated video with the same head
pose and expression coefficients. Using the fixed or learning-
able crop coefficients (as part of pose coefficients in our
poseVAE) will generate the face-aligned video, which is
strange as a natural video. We remove it and directly use the
head pose and expression as modulation parameters showing
a more realistic result.

49

Ours + GFPGANOurs Zoomed Regions
Figure 10. Limitation. Our method may show some teeth artifacts
in the lip region in some examples, it can be improved via the face
restoration network, i.e., GFPGAN [41].

4.5. Limitation

There are still some limitations in our system. Since
3DMMs couldn’t model the variation of eyes and teeth, the
mappingNet in our Face Render will struggle to synthesize
the realistic teeth in some cases. This limitation can be im-
proved via the blind face restoration networks [41] as shown
in Fig. 10. Another limitation of our work is that we only
concern the lip motion and eye blinking other than the other
facial expressions, e.g., emotion and gaze direction. Thus,
it reduces the realism that the generated video has a fixed
emotion . We consider it as future work.

5. Conclusion
In this paper, we present a new system for stylized audio-

driven talking head video generation. We use the motion
coefficients from 3DMM as an intermediate representation
and learn the relationships. To generate realistic 3D coef-
ficients from audio, we propose ExpNet and PoseVAE for
realistic expressions and diverse head poses. To model the
relationships between 3DMM motion coefficients and the
real video, we propose a novel 3D-aware face render in-
spired by the image animation method [40]. The experiments
demonstrate the superiority of our entire framework. Since
we predict the realistic 3D facial coefficients, our method
can also be used in other modalities directly, i.e., personal-
ized 2D visual dubbing [43], 2D Cartoon animation [50],
3D face animation [8, 44] and NeRF-based 4D talking-head
generation [15].

Ethical Considerations We consider the misuse of our
method since it can generate very realistic video. Both visible
and invisible video watermarks will be inserted into the
produced video for generated content identification similar
to Dall-E [30] and Imagen [32]. We also hope our method
can provide new research samples for forgery detection.
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