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Abstract

We analyze the DETR-based framework on semi-
supervised object detection (SSOD) and observe that (1) the
one-to-one assignment strategy generates incorrect match-
ing when the pseudo ground-truth bounding box is inaccu-
rate, leading to training inefficiency; (2) DETR-based de-
tectors lack deterministic correspondence between the in-
put query and its prediction output, which hinders the ap-
plicability of the consistency-based regularization widely
used in current SSOD methods. We present Semi-DETR,
the first transformer-based end-to-end semi-supervised ob-
ject detector, to tackle these problems. Specifically, we
propose a Stage-wise Hybrid Matching strategy that com-
bines the one-to-many assignment and one-to-one assign-
ment strategies to improve the training efficiency of the first
stage and thus provide high-quality pseudo labels for the
training of the second stage. Besides, we introduce a Cross-
view Query Consistency method to learn the semantic fea-
ture invariance of object queries from different views while
avoiding the need to find deterministic query correspon-
dence. Furthermore, we propose a Cost-based Pseudo La-
bel Mining module to dynamically mine more pseudo boxes
based on the matching cost of pseudo ground truth bound-
ing boxes for consistency training. Extensive experiments
on all SSOD settings of both COCO and Pascal VOC bench-
mark datasets show that our Semi-DETR method outper-
forms all state-of-the-art methods by clear margins.

1. Introduction

Semi-supervised object detection (SSOD) aims to boost
the performance of a fully-supervised object detector by ex-
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Figure 1. Comparisons between the vanilla DETR-SSOD frame-
work based on the Teacher-Student architecture and our proposed
Semi-DETR framework. Semi-DETR consists of Stage-wise Hy-
brid Matching, Cross-view Query Consistency powered by a cost-
based pseudo label mining strategy.

ploiting a large amount of unlabeled data. Current state-of-
the-art SSOD methods are primarily based on object detec-
tors with many hand-crafted components, e.g., rule-based
label assigner [9,26,27,31] and non-maximum suppression
(NMS) [1] post-processing. We term this type of object de-
tector as a traditional object detector. Recently, DETR [2],
a simple transformer-based end-to-end object detector, has
received growing attention. Generally, the DETR-based
framework builds upon transformer [32] encoder-decoder
architecture and generates unique predictions by enforcing a
set-based global loss via bipartite matching during training.
It eliminates the need for various hand-crafted components,
achieving state-of-the-art performance in fully-supervised
object detection. Although the performance is desirable,
how to design a feasible DETR-based SSOD framework re-
mains under-explored. There are still no systematic ways to
fulfill this research gap.

Designing an SSOD framework for DETR-based de-
tectors is non-trivial. Concretely, DETR-based detectors
take a one-to-one assignment strategy where the bipartite-
matching algorithm forces each ground-truth (GT) bound-
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Figure 2. Performance comparisons between the proposed Semi-
DETR and other SSOD methods, including PseCo [16] and Dense-
Teacher [42].

ing box to match a candidate proposal as positive, treating
remains as negatives. It goes well when the ground-truth
bounding boxes are accurate. However, directly integrat-
ing DETR-based framework with SSOD is problematic, as
illustrated in Fig. 1 (a) where a DETR-SSOD vanilla frame-
work utilizes DETR-based detectors to perform pseudo la-
beling on unlabeled images. In the Teacher-Student archi-
tecture, the teacher model usually generates noisy pseudo
bounding boxes on the unlabeled images. When the pseudo
bounding box is inaccurate, the one-to-one assignment
strategy is doomed to match a single inaccurate proposal
as positive, leaving all other potential correct proposals as
negative, thus causing learning inefficiency. As a compar-
ison, the one-to-many assignment strategy adopted in the
traditional object detectors maintains a set of positive pro-
posals, having a higher chance of containing the correct
positive proposal. On the one hand, the one-to-one assign-
ment strategy enjoys the merits of NMS-free end-to-end
detection but suffers the training inefficiency under semi-
supervised scenarios; on the other hand, the one-to-many
assignment strategy obtains candidate proposal set with bet-
ter quality making the detector optimized more efficiently
but inevitably resulted in duplicate predictions. Designing
a DETR-based SSOD framework that embraces these two
merits could bring the performance to the next level.

Additionally, the consistency-based regularization com-
monly used in current SSOD methods becomes infeasible
in DETR-based SSOD. Specifically, current SSOD meth-
ods [3, 10, 13, 16] utilize consistency-based regulariza-
tion to help object detectors learn potential feature invari-
ance by imposing consistency constraints on the outputs
of pairs-wise inputs (such as scale consistency [3, 10, 16],
weak-strong consistency [13], etc.). Since the input fea-
tures are deterministic in traditional object detectors, there
is a one-to-one correspondence between the inputs and out-
puts, which makes the consistency constraint convenient

to implement. However, this is not the case in DETR-
based detectors. DETR-based detectors [2, 15, 20, 40, 44]
use randomly initialized learnable object queries as inputs
and constantly update the query features through the atten-
tion mechanism. As the query features update, the corre-
sponding prediction results constantly change, which has
been verified in [15]. In other words, there is no determinis-
tic correspondence between the input object queries and its
output prediction results, which prevents consistency regu-
larization from being applied to DETR-based detectors.

According to the above analysis, we propose a new
DETR-based SSOD framework based on the Teacher-
Student architecture, which we term Semi-DETR presented
in Fig. 1 (b). Concretely, we propose a Stage-wise Hybrid
Matching module that imposes two stages of training us-
ing the one-to-many assignment and the one-to-one assign-
ment, respectively. The first stage aims to improve the train-
ing efficiency via the one-to-many assignment strategy and
thus provide high-quality pseudo labels for the second stage
of one-to-one assignment training. Besides, we introduce
a Cross-view Query Consistency module that constructs
cross-view object queries to eliminate the requirement of
finding deterministic correspondence of object queries and
aids the detector in learning semantically invariant charac-
teristics of object queries between two augmented views.
Furthermore, we devise a Cost-based Pseudo Label Min-
ing module based on the Gaussian Mixture Model (GMM)
that dynamically mines reliable pseudo boxes for consis-
tency learning according to their matching cost distribution.
Differently, Semi-DETR is tailored for DETR-based frame-
work, which achieves new SOTA performance compared to
the previous best SSOD methods as illustrated in Fig. 2.

To sum up, this paper has the following contributions:
• We present a new DETR-based SSOD method based

on the Teacher-Student architecture, called Semi-
DETR. To our best knowledge, we are the first to ex-
amine the DETR-based detectors on SSOD, and we
identify core issues in integrating DETR-based detec-
tors with the SSOD framework.

• We propose a stage-wise hybrid matching method that
combines the one-to-many assignment and one-to-one
assignment strategies to address the training ineffi-
ciency caused by the inherent one-to-one assignment
within DETR-based detectors when applied to SSOD.

• We introduce a consistency-based regularization
scheme and a cost-based pseudo-label mining algo-
rithm for DETR-based detectors to help learn semantic
feature invariance of object queries from different aug-
mented views.

• Extensive experiments show that our Semi-DETR
method outperforms all previous state-of-the-art meth-
ods by clear margins under various SSOD settings on
both MS COCO and Pascal VOC benchmark datasets.
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2. Related Work
Semi-Supervised Object Detection. In SSOD, Pseudo

Labeling [21, 25, 29, 33, 34, 36–38, 43] and Consistency-
based Regularization [3, 10, 13, 16, 22, 24, 27, 42] are two
commonly used strategies. A detailed description can be
found in the supplementary document. However, most
of these works are based on the traditional detectors, e.g.
Faster RCNN [27], which involves many hand-crafted com-
ponents, e.g anchor box, NMS, etc. Our Semi-DETR is
significantly different from previous works: (1) we ex-
plored the challenges of the DETR-based object detectors
on SSOD, which, to our best knowledge, is the first sys-
tematic research endeavor in SSOD; (2) our Semi-DETR
method is tailored for the DETR-based detectors, which
eliminates the training efficiency caused by bipartite match-
ing with the noisy pseudo labels and presents a new consis-
tency scheme for set-based detectors.

End-to-End Object Detection with Transformer. The
pioneering work DETR [2] introduced transformers into
object detection to eliminate the need for complex hand-
crafted components in traditional object detectors. Many
follow-up works have been dedicated to solving the slow
convergence and high complexity issues of DETR [15, 20,
23, 39, 40, 44]. Recently, DINO [40] combined with a vari-
ety of improvements related to DETR, such as query selec-
tion [39,44], contrastive query denoising [15], and achieved
SOTA performance across various object detection bench-
mark datasets with excellent convergence speed. Comple-
mentary to these, we aim to extend the study of DETR-
based detectors to SSOD and present Semi-DETR, which
is a tailored design for SSOD. Our framework is agnostic to
the choice of DETR-based detectors and could easily inte-
grate with all DETR-based detectors. Omni-DETR [35] is a
DETR-based object detector designed for omni-supervised
object detection. It is not designed specifically for SSOD as
admitted in their paper, but it is extended to the SSOD task
by introducing a simple pseudo-label filtering scheme. Our
Semi-DETR is significantly different from Omni-DETR in
the following aspects: (1) Different motivations for model
design; (2) Different training strategy; (3) Significant per-
formance improvement. The detailed discussion is in Sup-
plementary Document.

3. Semi-DETR
3.1. Preliminary

We aim to address the problem of semi-supervised
DETR-based object detection, where a labeled image set
Ds = {xs

i , y
s
i }

Ns
i=1 and an unlabeled image set Du =

{xu
i }

Nu
i=1 are available during training. Ns and Nu denote

the amount of labeled and unlabeled images. For the la-
beled images xs, the annotations ys contain the coordinates
and object categories of all bounding boxes.

3.2. Overview

The overall framework of our proposed Semi-DETR is
illustrated in Fig. 3. Following the popular teacher-student
paradigm [30] for SSOD, our proposed Semi-DETR adopts
a pair of teacher and student models with exactly the same
network architecture. Here we adopt DINO [40] as an
example while the overall framework of Semi-DETR is
compatible with other DETR-based detectors. Specifically,
in each training iteration, weak-augmented and strong-
augmented unlabeled images are fed to the teacher and stu-
dent, respectively. Then the pseudo labels generated by the
teacher with confidence scores larger than τs served as su-
pervisions for training the student. The parameters of the
student are updated by back-propagation, while the param-
eters of the teacher model are the exponential moving aver-
age (EMA) of the student. Our main contribution contains
three new components: stage-wise hybrid matching, cross-
view query consistency, and cost-based pseudo label min-
ing, which address the core issues of DETR-based SSOD.
In the following sections, we introduce more details of our
proposed Semi-DETR.

3.3. Stage-wise Hybrid Matching

DETR-based frameworks rely on one-to-one assignment
for end-to-end object detection. For DETR-based SSOD
framework, an optimal one-to-one assignment σ̂o2o can be
obtained by performing the Hungarian algorithm between
the predictions of the student and pseudo-labels generated
by the teacher:

σ̂o2o = argmin
σ∈ξN

N∑
i=1

Cmatch

(
ŷti , ŷ

s
σ(i)

)
(1)

where ξN is the set of permutations of N elements and
Cmatch

(
ŷti , ŷ

s
σ(i)

)
is the matching cost between the pseudo-

labels ŷt and the prediction of the student with index σ(i).
However, in the early stage of SSOD training, the

pseudo-labels generated by the teacher are usually inaccu-
rate and unreliable, which imposes a high risk of generating
sparse and low-quality proposals under the one-to-one as-
signment strategy. To exploit multiple positive queries to
realize efficient semi-supervised learning, we propose to re-
place the one-to-one assignment with the one-to-many as-
signment:

σ̂o2m =

argmin
σi∈CM

N

M∑
j=1

Cmatch

(
ŷti , ŷ

s
σi(j)

)
|ŷt|

i=1

. (2)

where CM
N is the combination of M and N , which denotes

that a subset of M proposals is assigned to each pseudo box
ŷti . Following [6, 7], we utilize a high-order combination of
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Figure 3. Overview of Semi-DETR. Our framework is based on Teacher-Student architecture. Specifically, a multi-stage training strategy is
derived to avoid incorrect bipartite matching with low-quality pseudo labels. Hybrid Matching with one-to-many assignment is applied in
the first stage to generate higher quality pseudo labels for the following one-to-one training stage. Besides, a cross-view query consistency
loss is designed to further enhance the consistency learning for the whole training process, where the pseudo boxes are filtered by a cost-
based GMM mining module.

classification score s and the IoU value u as the matching
cost metric:

m = sα · uβ (3)

where α and β control the effect of classification score and
IoU during the assignment, and following [6], we set α = 1,
β = 6 by default. With the one-to-many assignment, M
proposals with the largest m values are selected as positive
samples while regarding the remaining proposals as nega-
tive ones.

We train the model with one-to-many assignment for
T1 iterations in the early stage of semi-supervised training.
Following [6, 17], the classification loss and regression loss
are also modified at this stage:

Lo2m
cls =

Npos∑
i=1

|m̂i − si|γ BCE (si, m̂i)+

Nneg∑
j=1

sγjBCE (sj , 0)

(4)

Lo2m
reg =

Npos∑
i=1

m̂iLGIoU

(
bi, b̂i

)
+

Npos∑
i=1

m̂iLL1

(
bi, b̂i

)
(5)

Lo2m = Lo2m
cls + Lo2m

reg (6)

where γ is set to 2 by default. With multiple assigned pos-
itive proposals for each pseudo label, the potentially high-
quality positive proposals also get the chance to be opti-
mized, which greatly improves the convergence speed and,
in turn, obtains pseudo labels with better quality. However,
the multiple positive proposals for each pseudo label result
in duplicate predictions. To mitigate this problem, we pro-
pose to switch back to the one-to-one assignment training in

the second stage. By doing this, we enjoy the high-quality
pseudo labels after the first stage training and gradually re-
duce duplicate predictions to reach an NMS-free detector
with one-to-one assignment training at the second stage.
The loss functions of this stage are the same as [40]:

Lo2o = Lo2o
cls + Lo2o

reg (7)

3.4. Cross-view Query Consistency

Traditionally, in non-DETR-based SSOD frameworks,
consistency regularization can be employed conveniently
by minimizing the difference between the output of teacher
fθ and student f ′

θ, given the same input x with different
stochastic augmentation:

Lc =
∑
x∈Du

MSE (fθ(x), f
′
θ(x)) (8)

However, for DETR-based frameworks, as there is no clear
(or deterministic) correspondence between the input object
queries and their output prediction results, conducting con-
sistency regularization becomes infeasible. To overcome
this issue, we propose a Cross-view Query Consistency
module that enables the DETR-based framework to learn
semantically invariant characteristics of object queries be-
tween different augmented views.

Fig. 4 illustrates our proposed cross-view query consis-
tency module. Specifically, for each unlabeled image, given
a set of pseudo bounding boxes b, we process the RoI fea-
tures extracted via RoIAlign [11] with several MLPs:

ct = MLP(RoIAlign(Ft, b))

cs = MLP(RoIAlign(Fs, b))
(9)
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Figure 4. Overview of the cross-view query consistency mod-
ule. Query embeddings from the RoI features of pseudo labels
on different views are cross-wise sent to the teacher and student
decoders. The corresponding decoded features are enforced to be
similar by a consistency loss.

where Ft and Fs denote the backbone feature of the teacher
and student, respectively. Subsequently, ct and cs are re-
garded as cross-view query embeddings and attached to the
original object queries in another view to serve as the input
of the decoder:

ôt, ot = Decodert([cs, qt], Et|A)

ôs, os = Decoders([ct, qs], Es|A)
(10)

where q· and E· denote the original object queries and the
encoded image features, respectively. ô· and o· denote the
decoded features of cross-view queries and original object
queries. Note the subscript t and s indicate teacher and stu-
dent, respectively. Following [15], the attention mask A is
also employed to avoid information leakage.

With the semantic guide of input cross-view queries em-
beddings, the correspondence of the decoded features can
be naturally guaranteed, and we impose consistency loss as
follows:

Lc = − ct · cs
∥ct∥ × ∥cs∥

(11)

3.5. Cost-based Pseudo Label Mining

To mine more pseudo boxes with meaningful seman-
tic contents for the cross-view query consistency learning,
we propose a cost-based pseudo label mining module that
dynamically mines reliable pseudo boxes in the unlabeled
data. Specifically, we perform an additional bipartite match-
ing between the initial filtered pseudo boxes and the pre-
dicted proposals and utilize the matching cost to describe
the reliability of the pseudo boxes:

Cij = λ1CCls(pi, p̂j) + λ2CGIoU (bi, b̂j) + λ3CL1
(bi, b̂j)

(12)
where pi, bi represents the classification and regression re-
sult of i-th predicted proposals while p̂j , b̂j indicates the
class label and box coordinates of j-th pseudo label.

Subsequently, in each training batch, we cluster the ini-
tial pseudo boxes into two states by fitting a Gaussian Mix-
ture Model for the matching cost distribution. As illustrated
in Figure. 4, the matching cost aligns well with the quality
of pseudo boxes. We further set the cost value of the clus-
tering center of the reliable ones as the threshold and collect
all pseudo boxes with lower cost than the threshold for the
cross-view query consistency calculation.

3.6. Loss Function

The final loss L is represented as follows:

L = I(t ≤ T1) · (Lo2m
sup + wu · Lo2m

unsup)

+ I(t>T1) · (Lo2o
sup + wu · Lo2o

unsup)

+ wc · Lc

(13)

where L·
sup and L·

unsup are the supervised loss and the un-
supervised loss, respectively, containing both the classifica-
tion loss and regression loss. The Lc means the cross-view
consistency loss. The wu and wc are the unsupervised loss
weight and consistency loss weight, which set wu = 4 and
wc = 1 by default. t is the current training iteration and
T1 is the duration time of the first stage training within the
SHM module.

4. Experiments
4.1. Datasets and Evaluation Metrics

We validate our method on the MS-COCO benchmark
[19] and Pascal VOC datasets [5]. MS-COCO contains 80
classes with 118k labeled images in the train2017 set and
123k unlabeled images in the unlabeled2017 set. In addi-
tion, the val2017 set with 5k images is provided for valida-
tion. Following [37], we consider two evaluation settings
to validate our method on the MS-COCO benchmark: (1)
COCO-Partial. 1%, 5%, and 10% images of the COCO
train2017 set are randomly sampled as the labeled train-
ing data, and the remaining images of train2017 are re-
garded as the unlabeled data. 5 different data folds are cre-
ated for each data split to validate our method. The aver-
age of standard COCO mAP on the val2017 is adopted as
our final performance metric. (2) COCO-Full. Under this
setting, the entire train2017 is utilized as the labeled data,
and unlabeled2017 is used as the additional unlabeled data.
The standard COCO mAP on the val2017 is taken as the
evaluation metric. Pascal VOC contains 20 classes with
VOC2007 and VOC2012 provided as the labeled data and
unlabeled data respectively. The evaluation metrics are the
COCO-style AP50:95 and AP50 on the VOC2007 test set.

4.2. Implementation Details

To avoid loss of generality, we choose Deformable
DETR [44] and DINO to integrate into our Semi-DETR
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Figure 5. An illustration of Cost-based Pseudo Label Mining. We first take the image-level confidence score’s mean with variance to get
the initial pseudo labels, shown in (b), for each image and perform the Hungarian match to get the matching cost of each pseudo ground
truth bounding box within a batch. Then, we fit a GMM model with these cost values, shown in (a). We argue that the pseudo boxes with
lower cost are more likely to be the reliable pseudo boxes, so we take the lower threshold from the GMM model to filter the pseudo label
again to obtain the final pseudo boxes presented in (d).

method. Following them, we use ResNet-50 [12] pre-
trained on ImageNet [4] as our backbone network. Focal
Loss [18] is used for classification during training. Smooth
L1 Loss and GIoU [28] Loss are used for regression. We set
the number of object queries to 300 for Deformable DETR
and 900 for DINO, respectively. For the training hyperpa-
rameters, following [37]: (1) For the COCO-Partial bench-
mark, we train Semi-DETR for 120k iterations on 8 GPUs
with 5 images per GPU. The first stage with one-to-many
assignment is set to 60k iterations. The ratio of the labeled
data and unlabeled data is set to 1:4. The weight of the
unsupervised loss is set to α = 4.0. (2) For the COCO-
Full benchmark, we double the training time with COCO-
unlabeled to 240k, where the first stage with one-to-many
assignment is set to 180k iterations. The batch size is set
to 64 on 8 GPUs with 8 images per GPU. The ratios of la-
beled data and unlabeled data are set to 1:1, and the loss
weight of unlabeled data is set to α = 2.0. (3) For the
Pascal VOC benchmark, we train Semi-DETR for 60k iter-
ations where The first stage with one-to-many assignment is
set to 40k iterations. Other settings are kept the same with
COCO-Partial. For all experiments, the confidence thresh-
old is set to 0.4. We utilize Adam [14] with a learning rate
of 0.001, and no learning rate decay scheme is used. The
teacher model is updated through EMA with a momentum
of 0.999. Besides, we follow the same data prepossessing,
and augmentation pipeline in [37] without modifications.

4.3. Comparison with SOTA methods

We compare our Semi-DETR method with current SOTA
SSOD methods on both MS-COCO and Pascal VOC
datasets. We present the superiority of Semi-DETR in the
following aspects: (1) comparisons to two-stage and one-
stage detectors, (2) comparisons to DETR-based detectors,
and (3) generalization ability.

COCO-Partial benchmark. According to Tab. 1, Semi-
DETR shows significant superiority over current SOTA
SSOD methods across all experiment settings in COCO-
Partial. Concretely, (1) compared to SOTA two-stage and

one-stage detectors, Semi-DETR outperforms PseCo (ex-
periment 3) by 2.77, 2.00, 2.05 mAP with Deformable
DETR (by 8.07, 7.60, 7.44 mAP with DINO) under the 1%,
5%, 10% settings and beats Dense Teacher (experiment 5)
by 2.82, 1.49, 0.97 mAP with Deformable DETR (by 8.12,
7.09, 6.37 mAP with DINO) under the 1%, 5%, 10% set-
tings. Obviously, Semi-DETR is a better semi-supervised
object detector, and it does not require hand-crafted com-
ponents used in two-stage and one-stage detectors; (2) we
construct two DETR-based baselines, namely DETR un-
der supervised training only and a simple pseudo labeling
Teacher-Student architecture integrating DETR with SSOD.
By comparing experiments 7-10 (or experiments 11-14),
Semi-DETR outperforms the supervised baseline by 14.20,
10.80, 8.90 mAP with Deformable DETR (12.50, 10.60,
8.50 mAP with DINO) and surpasses the SSOD baseline by
5.80, 3.40, 3.30 mAP with Deformable DETR (2.10, 2.10,
1.90 mAP with DINO). This demonstrates that simply inte-
grating DETR-based detectors with Teacher-Student archi-
tecture is not optimal. (3) we use Deformable DETR and
DINO to show the generalization ability of our Semi-DETR
method. Apparently, Semi-DETR consistently boosts the
performance of both detectors over the corresponding base-
lines by clear margins (experiments 7-14). With stronger
detectors like DINO, Semi-DETR still enjoys a notable per-
formance improvement.

COCO-Full benchmark. According to Tab. 3, when
adding additional unlabeled2017 data, Semi-DETR with
Deformable DETR enjoys 3.6 mAP performance gain and
reaches 47.2 mAP, surpassing PseCo and Dense Teacher
by 1.1 and 1.1 mAP, respectively. This further manifests
the effectiveness of Semi-DETR. Besides, under stronger
baselines like DINO, Semi-DETR still shows obvious per-
formance gain (+1.8 mAP), which outperforms PseCo and
Dense Teacher by 4.3 and 4.3 mAP respectively and gener-
ates a new SOTA performance of 50.4 mAP.

Pascal VOC benchmark. Semi-DETR presents consis-
tent performance improvements on the Pascal VOC bench-
mark as shown in Tab. 2. Generally, Semi-DETR outper-
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Table 1. Comparisons with SOTA SSOD methods under the COCO-Partial setting. All results are the average of all 5 folds. Def-DETR
denotes Deformable DETR. Sup Only denotes supervised only baseline.

Category Method ID 1% 5% 10%
Unbiased Teacher 1 20.75 ± 0.12 28.27 ± 0.11 31.50 ± 0.10

Two-Stage Soft-Teacher 2 20.46 ± 0.39 30.74 ± 0.08 34.04 ± 0.14
PseCo 3 22.43 ± 0.36 32.50 ± 0.08 36.06 ± 0.24
DSL 4 22.03 ± 0.28 30.87 ± 0.24 36.22 ± 0.18

One-Stage Dense Teacher 5 22.38 ± 0.31 33.01 ± 0.14 37.13 ± 0.12
Unbiased Teacher v2 6 22.71 ± 0.42 30.08 ± 0.04 32.61 ± 0.03

Omi-DETR(Def-DETR) 7 18.60 30.20 34.10
Def-DETR(Sup only) 8 11.00 ± 0.24 23.70 ± 0.13 29.20 ± 0.11

Def-DETR SSOD(Baseline) 9 19.40 ± 0.31 31.10 ± 0.21 34.80 ± 0.09
Semi-DETR(Def-DETR) 10 25.20 ± 0.23 34.50 ± 0.18 38.10 ± 0.14

End-to-End DINO(Sup only) 11 18.00 ± 0.21 29.50 ± 0.16 35.00 ± 0.12
DINO SSOD (Baseline) 12 28.40 ± 0.21 38.00 ± 0.13 41.60 ± 0.11

Omi-DETR(DINO) 13 27.60 37.70 41.30
Semi-DETR(DINO) 14 30.50 ± 0.30 40.10 ± 0.15 43.50 ± 0.10

Table 2. Comparisons with SOTA SSOD methods under the Pascal
VOC setting. Def-DETR denotes Deformable DETR. Sup Only
denotes supervised only baseline.

Category Method AP50 AP50:95

Unbiased Teacher 77.37 48.69
Two-Stage Soft-Teacher - -

PseCo - -
DSL 80.70 56.80

One-Stage Dense Teacher 79.89 55.87
Unbiased Teacher v2 81.29 56.87
Def-DETR(Sup only) 74.50 46.20

Def-DETR SSOD(Baseline) 78.90 53.40
Semi-DETR(Def-DETR) 83.50 57.20

DINO(sup only) 81.20 59.60
End-to-End DINO SSOD (Baseline) 84.30 62.20

Semi-DETR(DINO) 86.10 65.20

forms the supervised baseline by 9.0 on AP50 and 11.0 on
AP50:95 with Deformable DETR (by 4.9 on AP50 and 5.6
on AP50:95 with DINO). Furthermore, Semi-DETR beats
all previous SOTA SSOD methods by significant margins
on both AP50 and AP50:95.

4.4. Ablation Study

We conduct extensive experiments to verify the effec-
tiveness of Semi-DETR in the following aspects: (1) com-
ponent effectiveness; (2) variants of Stage-wise Hybrid
Matching (SHM); (3) effectiveness of Cross-view Query
Consistency (CQC) and Cost-based Pseudo Label Mining
(CPM); (4) hyper-parameters. All experiments are per-
formed with DINO as the base detector on the 10% labeled
images setting of the COCO-Partial benchmark.

Component Effectiveness. According to Tab. 4, we per-
form four experiments to verify the effectiveness of each
proposed component. We formulate a strong baseline that

Table 3. Comparisons with SOTA SSOD methods under the
COCO-Full setting. Def-DETR denotes Deformable DETR. Sup
Only denotes supervised only baseline.

Method 100%

Unbiased Teacher 40.2 +1.1−→ 41.3
Soft-Teacher 40.9 +3.6−→ 44.5

PseCo 41.0 +5.1−→ 46.1

DSL 40.2 +3.6−→ 43.8
Dense Teacher 41.2 +3.6−→ 46.1

Semi-DETR(Def-DETR) 43.6 +3.6−→ 47.2
Semi-DETR(DINO) 48.6 +1.8−→ 50.4

integrates DINO with SSOD via pseudo labeling in exper-
iment 1. In general, our proposed components enjoy con-
sistent performance improvements. Specifically, by intro-
ducing the SHM module, it outperforms the baseline by 1.1
mAP. Further integrating the CQC and CPM modules brings
an extra 0.8 improvement. This shows that our proposed
components are complementary to each other and proves
the effectiveness of each component in our model.

Table 4. Component effectiveness of Semi-DETR. SHM denotes
the Stage-wise Hybrid Matching, CQC means Cross-view Query
Consistency, and CPM represents Cost-based Pseudo Label Min-
ing, respectively.

ID SHM CQC CPM mAP AP50 AP75

1 41.6 58.3 45.1
2 ✓ 42.7 59.3 46.2
3 ✓ ✓ 43.1 59.6 46.6
4 ✓ ✓ ✓ 43.5 59.7 46.8

Variants of SHM. We examine the impact of different
one-to-many assignment strategies within SHM in the first
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stage of training. Concretely, Max-IoU [27], ATSS [41] and
SimOTA [8] are chosen as the alternatives. All models are
trained for 60k iterations. As presented in Tab. 6, it is in-
teresting to find that not all traditional one-to-many assign-
ment methods are effective in DETR-based detectors. Max-
IoU assignment strategy and ATSS show significant per-
formance degradation when applied to the first stage, even
though they are commonly used in traditional object detec-
tors. On the other hand, SimOTA shows comparable perfor-
mance to our one-to-many assignment strategy. This is pos-
sibly caused by the fact that SimOTA and our method adopt
a ranking-based one-to-many assignment strategy while
Max-IoU and ATSS utilize hard or dynamic thresholding-
based one-to-many assignment strategy, which leads to a
significant difference number of assigned positive samples
for each pseudo ground truth bounding box and thus suffers
performance degradation. More analysis can be found in
the supplementary document.

Effectiveness of CQC+CPM. According to Tab. 5, we
compare four different methods to generate pseudo labels
for CQC and evaluate the precision and recall metrics of
the generated pseudo labels. First, we present two meth-
ods (by setting a fixed classification score τs = 0.4 or
by selecting Top-K pseudo labels with the highest confi-
dence scores) that obtain pseudo labels with high preci-
sion (81.5% or 80.2%) and low recall (41.3% or 39.4%)
but observe marginal performance gains. Then we present
the Mean+Std method that aims to balance the precision
(60.2%) and recall (54.0%) of pseudo labels via combin-
ing the image-level mean confidence score and variance
τ = µ + σ, which enjoys a better performance improve-
ment (+0.4 mAP). Finally, our Cost-based GMM method
achieves a better trade-off between the precision (77.6%)
and recall (52.1%) metrics, which has a 0.8 performance
gain.

Table 5. Effects of different methods to filter pseudo labels for
cross-view consistency training.

Method mAP Precision Recall
Fixed(0.4) 42.8 81.5% 41.3%

Top-K(K=9) 42.9 80.2% 39.4%
Mean + Std 43.1 60.2% 54.0%

Cost-based GMM 43.5 77.6% 52.1%

Table 6. Effects of the different one-to-many assignment methods
in the first stage.

Strategy mAP AP50 AP75

Max-IoU 11.4 15.0 12.1
ATSS 18.7 30.5 18.9

SimOTA 42.5 59.9 45.2
Ours 42.8 59.8 46.0

Hyperparameters. We study two types of hyperparam-

Table 7. Effects of the training iteration T1 of the first stage using
one-to-many assignment strategy in Stage-wise Hybrid Matching.

T1 40k 60k 80k 100k 120k

mAP 42.9 43.5 43.2 43.0 44.0
NMS-Free Y Y Y Y N

Table 8. Effects of the pseudo label threshold τs.

τs 0.2 0.3 0.4 0.5 0.6
mAP 42.6 43.0 43.5 43.2 42.8

eters in our model: (1) the pseudo label threshold τs; (2)
the training iterations T1 of the first stage in SHM. For
τs, according to Tab. 8, the best performance is achieved
when τs = 0.4. Possibly, a lower threshold could intro-
duce noisy pseudo labels, while a higher threshold could
decrease the effective number of pseudo labels. For the
training iterations of the first stage, according to Tab. 7, per-
forming the one-to-many assignment strategy across both
stages achieves 44.0 mAP at the cost of using NMS in the
end. The appropriate training time of the first stage is at
60k iterations, which achieves the best performance of 43.5
mAP and does not require NMS post-process at the same
time.

5. Conclusion
We analyzed the challenges of the DETR-based ob-

ject detectors on semi-supervised object detection, includ-
ing the learning inefficiency of one-to-one assignment with
inaccurate pseudo labels and the difficulties of designing
consistency-based regularization due to the absence of de-
terministic correspondence from object queries. We pro-
posed Semi-DETR, the first transformer-based end-to-end
semi-supervised object detector. It consists of a Stage-wise
Hybrid Matching method that embraces the merits of both
one-to-many assignment and one-to-one assignment strate-
gies, a Cross-view Query Consistency method that learns
semantic feature invariance of object queries from different
views via unlabeled images, and a Cost-based Pseudo La-
beling module that adaptively mines more reliable pseudo
labels for improving the efficiency of consistency training.
Extensive experiments demonstrate the superiority of Semi-
DETR on both MS-COCO and Pascal VOC benchmarks.
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