
Starting from Non-Parametric Networks for 3D Point Cloud Analysis

Renrui Zhang1,5, Liuhui Wang2,6, Yali Wang4,5, Peng Gao5, Hongsheng Li1, Jianbo Shi†3

1CUHK MMLab 2Peking University 3University of Pennsylvania
4Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

5Shanghai Artificial Intelligence Laboratory 6Heisenberg Robotics

{zhangrenrui, gaopeng}@pjlab.org.cn, jshi@seas.upenn.edu
wangliuhui0401@pku.edu.cn, hsli@ee.cuhk.edu.hk

Abstract

We present a Non-parametric Network for 3D point
cloud analysis, Point-NN, which consists of purely non-
learnable components: farthest point sampling (FPS), k-
nearest neighbors (k-NN), and pooling operations, with
trigonometric functions. Surprisingly, it performs well on
various 3D tasks, requiring no parameters or training,
and even surpasses existing fully trained models. Start-
ing from this basic non-parametric model, we propose two
extensions. First, Point-NN can serve as a base archi-
tectural framework to construct Parametric Networks by
simply inserting linear layers on top. Given the supe-
rior non-parametric foundation, the derived Point-PN ex-
hibits a high performance-efficiency trade-off with only a
few learnable parameters. Second, Point-NN can be re-
garded as a plug-and-play module for the already trained
3D models during inference. Point-NN captures the comple-
mentary geometric knowledge and enhances existing meth-
ods for different 3D benchmarks without re-training. We
hope our work may cast a light on the community for un-
derstanding 3D point clouds with non-parametric meth-
ods. Code is available at https://github.com/
ZrrSkywalker/Point-NN .

1. Introduction
Point cloud 3D data processing is a foundational opera-

tion in autonomous driving [4, 12, 21], scene understand-
ing [1, 3, 33, 44], and robotics [5, 20, 26]. Point clouds
contain unordered points discretely depicting object sur-
faces in 3D space. Unlike grid-based 2D images, they
are distribution-irregular and permutation-invariant, which
leads to non-trivial challenges for algorithm designs.

Since PointNet++ [23], the prevailing trend has been

† Corresponding author

Non-Parametric
Encoder

Point-Memory
Bank

+
No Parameter

Non-Parametric Components

FPS k-NN Pooling

Trigonometric
Functions

Classification Few-Shot Cls. Segmentation Detection

81.8% Acc. 90.9% Acc. 70.4% mIoU 33.3% AP!"

No
Training

Figure 1. The Pipeline of Non-Parametric Networks. Point-NN
is constructed by the basic non-parametric components without
any learnable operators. Free from training, Point-NN can achieve
favorable performance on various 3D tasks.

adding advanced local operators and scaled-up learnable pa-
rameters. Instead of max pooling for feature aggregation,
mechanisms are proposed to extract local geometries, e.g.,
adaptive point convolutions [14, 16, 30, 37, 38] and graph-
like message passing [11, 34, 43]. The performance gain
also rises from scaling up the number of parameters, e.g.,
KPConv [30]’s 14.3M and PointMLP [17]’s 12.6M, is much
larger than PointNet++’s 1.7M. This trend has increased
network complexity and computational resources.

Instead, the non-parametric framework underlying all
the learnable modules remains nearly the same since Point-
Net++, including farthest point sampling (FPS), k-Nearest
Neighbors (k-NN), and pooling operations. Given that few

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5344

https://github.com/ZrrSkywalker/Point-NN
https://github.com/ZrrSkywalker/Point-NN

works have investigated their efficacy, we ask the question:
can we achieve high 3D point cloud analysis performance
using only these non-parametric components?

We present a Non-parametric Network, termed Point-
NN, which is constructed by the aforementioned non-
learnable components. Point-NN, as shown in Figure 1,
consists of a non-parametric encoder for 3D feature ex-
traction and a point-memory bank for task-specific recogni-
tion. The multi-stage encoder applies FPS, k-NN, trigono-
metric functions, and pooling operations to progressively
aggregate local geometries, producing a high-dimensional
global vector for the point cloud. We only adopt simple
trigonometric functions to reveal local spatial patterns at
every pooling stage without learnable operators. Then, we
adopt the non-parametric encoder of Point-NN to extract the
training-set features and cache them as the point-memory
bank. For a test point cloud, the bank outputs task-specific
predictions via naive feature similarity matching, which val-
idates the encoder’s discrimination ability.

Free from any parameters or training, Point-NN unex-
pectedly achieves favorable performance on various 3D
tasks, e.g., shape classification, part segmentation and 3D
object detection, indicating the strength of the long-ignored
non-parametric operations. Compared to existing para-
metric methods, Point-NN even surpasses the fully trained
3DmFV [2] by +2.9% classification accuracy on OBJ-BG
split of ScanObjectNN [31]. Especially for few-shot clas-
sification, Point-NN significantly exceeds PointCNN [13]
and other models [22, 23] by more than +20% accuracy,
indicating its superiority in low-data regimes. Starting
from this simple-but-effective Point-NN, we propose two ap-
proaches by leveraging the non-parametric components to
benefit 3D point cloud analysis.

First, Point-NN can serve as an architectural precur-
sor to construct Parametric Networks, termed as Point-
PN, shown in Figure 2 (a). As we have fully optimized
the non-parametric framework, the Point-PN can be sim-
ply derived by inserting linear layers into every stage of
Point-NN. Point-PN contains no complicated local opera-
tors, but only linear layers and trigonometric functions in-
herited from Point-NN. Experiments show that Point-PN
can achieve competitive performance with a small num-
ber of parameters, e.g., 87.1% classification accuracy with
0.8M on the hardest split of ScanObjectNN [31].

Second, Point-NN can be regarded as a plug-and-play
module to enhance the already trained 3D models without
re-training, as shown in Figure 2 (b). We directly fuse the
predictions between Point-NN and off-the-shelf 3D models
during inference by linear interpolation. Given the training-
free manner, Point-NN mainly focuses on low-level 3D
structural signals by trigonometric functions, which pro-
vides complementary knowledge to the high-level seman-
tics of existing 3D models. On different tasks, Point-NN

Point-NN Point-PN

+Linear	Layers

(a)	As	Architectural	Frameworks (b)	As	Plug-and-play	Modules

Insert

Enhanced	Networks

Interpolate the Predictions

Point-NN

Construct

Trained	
Networks

Figure 2. Two Applications of Point-NN. (a) As a non-parametric
framework to construct parametric networks by simply inserting
linear layers. (b) As a plug-and-play module to enhance already
trained networks without re-training.

exhibits consistent performance boost, e.g., +2.0% classifi-
cation accuracy on ScanObjectNN [31] and +11.02% detec-
tion AR25 on ScanNetV2 [7].

Our contributions are summarized below:

• We propose to revisit the non-learnable components in
3D networks, and, for the first time, develop a non-
parametric method, Point-NN, for 3D analysis.

• By using Point-NN as a basic framework, we introduce
its parameter-efficient derivative, Point-PN, which ex-
erts superior performance without advanced operators.

• As a plug-and-play module, the complementary Point-
NN can boost off-the-shelf trained 3D models for var-
ious 3D tasks directly during inference.

2. Non-Parametric Networks
In this section, we first investigate the basic non-

parametric components in existing 3D models (Sec. 2.1).
Then, we integrate them into Point-NN, which consists of
a non-parametric encoder (Sec. 2.2) and a point-memory
bank (Sec. 2.3). Finally, we introduce how to apply Point-
NN for various 3D tasks (Sec. 2.4).

2.1. Basic Components

Underlying most of the point cloud processing net-
works [17, 23] are a series of non-parametric components,
i.e., farthest point sampling (FPS), k-Nearest Neighbors (k-
NN), and pooling operations. These building blocks are
non-learnable during training and iteratively stacked into
multiple stages to construct a pyramid hierarchy.

For each stage, we denote the input point cloud represen-
tation from the last stage as {pi, fi}Mi=1, where pi ∈ R1×3

and fi ∈ R1×C denote the coordinate and feature of point i.
First, FPS is adopted to downsample the point number from
M to M

2 by selecting a subset of local center points,

{pc, fc}
M
2
c=1 = FPS

(
{pi, fi}Mi=1

)
. (1)

5345

Non-Parametric	Encoder

𝑓!

𝑓"

…

∆𝑝! …

𝑓"!#

…

𝑓$ 𝑓"$#

𝑓% 𝑓"%&

∆𝑝%
𝑓"'

k-neighbor features

For	every	local	center	𝑐 Local-aggregated	center	𝑐

Concat

𝑓(

Multi-stage	HierarchyRaw-point	
Embedding

FP
S

k-
N
N Local

Geometry
Aggregation

PosE

Global	
Feature

Po
ol
in
g

X	4

k-neighbor coordinates

Feature
Expansion

Geometry
Extraction

Feature
Aggregation

Weigh

PosE

Figure 3. Non-Parametric Encoder of Point-NN. We first utilize
trigonometric functions, denoted as PosE(·), to encode raw points
into high-dimensional vectors, and then adopt non-learnable oper-
ations to hierarchically aggregate local features.

Then, k-NN, or ball query, is responsible for grouping k
spatial neighbors for each center c from the original M
points, which forms the local 3D region,

Nc = k-NN
(
pc, {pi}Mi=1

)
, (2)

where Nc ∈ Rk×1 denotes the indices for k nearest neigh-
bors. On top of this, the geometric patterns for each lo-
cal neighborhood Nc are extracted by the delicate learn-
able operator, Φ(·), and finally aggregated by max pooling,
MaxP({·}). We formulate it as

fa
c = MaxP

({
Φ(fc, fj)

}
j∈Nc

)
. (3)

The derived {pc, fa
c }

M
2
i=1 is then fed into the next network

stage to progressively capture 3D geometries with enlarging
receptive fields.

To verify the non-parametric efficacy independently
from the learnable Φ(·), we present Point-NN, a network
purely constructed by these non-learnable basic compo-
nents along with simple trigonometric functions for 3D
coordinate encoding. Point-NN is composed of a non-
parametric encoder NPEnc(·) and a point-memory bank
PoM(·). Given an input point cloud P for shape classifi-
cation, the encoder summarizes its high-dimensional global
feature fG, and the bank produces the classification logits
by similarity matching. We formulate it as

fG = EncNP(P); logits = PoM(fG), (4)

where fG ∈ R1×CG and the logits ∈ R1×K denote the
predicted possibility for K categories in the dataset.

2.2. Non-Parametric Encoder

As shown in Figure 3, the non-parametric encoder con-
ducts initial embedding to transform the raw XYZ coordi-
nates of P into high-dimensional vectors, and progressively
aggregates local patterns via the multi-stage hierarchy.

Raw-point Embedding. To achieve feature embedding
without learnable layers, we refer to the positional encod-
ing in Transformer [32] and extend it for non-parametric 3D
encoding. For a raw point i with pi = (xi, yi, zi) ∈ R1×3,
we utilize trigonometric functions to embed it into a CI -
dimensional vector,

PosE(pi) = Concat(fx
i , f

y
i , f

z
i) ∈ R1×CI , (5)

where fx
i , fy

i , fz
i ∈ R1×CI

3 denote the embeddings of
three axes, and CI denotes the initial feature dimension.
Taking fx

i as an example, for the channel index m ∈
[0, CI

6]:

fx
i [2m] = sine

(
αxi/β

6m
CI

)
,

fx
i [2m+ 1] = cosine

(
αxi/β

6m
CI

)
, (6)

where α, β control the magnitude and wavelengths, respec-
tively. By the inherent nature of trigonometric functions, the
relative position of two points can be revealed by a dot prod-
uct between their embeddings, which captures fine-grained
semantics of different local 3D structures.

Local Geometry Aggregation. Based on the embedding,
we adopt a 4-stage network architecture to hierarchically
aggregate spatial local features. After the ordinal FPS and
k-NN illustrated in Section 2.1, we discard any learnable
operators Φ(·), and simply utilize trigonometric functions
PosE(·) to reveal the local patterns. In detail, for each cen-
ter point {pc, fc} and its neighborhood {pj , fj}j∈Nc , we
aim to achieve three goals. (1) Feature Expansion. As the
network stage goes deeper, each point feature is assigned
with larger receptive field and requires higher feature di-
mension to encode 3D semantics. We conduct such feature
expansion by simply concatenating the neighbor feature fj
with the center feature fc along the feature dimension,

fcj = Concat(fc, fj), for j ∈ Nc, (7)

where fcj denotes the expanded feature of each neighbor.
(2) Geometry Extraction. To indicate the spatial distribu-
tion of k neighbors within the local region, we weigh each
fcj by the relative positional encoding. We normalize their
coordinates by the mean and standard deviation, denoted
as {∆pj}j∈Nc , and embed them via Eq. (5). Then, the k-
neighbor features are weighted as

fw
cj =

(
fcj + PosE(∆pj)

)
⊙ PosE(∆pj), (8)

5346

𝑓!

3D Training	Set

OneHot

𝑇"#"

𝐿𝑎𝑚𝑝 𝐴𝑖𝑟𝑝𝑙𝑎
𝑛𝑒

𝐶ℎ𝑎𝑖𝑟 𝑃𝑙𝑎𝑛𝑡

𝐹"#"

Global Feature
Test	Point	Cloud

Label
Memory

Feature
Memory 𝑆$%&

logits

Construct Before Inference

Label

Integrate

Non-Parametric
Encoder

Non-Parametric
Encoder

Point-Memory	Bank

Similarity

Matching

Figure 4. Point-Memory Bank of Point-NN. We construct
the memory bank by caching training-set features via the non-
parametric encoder. Then, the test point cloud is simply classified
by similarity matching without training.

where ⊙ denotes element-wise multiplication. The fea-
ture dimension of PosE(∆pj) is set the same as that of
fcj in 4 stages, which are 2CI , 4CI , 8CI , and 16CI , due
to feature expansion. In this way, the local geometry of
the region, i.e., relative positional information of neighbor
points PosE(∆pj), can be implicitly encoded into the fea-
tures without any learnable parameters. (3) Feature Aggre-
gation. After weighing, we utilize both max and average
pooling for local feature aggregation,

fa
c = MaxP

(
{fw

cj}j∈Nc

)
+AveP

(
{fw

cj}j∈Nc

)
, (9)

where MaxP({·}),AveP({·}) are permutation-invariant
and summarize neighboring features from different aspects.

Here, we obtain the local-aggregated centers {fa
c , pc}

M
2
c=1,

which would be fed into the next stage of Point-NN. Finally,
after all 4 stages, we apply the two pooling operations to in-
tegrate the features and acquire a global representation fG
with CG feature dimension of the input point cloud.

2.3. Point-Memory Bank

Instead of using the traditional learnable classification
head, our Point-NN adopts a point-memory bank to involve
sufficient category knowledge from the 3D training set. As
shown in Figure 4, the bank is first constructed by the non-
parametric encoder in a training-free manner, and then out-
puts the prediction by similarity matching during inference.

Memory Construction. The point memory consists of a
feature memory Fmem and a label memory Tmem. Taking
the task of shape classification as an example, we suppose
the given training set contains N point clouds, {Pn}Nn=1, of

K categories. Via the aforementioned non-parametric en-
coder, we encode all N global features and convert their
ground-truth labels {tn}Nn=1 as one-hot encoding. We then
cache them as two matrices by concatenating along the
inter-sample dimension as

Fmem = Concat
({

EncNP(Pn)
}N

n=1

)
, (10)

Tmem = Concat
({

OneHot(tn)
}N

n=1

)
, (11)

where Fmem ∈ RN×CG and Tmem ∈ RN×K . Tagged by
Tmem, the memory Fmem can be regarded as the encoded
category knowledge for the 3D training set. Features tagged
with the same label unitedly describe the characteristics of
the same category, and the inter-class discrimination can
also be reflected by the embedding-space distances.

Similarity-based Prediction. For a test point cloud, we
also utilize the non-parametric encoder to extract its global
feature as f t

G ∈ R1×CG , which is within the same embed-
ding space as the feature memory Fmem. Then, the clas-
sification is simply accomplished by two matrix multipli-
cations via the constructed bank. Firstly, we calculate the
cosine similarity between the test feature and Fmem by

Scos =
f t
GF

T
mem

∥f t
G∥ · ∥Fmem∥

∈ R1×N , (12)

which denotes the semantic correlation of the test point
cloud and N training samples. Weighted by Scos, we in-
tegrate the one-hot labels in the label memory Tmem as

logits = φ(ScosTmem) ∈ R1×K , (13)

where φ(x) = exp(−γ(1−x)) serves as an activation func-
tion from [42]. In Scos, the more similar feature memory
of higher score contributes more to the final classification
logits, and vice versa. By such similarity-based label inte-
gration, the point-memory bank can adaptively discriminate
different point cloud instances without any training.

2.4. Other 3D Tasks

Except for shape classification, our Point-NN can also
be extended for part segmentation and 3D object detection
with tasks-specific modifications.

Part Segmentation. Other than extracting global fea-
tures, the task of part segmentation requires to classify
each input point. Therefore, we append a symmetric non-
parametric decoder after the encoder, which progressively
upsamples the encoded point features into the input point
number. In every stage of the decoder, we reversely prop-
agate the features of center points to their k neighbors in
a non-parametric manner. For the point-memory bank, we
first apply the non-parametric encoder and decoder to ex-
tract all point-wise features of the training set. To save the

5347

𝑓!

Point-PN Multi-stage	HierarchyRaw-point	
Embedding

FP
S

k-
N
N

Fe
at
ur

e
Ex

pa
ns

io
n

Li
ne
ar

Global	
Feature

Po
ol
in
g

Li
ne
ar

Li
ne
ar

Li
ne
ar

X	4

Classifier Logits

AB C, D, E

Ge
om

et
ry

Ex
tr
ac

ti
on

Figure 5. The Pipeline of Point-PN. Given the non-parametric framework of Point-NN, we simply construct the parametric derivative,
Point-PN, by inserting linear layers into every stage of the encoder. Performance gain of using linear layers of A∼E is shown in Table 1.

PointNet++

Point-NN

Figure 6. Complementary Characteristics of Point-NN. We visualize the point responses after the first network stage for the already
trained PointNet++ [23] and our Point-NN, where darker colors indicate higher responses. As shown, they focus on different spatial
structures with complementary 3D patterns.

GPU memory, we average the features of points with the
same part label in an object, and only cache such aggregated
part-wise features with part labels as Fmem, Tmem.

3D Object Detection. Given category-agnostic 3D pro-
posals from a pre-trained 3D region proposal network [8,
19], Point-NN can be utilized as a non-parametric classifi-
cation head for object detection. Similar to shape classifica-
tion, we also adopt a pooling operation after the encoder
to obtain global features of the detected objects. Differ-
ently, we sample the point cloud within each ground-truth
3D bounding box in the training set, and encode the object-
wise features as the feature memory Fmem. Specifically, we
do not normalize the point coordinates for each object as the
pre-processing like other 3D tasks, which is to preserve the
3D positional information of objects in the original scene.

3. Starting from Point-NN
In this section, we introduce two promising applications

for Point-NN, which fully unleash the potentials of non-
parametric components for 3D point cloud analysis.

3.1. As Architectural Frameworks

Point-NN can be extended into learnable parametric net-
works (Point-PN) without adding complicated operators or
too many parameters. As shown in Figure 5 and Table 1, on

Method Raw
Embed.

Linear
Layers Classifier Acc.

(%) Param.

Point-NN N - N 81.8 0.0 M
A N - P 90.3 0.3 M
B P - P 90.8 0.3 M
C P 0+1 P 93.4 0.5 M
D P 1+1 P 93.2 0.8 M
E P 2+2 P 92.9 0.7 M

Point-PN P 1+2 P 93.8 0.8 M

Table 1. Step-by-step Construction of Point-PN on Model-
Net40 [36]. ‘N’ or ‘P’ denotes the non-parametric modules or
parametric linear layers. ‘Linear Layers’ denotes the number of
linear layers inserted into each network stage. Note that we adopt
bottleneck layers with a ratio 0.5 for ‘2’ in ‘Linear Layers’

top of Point-NN, we first replace the point-memory bank
with a conventional learnable classifier. This lightweight
version achieves 90.3% classification accuracy on Model-
Net40 [36] with only 0.3M parameters (A). Then, we up-
grade the raw-point embedding into parametric linear lay-
ers, which improves the performance to 90.8% (B). To bet-
ter extract multi-scale hierarchy, we append simple linear
layers into every stage of the encoder. For each stage, two
learnable linear layers are inserted right before or after the

5348

Method Split 1 Split 2 Split 3 Param.

3DmFV [2] 68.2 73.8 63.0 -
PointNet [22] 73.3 79.2 68.2 3.5 M
SpiderCNN [39] 77.1 79.5 73.7 -
PointNet++ [23] 82.3 84.3 77.9 1.7 M
DGCNN [34] 82.8 86.2 78.1 1.8 M
PointCNN [13] 86.1 85.5 78.5 -
DRNet [24] - - 80.3 -
GBNet [25] - - 80.5 8.4 M
SimpleView [10] - - 80.5 -
PointMLP [17] - - 85.2 12.6 M

Point-NN 71.1 74.9 64.9 0.0 M
Point-PN 91.0 90.2 87.1 0.8 M

Table 2. Shape Classification on the Real-world ScanOb-
jectNN [31]. We report the accuracy (%) on three official splits
of ScanObjectNN: OBJ-BG, OBJ-ONLY and PB-T50-RS. Our
Point-NN outperforms the fully trained 3DmFV as marked in blue.

Geometry Extraction step for capturing higher-level spatial
patterns (C, D, E). We observe Point-PN attains the com-
petitive 93.8% accuracy with 0.8M parameters. This final
version only contains trigonometric functions for geometry
extraction and simple linear layers for feature transforma-
tion. This demonstrates that, compared to existing advanced
operators or scaled-up parameters, we can alternatively start
from a non-parametric framework, i.e., Point-NN, to obtain
a powerful and efficient 3D model.

3.2. As Plug-and-play Modules

Considering the training-free characteristic, we propose
to regard Point-NN as an inference-time enhancement mod-
ule, which can boost already trained 3D models without ex-
tra re-training. For shape classification, we directly fuse
the prediction by linear interpolation, namely, adding the
classification logits of Point-NN and off-the-shelf models
element-wisely. This design produces the ensemble for two
types of knowledge: the low-level structural signals from
Point-NN, and the high-level semantics from the trained
networks. As visualized in Figure 6, the extracted point
cloud features by Point-NN produce high response values
around the sharp 3D structures, e.g., the airplane’s wingtips,
chair’s legs, and lamp poles. In contrast, the trained Point-
Net++ focuses more on 3D structures with rich semantics,
e.g., airplane’s main body, chair’s bottoms, and lampshades.

4. Experiments

We conduct extensive experiments to evaluate the effi-
cacy of Point-NN (Sec. 4.2), and its two extensions as Point-
PN (Sec. 4.3) and plug-and-play modules (Sec. 4.4).

Method Acc. (%) Param.
Train
Time

Test
Speed

PointNet [22] 89.2 3.5 M - -
PointNet++ [23] 90.7 1.7 M 3.4 h 521
DGCNN [34] 92.9 1.8 M 2.4 h 617
RS-CNN [15] 92.9 1.3 M - -
DensePoint [14] 93.2 - - -
PCT [11] 93.2 - - -
GBNet [25] 93.8 8.4 M - 189
CurveNet [37] 93.8 2.0 M 6.7 h 25
PointMLP [17] 94.1 12.6 M 14.4 h 189

Point-NN 81.8 0.0 M 0 275
Point-PN 93.8 0.8 M 3.9 h 1176

Table 3. Shape Classification on Synthetic ModelNet40 [36].
All compared methods take 1,024 points as input. Train Time and
Test Speed (samples/second) are tested on one RTX 3090 GPU.
We report the accuracy without the voting strategy.

Method Inst.
mIoU Param.

Train
Time

Test
Speed

PointNet [22] 83.7 8.3 M - -
PointNet++ [23] 85.1 1.8 M 26.5 h 45
PAConv [11] 86.0 - - -
PointMLP [17] 86.1 16.8 M 47.1 h 119
CurveNet [37] 86.6 5.5 M 56.9 h 22

Point-NN 70.4 0.0 M 0 51
Point-PN 86.6 3.9 M 29.0 h 131

Table 4. Part Segmentation on ShapeNetPart [41]. All com-
pared methods take 2,048 points as input, and are evaluated by
mean IoU scores (%) across instances.

4.1. Dataset

For shape classification, we report the performance on
two benchmarks: the synthetic ModelNet40 [36] with 40
categories, and real-world ScanObjectNN [31] with 15 cate-
gories. Considering the background and data augmentation,
ScanObjectNN is officially split into three subsets: OBJ-
BG, OBJ-ONLY, and PB-T50-RS. For few-shot classifica-
tion, we evaluate on the few-shot subset of ModelNet40
with four different settings, 5-way 10-shot, 5-way 20-shot,
10-way 10-shot and 10-way 20-shot. For part segmenta-
tion, we adopt ShapeNetPart [41] dataset with synthesized
3D shapes of 50 part categories. For 3D object detection,
we conduct the experiments on ScanNetV2 [7] with axis-
aligned bounding boxes in 3D scenes. We refer to Supple-
mentary Material for implementation details. Note that, we
report all results without the voting strategy.

5349

Method 5-way 10-way

10-shot 20-shot 10-shot 20-shot

DGCNN [34] 31.6 40.8 19.9 16.9
FoldingNet [40] 33.4 35.8 18.6 15.4
PointNet++ [23] 38.5 42.4 23.0 18.8
PointNet [22] 52.0 57.8 46.6 35.2
3D-GAN [35] 55.8 65.8 40.3 48.4
PointCNN [13] 65.4 68.6 46.6 50.0

Point-NN 88.8 90.9 79.9 84.9
Improvements +23.4 +22.3 +33.3 +34.9

Table 5. Few-shot Classification on ModelNet40 [36]. We cal-
culate the average accuracy (%) over 10 independent runs. The
reported results of existing methods are taken from [28].

4.2. Point-NN

Shape Classification. The results of Point-NN are re-
ported in the green rows of Table 2 and 3, respectively
for the two datasets. As shown, Point-NN attains favor-
able classification accuracy for both real-world and syn-
thetic point clouds, indicating our effectiveness and gener-
alizability. Surprisingly, Point-NN even surpasses the fully
trained 3DmFV [2] by +2.9%, +1.1%, +1.9% on the three
splits of ScanObjectNN [31]. By this, we demonstrate that,
without any parameters or training, the non-parametric net-
work components with simple trigonometric functions can
achieve satisfactory 3D point cloud recognition.

Few-shot Classification. As shown in Table 5, com-
pared to existing trained models, our Point-NN exerts lead-
ing few-shot performance and exceeds the second-best
PointCNN [13] by significant margins, e.g., +34.9% for the
10-way 20-shot setting. Given limited training samples, tra-
ditional networks with learnable parameters severely suffer
from the over-fitting issue, while our Point-NN inherently
tackles it by the training-free manner. This indicates our
superior capacity for 3D recognition in low-data regimes.

Part Segmentation. Equipped with a non-parametric de-
coder illustrated in Sec. 2.4, we extend Point-NN for part
segmentation and report the mIoU scores over instances in
the green row of Table 4. The 70.4% mIoU reveals that our
non-parametric network can also produce well-performed
point-wise features, and capture the discriminative charac-
teristics for fine-grained spatial understanding.

3D Object Detection. Regarding Point-NN as a non-
parametric classification head, we utilize two popular 3D
detectors, VoteNet [8] and 3DETR-m [19], to provide
category-agnostic 3D region proposals. In Table 6, we com-
pare the performance of Point-NN with and without the

Method AP25 AP50 AR25 AR50

VoteNet [8] 57.8 33.5 80.9 51.3
Point-NN 4.5 3.3 80.9 51.3
Point-NN w/o nor. 23.1 16.0 90.0 51.3

3DETR-m [19] 64.6 46.4 77.2 59.2
Point-NN 7.7 5.7 77.2 59.2
Point-NN w/o nor. 33.3 24.7 77.4 59.3

Table 6. 3D Object Detection on ScanNetV2 [7]. We report the
mean Average Precision (%) and mean Average Recall (%) with
0.25 and 0.5 IoU thresholds. ‘nor’ denotes to normalize the point
coordinates for each object proposal.

normalization for object-wise point coordinates (Sec. 2.4).
As shown, processing the point coordinates without nor-
malization can largely enhance the AP scores of Point-NN,
which preserves more positional cues of objects’ 3D loca-
tions in the original scene. Also, we observe slight AR score
improvement over the region proposal networks, since the
classification logits of Point-NN can affect the 3D NMS
post-processing to remove the false positive boxes.

Ablation Study. In Table 7, we investigate the designs
of Point-NN’s non-parametric encoder. We first explore
the non-parametric embedding used as PosE, where the
trigonometric functions (‘Our Sin/cos’) from Transform-
ers [32] perform the best. Then, we experiment with dif-
ferent approaches in Geometry Extraction to weigh the k-
neighbor features, and observe utilizing ‘Add+Multiply’
can fully reveal the local geometry. In Table 9 for Point-
NN’s point-memory bank, we verify that the cosine similar-
ity better exerts the discrimination capacity of the encoder
among other distance metrics. In addition, compared to tra-
ditional machine learning algorithms, our memory bank can
benefit from the non-learnable similarity-based label inte-
gration, and exhibit superior classification accuracy.

4.3. Point-PN

Shape Classification. As shown in Table 2 and 3, con-
structed from Point-NN, the derived Point-PN achieves
competitive results for both datasets. Compared to the
large-scale PointMLP [17] with stacked MLPs of 12.6M
parameters, Point-PN only contains simple linear layers and
surpasses it by +1.9% accuracy on ScanObjectNN [31] with
16× fewer parameters and 6× faster inference speed. With
simple trigonometric functions, Point-PN attains compara-
ble performance to CurveNet [37] with complicated curve-
based grouping on ModelNet40 [36], while contains 2.5×
fewer parameters and 6× faster inference speed. The supe-
rior classification accuracy of Point-PN fully demonstrates
the significance of a powerful non-parametric framework.

5350

Embedding
Function Acc (%)

w/o 68.6
NeRF’s [18] 70.1

Fourier’s [29] 76.9
Our Sin/cos 81.8

Weighted
by PosE Acc (%)

w/o 77.8
Add 78.3

Multiply 80.4
Add+Multiply 81.8

Table 7. Ablation Study of Non-Parametric Encoder. We ablate
the non-parametric functions for point embedding, and experiment
different weighing methods for local geometry extraction.

Method ScanObjNN +NN ModelNet40 +NN

Point-NN 64.9 - 81.8 -
PointNet 68.2 +2.2 89.7 +0.4
PointNet++ 77.9 +1.2 92.6 +0.5
PCT - - 93.2 +0.2
PointMLP 85.2 +2.0 94.1 +0.3

Table 8. Plug-and-play for Shape Classification. We report the
gain (%) on the PB-T50-RS split of ScanObjectNN.

Part Segmentation. For point-wise segmentation task in
Table 4, Point-PN also achieves competitive performance,
i.e., 86.6% mIoU, among existing methods. Compared to
CurveNet, Point-PN with simple local geometry aggrega-
tion can save 28h training time and inference 6× faster.

Ablation Study. In Table 1, we present how to step-by-
step construct Point-PN from the non-parametric Point-NN.
As illustrated in Section 4.2, we insert linear layers before
and after the Geometry Extraction step. ‘C’ of ‘0+1’ de-
notes only appending one linear layer after the module, and
‘D’ of ‘1+1’ denotes inserting into both positions. The pre-
ceding layers pre-transform the point features to better re-
veal the local geometry, and the latter layers further parse
the weighted features for high-level understanding. We ob-
serve that Point-PN of ‘1+2’ performs the best.

4.4. Plug-and-play

Shape Classification. We evaluate the enhancement ca-
pacity of Point-NN on two classification datasets in Table 8.
By simple inference-time ensemble, Point-NN effectively
boosts existing methods with different margins. On the
more challenging ScanObjectNN [31], both PointNet [22]
and PointMLP [17] are improved by +2.0% accuracy. This
well indicates the effectiveness of complementary knowl-
edge provided by Point-NN.

Segmentation and Detection. In Table 10, we present the
plug-and-play performance of Point-NN on part segmenta-
tion and 3D object detection tasks. As the segmentation

Similarity
Metric Acc (%)

Chebyshev 65.9
Euclidean 79.8
Manhattan 80.9

Cosine 81.8

Traditional
Classifier Acc (%)

Dec. Tree [27] 57.8
GBoost [9] 63.9
SVM [6] 79.9

Memory Bank 81.8

Table 9. Ablation Study of Point-Memory Bank. We compare
the similarity metrics and machine learning algorithms. ‘GBoost’
and ‘Dec. Tree’ denote Gradient Boosting and Decision Tree.

Method mIoU

DGCNN 85.16
+NN +0.16

CurveNet 86.58
+NN +0.07

Method AP25 AR25

VoteNet 57.84 80.92
+NN +1.28 +5.31

3DETR-m 64.60 77.22
+NN +1.02 +11.05

Table 10. Plug-and-play for Segmentation and Detection. We
report the gain (%) on ShapeNetPart and ScanNetV2, respectively.

scores have long been saturated on the ShapeNetPart [41]
benchmark, the boost of +0.1% mIoU for state-of-the-art
CurveNet [37] is still noteworthy. For detection, Point-
NN significantly enhances 3DETR-m [19] by +1.02% AP25

and +11.05% AR25. By fusing complementary knowledge
to the trained classifier, the 3D detector can better judge
whether the candidate boxes include objects and correctly
remove the false positive ones.

5. Conclusion
We revisit the non-learnable components in existing 3D

models and propose Point-NN, a pure non-parametric net-
work for 3D point cloud analysis. Free from any parame-
ters or training, Point-NN achieves favorable accuracy on
various 3D tasks. Starting from this, we propose its two
promising applications: architectural frameworks for ef-
ficient Point-PN, and plug-and-play modules for perfor-
mance improvement. For future works, we will focus on ex-
ploring more advanced non-parametric models with wider
application scenarios for 3D point cloud analysis.

Acknowledgement. This project is funded in part
by National Key R&D Program of China Project
2022ZD0161100, by the Centre for Perceptual and Inter-
active Intelligence (CPII) Ltd under the Innovation and
Technology Commission (ITC)’s InnoHK, by General Re-
search Fund of Hong Kong RGC Project 14204021, by the
National Natural Science Foundation of China (Grant No.
62206272), and by Shanghai Committee of Science and
Technology (Grant No. 21DZ1100100).

5351

References
[1] Aitor Aldoma, Zoltan-Csaba Marton, Federico Tombari,

Walter Wohlkinger, Christian Potthast, Bernhard Zeisl,
Radu Bogdan Rusu, Suat Gedikli, and Markus Vincze. Tuto-
rial: Point cloud library: Three-dimensional object recogni-
tion and 6 dof pose estimation. IEEE Robotics & Automation
Magazine, 19(3):80–91, 2012. 1

[2] Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fis-
cher. 3dmfv: Three-dimensional point cloud classification
in real-time using convolutional neural networks. IEEE
Robotics and Automation Letters, 3(4):3145–3152, 2018. 2,
6, 7

[3] Jingdao Chen, Zsolt Kira, and Yong K Cho. Deep learning
approach to point cloud scene understanding for automated
scan to 3d reconstruction. Journal of Computing in Civil
Engineering, 33(4):04019027, 2019. 1

[4] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
Multi-view 3d object detection network for autonomous
driving. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 1907–1915, 2017. 1

[5] Nikolaus Correll, Kostas E Bekris, Dmitry Berenson, Oliver
Brock, Albert Causo, Kris Hauser, Kei Okada, Alberto Ro-
driguez, Joseph M Romano, and Peter R Wurman. Analysis
and observations from the first amazon picking challenge.
IEEE Transactions on Automation Science and Engineering,
15(1):172–188, 2016. 1

[6] Nello Cristianini, John Shawe-Taylor, et al. An introduction
to support vector machines and other kernel-based learning
methods. Cambridge university press, 2000. 8

[7] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828–5839, 2017. 2, 6, 7

[8] Zhipeng Ding, Xu Han, and Marc Niethammer. Votenet: A
deep learning label fusion method for multi-atlas segmenta-
tion. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 202–210.
Springer, 2019. 5, 7

[9] Jerome H Friedman. Greedy function approximation: a gra-
dient boosting machine. Annals of statistics, pages 1189–
1232, 2001. 8

[10] Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, and Jia
Deng. Revisiting point cloud shape classification with a sim-
ple and effective baseline. arXiv preprint arXiv:2106.05304,
2021. 6

[11] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud
transformer. Computational Visual Media, 7(2):187–199,
2021. 1, 6

[12] Kiyosumi Kidono, Takeo Miyasaka, Akihiro Watanabe,
Takashi Naito, and Jun Miura. Pedestrian recognition us-
ing high-definition lidar. In 2011 IEEE Intelligent Vehicles
Symposium (IV), pages 405–410. IEEE, 2011. 1

[13] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed

points. Advances in neural information processing systems,
31:820–830, 2018. 2, 6, 7

[14] Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming
Xiang, and Chunhong Pan. Densepoint: Learning densely
contextual representation for efficient point cloud process-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 5239–5248, 2019. 1, 6

[15] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-shape convolutional neural network for point
cloud analysis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8895–
8904, 2019. 6

[16] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-
voxel cnn for efficient 3d deep learning. arXiv preprint
arXiv:1907.03739, 2019. 1

[17] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun
Fu. Rethinking network design and local geometry in point
cloud: A simple residual mlp framework. arXiv preprint
arXiv:2202.07123, 2022. 1, 2, 6, 7, 8

[18] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
8

[19] Ishan Misra, Rohit Girdhar, and Armand Joulin. An end-to-
end transformer model for 3d object detection. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 2906–2917, October 2021. 5,
7, 8

[20] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-dof
graspnet: Variational grasp generation for object manipula-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 2901–2910, 2019. 1

[21] Luis E Navarro-Serment, Christoph Mertz, and Martial
Hebert. Pedestrian detection and tracking using three-
dimensional ladar data. The International Journal of
Robotics Research, 29(12):1516–1528, 2010. 1

[22] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 2, 6, 7, 8

[23] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. arXiv preprint arXiv:1706.02413, 2017. 1, 2,
5, 6, 7

[24] Shi Qiu, Saeed Anwar, and Nick Barnes. Dense-resolution
network for point cloud classification and segmentation. In
Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pages 3813–3822, 2021. 6

[25] Shi Qiu, Saeed Anwar, and Nick Barnes. Geometric back-
projection network for point cloud classification. IEEE
Transactions on Multimedia, 2021. 6

[26] Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and
Michael Beetz. Close-range scene segmentation and recon-
struction of 3d point cloud maps for mobile manipulation
in domestic environments. In 2009 IEEE/RSJ International

5352

Conference on Intelligent Robots and Systems, pages 1–6.
IEEE, 2009. 1

[27] S Rasoul Safavian and David Landgrebe. A survey of deci-
sion tree classifier methodology. IEEE transactions on sys-
tems, man, and cybernetics, 21(3):660–674, 1991. 8

[28] Charu Sharma and Manohar Kaul. Self-supervised few-shot
learning on point clouds. arXiv preprint arXiv:2009.14168,
2020. 7

[29] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020. 8

[30] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6411–6420, 2019. 1

[31] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,
Thanh Nguyen, and Sai-Kit Yeung. Revisiting point cloud
classification: A new benchmark dataset and classification
model on real-world data. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1588–
1597, 2019. 2, 6, 7, 8

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 3,
7

[33] Francesco Verdoja, Diego Thomas, and Akihiro Sugimoto.
Fast 3d point cloud segmentation using supervoxels with ge-
ometry and color for 3d scene understanding. In 2017 IEEE
International Conference on Multimedia and Expo (ICME),
pages 1285–1290. IEEE, 2017. 1

[34] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019. 1, 6, 7

[35] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Free-
man, and Joshua B Tenenbaum. Learning a probabilistic
latent space of object shapes via 3d generative-adversarial
modeling. In Proceedings of the 30th International Confer-
ence on Neural Information Processing Systems, pages 82–
90, 2016. 7

[36] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015. 5, 6, 7

[37] Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and
Weidong Cai. Walk in the cloud: Learning curves for point
clouds shape analysis. arXiv preprint arXiv:2105.01288,
2021. 1, 6, 7, 8

[38] Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiao-
juan Qi. Paconv: Position adaptive convolution with dy-
namic kernel assembling on point clouds. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3173–3182, 2021. 1

[39] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.
Spidercnn: Deep learning on point sets with parameterized
convolutional filters. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 87–102, 2018.
6

[40] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingnet: Point cloud auto-encoder via deep grid deformation.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 206–215, 2018. 7

[41] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-
fer, and Leonidas Guibas. A scalable active framework for
region annotation in 3d shape collections. ACM Transactions
on Graphics (ToG), 35(6):1–12, 2016. 6, 8

[42] Renrui Zhang, Rongyao Fang, Peng Gao, Wei Zhang,
Kunchang Li, Jifeng Dai, Yu Qiao, and Hongsheng Li.
Tip-adapter: Training-free clip-adapter for better vision-
language modeling. arXiv preprint arXiv:2111.03930, 2021.
4

[43] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 16259–16268, 2021. 1

[44] Bo Zheng, Yibiao Zhao, Joey C Yu, Katsushi Ikeuchi, and
Song-Chun Zhu. Beyond point clouds: Scene understanding
by reasoning geometry and physics. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3127–3134, 2013. 1

5353

