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Abstract
Head pose estimation (HPE) has been widely used in

the fields of human machine interaction, self-driving, and
attention estimation. However, existing methods cannot
deal with extreme head pose randomness and serious oc-
clusions. To address these challenges, we identify three
cues from head images, namely, neighborhood similari-
ties, significant facial changes, and critical minority rela-
tionships. To leverage the observed findings, we propose
a novel critical minority relationship-aware method based
on the Transformer architecture in which the facial part
relationships can be learned. Specifically, we design sev-
eral orientation tokens to explicitly encode the basic ori-
entation regions. Meanwhile, a novel token guide multi-
loss function is designed to guide the orientation tokens as
they learn the desired regional similarities and relation-
ships. We evaluate the proposed method on three chal-
lenging benchmark HPE datasets. Experiments show that
our method achieves better performance compared with
state-of-the-art methods. Our code is publicly available at
https://github.com/zc2023/TokenHPE.

1. Introduction
Head pose estimation (HPE) is a popular research area in

computer vision and has been widely applied to driver assis-
tance [29], human–computer interaction [36], virtual reality
[22], and attention detection [5]. In recent years, HPE has
been actively studied and the accuracy has been consider-
ably improved in terms of utilizing extra facial landmark in-
formation [2,20], extra RGB-depth information [13,26–28],
extra temporal information [16], stage-wise regression strat-
egy [42], multi-task learning [1, 38], and alternative param-
eterization of orientation [3,15,18,19,24]. Currently, many
methods focus on the representation of the head pose ori-
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Figure 1. Left part: Missing facial parts and our finding on critical
minority relationships. Although some of the facial parts are miss-
ing or occluded (marked with a red rectangle), the pose orientation
still can be inferred from the existing critical minority facial parts
(marked with a green circle). Right part: different head orientation
images in a panoramic overview. The rectangular boxes highlight
several significant facial changes, such as i) appearance of the eye
on one side, ii) appearance of the nostril, and iii) overlapping of
the nose and mouth. The circled areas show some regions in which
the facial part features are similar.

entation and have achieved impressive performance, but the
intrinsic facial part relationships are usually neglected. A
possible reason is that these relationships are difficult to
learn by existing CNN architectures. However, in some
challenging scenarios, as shown in the left part of Fig. 1,
many remarkable facial parts are missing. Consequently,
the remaining facial parts and their geometric relationships
must be leveraged to achieve robust and high-accuracy pre-
diction. Therefore, how to leverage the facial part relation-
ships for high-accuracy HPE is an attractive research topic.

To begin with, we firstly identify three implicit facial part
relationships in head poses. First, a local similarity in spe-
cific spatial orientation exists. Inside the circled region in
Fig. 1, the facial appearances are similar. Second, sev-
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eral significant facial part changes are observed in specific
orientations. For example, in Fig. 1, the two circled fa-
cial regions can be distinguished by a significant facial part
change, which is the appearance of the right eye. Third,
critical minority relationships of facial parts exist, and they
can determine the orientation of a head pose despite pos-
sible occlusions. As Fig. 1 shows, if a person’s mouth is
occluded, the head pose can be determined by the geomet-
ric spatial relationships of the eyes, nose, and the outline of
the face. In these scenarios, the remaining minor facial parts
and their relationships are crucial for high-accuracy HPE.

Given the aforementioned facial part relationships, the
question is how to design a model that can utilize this
heuristic knowledge. The traditional CNN architecture can-
not easily learn these relationships. In contrast, the Trans-
former architecture can effectively address this drawback of
CNN. Recently, Vision Transformer (ViT) [11] emerged as
a new choice for various computer vision tasks. The Trans-
former architecture is known for its extraordinary ability to
learn long-distance, high-level relationships between image
patches. Therefore, using Transformer to learn the rela-
tionships among critical minority facial parts is reasonable.
Moreover, the basic orientation regions can be well repre-
sented by learnable tokens in Transformer.

Inspired by the three findings and Transformer’s prop-
erties, we propose TokenHPE, a method that can discover
and leverage facial part relationships and regional similari-
ties via the Transformer architecture. The proposed method
can discover facial part geometric relationships via self-
attention among visual tokens, and the orientation tokens
can encode the characteristics of the basic orientation re-
gions. The latent relationships between visual and orienta-
tion tokens can be learned from large HPE datasets. Then,
the learned information is encoded into the orientation to-
kens, which can be visualized by vector similarities. In
addition, a special token guide multi-loss function is con-
structed to help the orientation token learn the general in-
formation. Our main contributions can be summarized as
follows:

(1) Three findings are derived on head images, including
facial part relationships and neighborhood orientation simi-
larities. Furthermore, to leverage our findings and cope with
challenging scenarios, a novel token-learning model based
on Transformer for HPE is presented for the first time.

(2) We find that the head pose panoramic overview can
be partitioned into several basic regions according to the
orientation characteristics. The same number of learnable
orientation tokens are utilized to encode this general infor-
mation. Moreover, a novel token guide multi-loss function
is designed to train the model.

(3) We conduct experiments on three widely used HPE
datasets. TokenHPE achieves state-of-the-art performance
with a novel token-learning concept compared with its ex-

isting CNN-based counterparts. Abundant visualizations
are also provided to illustrate the effectiveness of the pro-
posed orientation tokens.

2. Related Work

2.1. Head Pose Estimation

Existing HPE methods can be roughly divided into three
categories: (1) Euler angle regression approaches [9, 10,
31, 42] that regress the three Euler angles progressively, (2)
extra information-utilized approaches [1, 7, 30, 38, 39] that
exploit extra facial information to facilitate HPE, and (3)
Alternative orientation parametrization approaches [3, 15,
18, 19] that substitute Euler angle representation with other
representations.

Euler angle regression approaches. The paradigm in
early studies was to consider HPE as a regression prob-
lem. CNNs have been adopted for HPE [31, 42] and re-
mained dominant for many years because convolution can
efficiently reveal the visual patterns on human faces. Ruiz
et al. [31] applied CNN to HPE in an end-to-end manner to
independently predict three Euler angles by using a multi-
loss network. In [42], Yang et al. proposed FSA-Net, which
reveals aggregated features with fine-grained spatial struc-
tures and progressive stage fusions. However, becaues of
the incapacity of CNN to learn the relationships among vi-
sual patterns, further facial part relationships are not ex-
plored in this category.

Extra information-utilized approaches. With graph
convolutional network (GCN) being leveraged in many
NLP and computer vision tasks [8, 14, 21, 41, 45], Xin et
al. [39] proposed a novel method that learns through the fa-
cial landmark graph. However, the precision of the model
depends largely on the precision of the additional landmark
detector. Wu et al. [38] proposed a multi-task model called
SynergyNet that predicts complete 3D facial geometry. Im-
proved performance is achieved by synergistic learning of
3D landmarks and 3D morphable model parameters. In
these methods, facial part relationships can be learned from
landmarks or other extra information. However, many man-
ual annotations are required for training, which is laborious
and inefficient.

Alternative orientation parametrization approaches.
Most contributions to HPE in recent years have focused on
alternative parametrization of head pose labels because tra-
ditional Euler angle labels inevitably have some problems at
specific orientations. Geng et al. [15] proposed a multivari-
ate label distribution as a substitute of Euler angles. In this
manner, inaccutate manual annnotation can be alleviated
and the original label is softened, making the training easy.
In [3], Cao et al. proposed a vector-based head pose rep-
resentation that handles the issue of discontinuity of Euler
angle annnotation. Recently, Hempel et al. [18] proposed
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Figure 2. Architecture of the proposed TokenHPE model. The four major parts are visual token construction, orientation token construction,
Transformer module, and token learning-based prediction. A given image is transformed into visual tokens and added with a positional
embedding. Then, the visual tokens and learnable orientation tokens are concatenated as the input of the Transformer blocks. The
orientation tokens outputted by the last Transformer block are used to predict the head poses.

a rotation matrix-based representation for HPE. The rota-
tion matrix enables full pose regression without suffering
from ambiguity problems. Although these methods have
achieved impressive results, the intrinsic facial part relation-
ships are still not fully exploited.

2.2. Vision Transformer

ViT [11] is a variant model of Transformer [34], which
is originally used in NLP. In ViT , an input image is divided
into patches that can be viewed as words. The success of
ViT has led to its wide application in various vision tasks,
including fine-grained classification [17, 25, 35], object de-
tection [43], facial expression recognition [40], human pose
estimation [23], and image segmentation [37]. Li et al. [23]
proposed the use of learnable tokens to represent each hu-
man keypoint entity on the basis of prior knowledge. In
this way, viusal cue and constraint cue learning are expicitly
incorporated through the Transformer architecture. In [6],
Cordonnier et al. provided a theoretical explanation of the
long-distance information learned in Transformer. There-
fore, Transformer is capable to learn the facial part rela-
tionships, and neighborhood orientation similarities can be
encoded into learnable orientation tokens.

3. Our Method

In this section, we first provide an overview of the pro-
posed TokenHPE. Then, the details of the four parts of the
model are elaborated. Lastly, we report the implementation
details.

3.1. Overview

An overview of our method is shown in Fig. 2. The To-
kenHPE model consists of four parts. The first part is visual
token construction, where the input image is transformed
into visual tokens through multiple approaches. The sec-
ond part is orientation token construction. We provide two
strategies to construct orientation tokens based on our find-
ing on head image panoramic overview. The third part is
the Transformer module, wherein the relationships of facial
parts and orientation characteristics in the basic regions are
learned by the self-attention mechanism. The fourth part is
token learning-based prediction. A novel token guide multi-
loss function is introduced to help the orientation tokens en-
code general information.

3.2. Visual Token Construction

In this part, an original input RBG image is transformed
into visual tokens. We provide three options to obtain the
visual tokens: by patch division of the original image (Op-
tion 1), by extracting feature maps from a CNN (Option 2),
or by directly selecting the tokens from a Transformer ex-
tractor, such as ViT [11] (Option 3). For Option 1, suppose
we have an input image I with size H×W ×C. The image
is divided into patches with patch size Ph×Pw. Then, each
patch is resized into a 1D vector of size Ph × Pw × C and
a linear projection is applied to obtain a visual token. This
operation can be expressed as:

f : p → v ∈ Rd, (1)

where p refers to a 1D patch vector and v is a visual token
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Figure 3. Construction of orientation tokens. We discover that
the head pose panoramic overview can be roughly divided into
several basic orientation region s according the neighbor image
similarities. As the division granularity varies, the number of basic
orientation regions also varies.

with a dimension of d. For Option 2, the output of the CNN
extractor is considered as a set of feature maps with a size
of H × W × C ′. The remaining operations are similar to
those in Option 1. For Option 3, the visual tokens are simply
gained from the output of a Transformer extractor.

Given that spatial relationships are essential for accurate
HPE, positional embedding, pos, is added to the visual to-
kens to reserve spatial relationships, which can be expressed
as:

[visual] = {v1 + pos, v2 + pos, ..., vn + pos}, (2)

where n is the number of patches. Then, we obtain n 1D
vectors symbolically presented by [visual] tokens.

3.3. Orientation Token Construction

Basic orientation region partitioning. We introduce
two heuristic partitioning strategies, as shown in Fig. 3.
In Strategy I, the panoramic overview is divided into nine
basic orientation regions according to the appearance of the
eyes and the overlapping of the nose and mouth. In Strat-
egy II, the panoramic overview is divided into 11 regions,
with a fine-grained partition in the yaw direction. A detailed
description of the partition strategies is included in the sup-
plementary material.

Orientation token. We prepend k learnable d di-
mensional vectors to represent k basic orientation regions.
These vectors are symbolized as [dir] tokens. The [dir]
tokens, together with the [visual] tokens, are accepted as
the input of Transformer. In the end, the processed [dir]
tokens are chosen as the output of Transformer.

3.4. Transformer Blocks and MLP Head

With the [visual] and [dir] tokens as the input, the
Transformer blocks can learn the relationships between to-
kens. For each Transformer block, we adopt the classical
structure (cf. [11, 23]), which can be briefly expressed as:

{
X̃ l−1 = MSA[LN(X l−1)] +X l−1,

X l = MLP [LN(X̃ l−1)] + X̃ l−1,
(3)

where MSA denotes multi-head self-attention, MLP means
multi-layer perception and LN is layernorm operation. We
modify the MLP module by setting the Tanh(·) as the acti-
vation function. After the last Transformer layer, the [dir]
tokens are selected as the output of Transformer, whereas
the [visual] tokens are not used in the following steps.
Therefore, the output of M Transformer blocks is denoted
as {XM

1 , XM
2 , ..., XM

k }.
The orientation tokens need to be transformed to rota-

tion matrices for training and prediction. We adopt similar
transformation strategy as used in [18], which is formulated
as:

R̂i = FGS(WXM
i ), (4)

where W is a projection matrix to obtain a 6D represen-
tation of head pose, and R̂i is the predicted rotation ma-
trix of the i-th basic orientation region. FGS(·) denotes the
Gram–Schmidt process. For more details, please refer to
the supplementary material.

A set of intermediate rotation matrices C =
{R̂1, R̂2, ..., R̂k} can be generated by the transforma-
tion above. In order to obtain the final prediction rotation
matrix, C is concatenated and flattened into a vector
R̃ ∈ R9·k as the input of the MLP head, which can be
formulated as:

R̂ = FGS(W2(tanh(W1 · R̃+ b1)) + b2), (5)

where Wi and bi are the parameters of the MLP head. In
the training stage, the intermediate rotation matrices and the
final prediction rotation matrix are used for calculating the
loss for back propagation while in the prediction stage, only
the prediction rotation matrix R̂ is used for the model pre-
diction.

3.5. Token Guide Multi-loss Function

The prediction of the proposed model is a rotation matrix
representation denoted as R̂. Suppose that the groundtruth
rotation matrix is R. The geodesic distance [18] is used as
the loss between two 3D rotations. The geodesic distance
loss is formulated as:

Lg(R, R̂) = cos−1

(
tr(RR̂T )− 1

2

)
. (6)

Orientation token loss. Information can be encoded
into the orientation tokens through the orientation token
loss, which is defined as the geodesic distance with respect
to their corresponding orientation regions. Therefore, the
orientation token loss is written as:
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Lossori =

k∑
i=1

I(R, i) · Lg(R, R̂i), (7)

where k is the number of basic orientation regions, R is the
groundtruth rotation matrix, R̂i is the predicted rotation ma-
trix from the i-th region, and I(R, i) is an indicator function
that determines if a ground truth head pose lies in the i-th
basic region. I(R, i) can be expressed as:

I(R, i) =

{
1, if R in region i,

0, if R not in region i.
(8)

Prediction loss. The predictions from the orientation
tokens are aggregated to form the final prediction of our
model. This is optimized by the prediction loss, which is
formulated as:

Losspred = Lg(R, R̂), (9)

where R̂ is the model prediction.
Overall loss. The overall loss consists of the orientation

token loss and the prediction loss. It can be formulated as:

Lossoverall = αLosspred + (1− α)Lossori, (10)

where α is a hyper-parameter that balances prediction loss
and orientation token loss.

3.6. Architecture Details

The three options mentioned previously can be used to
obtain the visual tokens. In Option 1, the raw image patches
are directly transformed into visual tokens. In the version
added with a , many low-level features are utilized for pre-
diction. In Option 2, a CNN feature extractor is added to
efficiently extract low-level features, we adopt the widely
used stem-net, which quickly downsamples the feature map
into 1/4 input resolution in a very shallow convolutional
structure [4, 33]. Option 3 is applied in our TokenHPE
model by default, in which the ViT-B/16 is set as the fea-
ture extractor for a tradeoff between model size and perfor-
mance. The outputs of ViT are the visual tokens that can be
directly used in the second part of the proposed model.

3.7. Implementation Details

Pre-processing. In our experiments, the image is resized
into 240×240 pixels. A random crop is then applied to make
the input image size 224×224 pixels. Our method is imple-
mented with the Pytorch toolbox with one TITAN V GPU.
All the parameters in our model are trained with random
initialization.

Training. We train our TokenHPE in an end-to-end man-
ner. The batch size is set to 64, and α is set to 0.6 by default.
We train our model for 60 epochs. The learning rate is ini-
tialized as 0.00001, which is further decayed by a factor of
10 at the 20th and 40th epochs.

4. Experiments
This section describes the three datasets used for training

and testing, the evaluation metrics, the experiment results
and comparison with several methods, the ablation study,
and the model visualization.

4.1. Datasets and Evaluation Metrics

Datasets. BIWI dataset [12] includes 15,678 images of
20 individuals (6 females and 14 males, 4 individuals are
recorded twice). The head pose range covers about ±75°
yaw and ±60° pitch. AFLW2000 dataset [47] contains
2000 images and is typically used for the evaluation of 3D
facial landmark detection models. The head poses are di-
verse and often difficult to be detected by a CNN-based face
detector. 300W-LP dataset [47] adopts the proposed face
profiling to generate about 61k samples across large poses.
The dataset is usually employed as the training set for HPE.

Evaluation metric 1: Mean absolute errors of Euler
angles (MAE). MAE is a standard metric for HPE. Assume
a given set of groundtruth Euler angles {α,β,γ} of an im-
age, in which α,β,and γ represent pitch, yaw, and roll angle,
respectively. The predicted set of Euler angles from a model
is denoted as {α̂,β̂,γ̂}. Then, MAE is defined as:

MAE =
1

3
(|α− α̂|+ |β − β̂|+ |γ − γ̂|). (11)

We adopt MAE as an evaluation metric. However,
because this metric is unreliable at extreme degrees, the
MAEV results are given at the same time for a more ac-
curate measurement of the models.

Evaluation metric 2: Mean absolute errors of vectors
(MAEV). MAEV is based on rotation matrix representa-
tion. For an image, suppose that the groundtruth rotation
matrix is R = [r1, r2, r3], where ri is a 3D vector that indi-
cates a spatial direction. The predicted rotation matrix from
a model is denoted as R̂ = [r̂1, r̂2, r̂3]. MAEV can be for-
mulated as:

MAEV =
1

3

3∑
i=1

∥ri − r̂i∥1. (12)

4.2. Comparison with State-of-the-art Methods

We compare our method with state-of-the-art methods,
including Euler angle regression methods (HopeNet, FSA-
Net, FAN)), extra information-utilized methods (3DDFA,
Dlib, EVA-GCN, img2pose, SynergyNet), and alterna-
tive orientation parametrization methods (Quatnet, TriNet,
6DRepNet). In our two experiments, we follow the conven-
tional protocols in FSA-Net [42]. We conduct experiments
on two versions of our model: TokenHPE-v1 with nine ba-
sic orientation regions and TokenHPE-v2 with eleven basic
orientation regions.

Experiment 1. In our first experiment, we follow the
protocol 1 in [42] to train our model on the 300W-LP dataset
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Table 1. Mean absolute errors of Euler angles and vectors on the AFLW2000 dataset. All methods are trained on the 300W-LP dataset.
1These methods take an RGB image as the input and can be trained free from extra annotations, such as landmarks.

Methods Extra annotation free1
Euler angle errors (◦) Vector errors

Pitch Yaw Roll MAE Left Down Front MAEV
3DDFA [47] ✗ 27.05 4.71 28.43 20.08 30.57 39.05 18.52 29.38

Dlib [20] ✗ 11.25 8.50 22.83 14.19 26.56 28.51 14.31 23.13
FAN [2] ✗ 12.3 6.36 8.71 9.12 - - - -

EVA-GCN [39] ✗ 5.34 4.46 4.11 4.64 - - - -
SynergyNet [38] ✗ 4.09 3.42 2.55 3.35 - - - -

img2pose [1] ✗ 5.03 3.43 3.28 3.91 - - - -
HopeNet [31] ✔ 7.12 5.31 6.13 6.20 7.07 5.98 7.50 6.85
FSA-Net [42] ✔ 6.34 4.96 4.78 5.36 6.75 6.22 7.35 6.77
LwPosr [10] ✔ 6.38 4.80 4.88 5.35 - - - -
Quatnet [19] ✔ 5.62 3.97 3.92 4.50 - - - -

TriNet [3] ✔ 5.77 4.20 4.04 4.67 5.78 5.67 6.52 5.99
TokenHPE-v1 (ours) ✔ 5.73 4.53 4.29 4.85 6.16 5.21 6.97 6.11
TokenHPE-v2 (ours) ✔ 5.54 4.36 4.08 4.66 6.01 5.10 6.82 5.98

Table 2. Mean absolute errors of Euler angles and vectors on the BIWI dataset. All methods are trained on the 300W-LP dataset.

Methods Extra annotation free
Euler angle errors (◦) Vector errors

Pitch Yaw Roll MAE Left Down Front MAEV
EVA-GCN [39] ✗ 4.78 4.01 2.98 3.92 - - - -
HopeNet [31] ✔ 5.89 6.01 3.72 5.20 7.65 6.73 8.68 7.69
FSA-Net [42] ✔ 5.21 4.56 3.07 4.28 6.03 5.96 7.22 6.40
Quatnet [19] ✔ 5.49 4.01 2.94 4.15 - - - -

TriNet [3] ✔ 4.76 3.05 4.11 3.97 5.57 5.46 6.57 5.86
WHENet [46] ✔ 4.39 3.99 3.06 3.81 - - - -

6DRepNet [18] ✔ 4.48 3.24 2.68 3.47 - - - -
TokenHPE-v2 (ours) ✔ 4.51 3.95 2.71 3.72 5.41 5.17 6.23 5.60

and test it on AFLW2000 and BIWI datasets . Tables 1 and 2
show the results of the first experiment. An extra column is
added to indicate which methods are free from extra annota-
tion for fair comparison. Results show that our method is on
par with state-of-the-art methods on AFLW2000 dataset and
achieves state-of-the-art results in MAEV on BIWI dataset.
Among the compared methods, HopeNet [31] is normally
considered the baseline of HPE. Compared with it (Table 1),
our model achieves a 24.8% decrease in MAE and a 12.7%
decrease in MAEV. TriNet [3] is a vector-based model, in
which the head pose is represented by vectors. Its MAE
is 0.69 lower than the baseline. A new MAEV metric is
also introduced. We adopt this metric for our comparison.
Compared with TriNet, our method obtains a slightly lower
MAEV value, which indicates that our method is compet-
itive to state-of-the-art methods. Some extra information-
utilized methods (i.e., 3DDFA, Dlib, EVA-GCN, Synergy-
Net, img2pose) are also compared in Table 1. EVA-GCN
[39] is a facial landmark graph-based method. A landmark
detector is applied to the original image, and EVA-GCN
takes the detected landmark graph as the input. The graph
convolutional network learns the landmark relationships for
HPE. Thus, the model result has an impressive improve-
ment compared with the baseline. SynergyNet is a multi-
task model, and HPE is a subtask. The model is trained by
synergistic learning. Therefore, abundant information, in-

cluding 3DMM parameters and 3D landmarks, is utilized
to enhance the performance. Compared to other methods
that mainly based on CNN and its variants, our model is
the only Transformer-based token learning method, thus has
a stronger ability to learn the facial relationships and the
orientation characteristics in the basic regions. Therefore,
even on the challenging AFLW2000 dataset that has many
difficult-to-predict images, our method still outperforms the
majority of the other methods by a large margin. The excel-
lent performance verifies the orientation learning capacity
of our proposed TokenHPE.

Experiment 2. In our second experiment, we follow the
protocol 2 in [42] for fair comparison. 70% of the videos
in the BIWI dataset are used for training and the others for
testing. Table 3 shows the results of our method compared
with those of other state-of-the-art methods that follow the
same training–testing protocol. Our method outperform all
other methods by a large margin both on MAE and three
Euler angles. Compared to 6DRepNet [18] that uses the ro-
tation matrix representation with a CNN backbone, our To-
kenHPE can learn the general regional information and fa-
cail relationships through Transformer architecture, result-
ing in a 6.4% improve on MAE. The similar results on two
experiments show that our method is robust and stable, and
its impressive results do not depend on the training dataset
but on the method itself.
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Table 3. Mean absolute errors of Euler angles on the BIWI dataset.
The dataset is split at a ratio of 7:3 for training and testing.

Methods
Euler angle errors (◦)

Pitch Yaw Roll MAE
FSA-Net [42] 4.29 2.89 3.60 3.60

FDN [44] 3.98 3.00 2.88 3.29
Hopenet [31] 3.39 3.29 3.00 3.23

TriNet [3] 3.04 2.93 2.44 2.80
6DRepNet [18] 2.92 2.69 2.36 2.66

TokenHPE-v2 (ours) 3.01 2.28 2.01 2.49

Table 4. Effect of the feature extractor. The models are trained on
the 300W-LP dataset and tested on the AFLW2000 dataset.

Feature extractor Pitch Yaw Roll MAE MAEV
None 6.07 4.96 5.11 5.38 6.65
CNN 4.68 5.71 4.48 4.96 6.04
ViT 5.54 4.36 4.08 4.66 5.98

4.3. Ablation Study

Feature extractor. The visual tokens are generated from
the feature extractor. Therefore, the performance of the
model partially depends on the feature extractor. We con-
duct experiments on different feature extractors to reveal the
extent to which performance is affected by the feature ex-
tractor. As shown in Table 4, we test versions with two
different feature extractors and a version without a feature
extractor. The results show that the feature extractor im-
proves performance to a specific extent compared with the
version with no feature extractor. The ViT feature extractor
has the best performance.

Positional embedding. Different from classification
tasks, spatial relationships play an important role in HPE.
Given that the self-attention operation is positionally invari-
ant, normally, 2D sine positional embedding is added to re-
serve the spatial relationships for computer vision tasks. To
illustrate the effect of positional embedding, we conduct ex-
periments on our TokenHPE model with different positional
embedding types (i.e., no positional embedding, learnable
positional embedding, and 2D sine positional embedding).
As shown in Table 5, the model with 2D sine positional em-
bedding demonstrates the best performance. The learnable
positional embedding version has a lower prediction accu-
racy and model without positional embedding performs the
worst. Therefore, fixed positional embedding is important
for a model to learn the facial part relationships. Mean-
while, the absence of positional embedding results in the
loss of spatial geometric relationships between visual to-
kens.

Effect of the token guide multi-loss function. The pro-
posed model is trained by a token guide multi-loss func-
tion. The hyper-parameter α in the multi-loss function con-
trols the importance of the direction loss. When α is set
to 1, the model learns the basic orientation regions by it-

Table 5. Results of different positional embedding strategies. The
models are trained on the 300W-LP dataset and tested on the
AFLW2000 dataset.

Positional embedding Pitch Yaw Roll MAE
None 7.11 4.51 4.39 5.33

Learnable 5.67 4.63 4.33 4.87
2D sine 5.54 4.36 4.08 4.66
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Figure 4. Effect of the value of α in the multi-loss function.
The models are trained on the 300W-LP dataset and tested on the
AFLW2000 dataset.

self. As the value of α decreases, orientation token loss
plays an increasingly important role in helping the model
learn the directional information. The experimental results
are shown in Fig. 4. When α decreases, MAE initially de-
creases then increases. The best result is obtained when α is
set to 0.6. This situation indicates that the token guide loss
indeed helps the model encode the basic orientation regions.
As α decreases, the flexibility of the model is constrained,
resulting in poor performance.

4.4. Visualization

In order to illustrate how the proposed TokenHPE explic-
itly utilizes orientation tokens to find the facial part relation-
ships and orientation characteristics in the basic regions, we
visualize the details during inference. We observe that our
model exhibits similar behaviors for most common exam-
ples. Therefore, we randomly choose some samples from
the AFLW 2000 dataset and visualize the details in Figs. 5
to 7.

Heatmap visualization. To confirm that our model can
learn critical minority facial part relationships, we use Grad-
CAM [32] to visualize the attention of a head pose predic-
tion. Two representative methods (HopeNet and 6DRep-
Net) are adopted for a comparison with our proposed model.
As Fig. 5 shows, our method can learn the crucial minor-
ity relationships of facial parts, such as the eyes, nose, and
ears when the mouth is being occluded or the nose, mouth,
and ears when the eyes are occluded by sunglasses. In these
scenarios, the compared methods performed poorly when
abundant facial information is missed. On Row 1 in Fig. 5,
the attention heatmaps show that our method can find the
critical minority relationships (nose, eyes, and ears). Row
2 indicates that our method can deduce the spatial location
of the eyes to achieve accurate prediction compared with
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TokenHPE (ours)HopeNet 6DRepNet

Figure 5. Heatmap visualization of three models, namely,
HopeNet (left), 6DRepNet (middle), and our proposed model
(right). The red-color areas mean that the model provides high
attention to these facial parts. We select three challenging scenar-
ios in which the mouth (Row 1), the eyes (Row 2), and the right
half of the face (Row 3) are missing.

#Regions=9 #Regions=11

Figure 6. Cosine similarity matrix between the learned orientation
tokens. (a) Strategy I: nine basic orientation regions. (b) Strategy
II: eleven basic orientation regions.

the other methods that only attend to the facial parts that
appear. As shown on Row 3, our method presents an im-
pressive capability to reveal the symmetric relationships of
the face even though the entire right side the face is dark. In
summary, the heatmap visualization proves that our method
can learn facial part relationships and can deduce the spatial
relationships of facial parts.

Similarity matrix of orientation tokens. We visualize
the cosine similarities of the orientation tokens. As shown
in Fig. 6, the neighbor orientation tokens are highly simi-
lar. The orientation tokens that represent symmetric facial
regions have higher similarity scores than the tokens that
represent the other unrelated regions. Therefore, the results
of the similarity matrix verify that the general information
is learned by the orientation tokens.

Region information learnt by orientation tokens. The
attention maps of orientation tokens are visualized in Fig.
7. In the first few layers, each orientation token pays at-
tention to almost all the other ones to construct the global

Block 2 Block 4 Block 6

Block 8 Block 10 Block 12

Figure 7. Attention interactions between orientation tokens in the
2nd, 4th, 6th, 8th, 10th, and 12th Transformer blocks of the pro-
posed TokenHPE model.

context. As the network deepens, each orientation token
tends to rely on its neighbor region tokens and spatial sym-
metric tokens to yield the final prediction. As indicated in
Fig. 7, at the deeper Transformer blocks, the attention score
is higher between neighbor regions (the diagonal) and sym-
metric regions, such as regions 0 and 2, regions 3 and 5,
and regions 6 and 8. In Fig 7, the attention score is higher
in regions 3, 4, 6, and 7, indicating that the predicted head
pose has more probability in the left–bottom direction, sim-
ilar to the ground truth. Therefore, from the visualization
shown in Fig. 7, we can conclude that our model has the
ability to encode the general information of the basic re-
gional orientation characteristics, including neighborhood
similarities and symmetric properties.

5. Conclusion
In this work, we proposed a novel token-driven learning

method for HPE called TokenHPE. We introduced three
findings on head images, namely, neighborhood simi-
larities, significant facial changes, and critical minority
relationships. To leverage these properties of head images,
we utilized the Transformer architecture to learn the
facial part relationships and designed several orientation
tokens according to panoramic overview partitions. Ex-
perimental results showed that TokenHPE can address
the problem of ambiguity and occlusion in HPE and
achieves a state-of-the-art performance compared with
that of the existing method. In addition, the success of
TokenHPE demonstrates the importance of orientation
cues in the head pose estimation task, which was ig-
nored by previous research. We hope this initial work can
inspire further research on token learning methods for HPE.
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