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Abstract

Learning surface by neural implicit rendering has been
a promising way for multi-view reconstruction in recent
years. Existing neural surface reconstruction methods,
such as NeuS [24] and VolSDF [32], can produce reliable
meshes from multi-view posed images. Although they build
a bridge between volume rendering and Signed Distance
Function (SDF), the accuracy is still limited. In this pa-
per, we argue that this limited accuracy is due to the bias of
their volume rendering strategies, especially when the view-
ing direction is close to be tangent to the surface. We revise
and provide an additional condition for the unbiased vol-
ume rendering. Following this analysis, we propose a new
rendering method by scaling the SDF field with the angle
between the viewing direction and the surface normal vec-
tor. Experiments on simulated data indicate that our render-
ing method reduces the bias of SDF-based volume render-
ing. Moreover, there still exists non-negligible bias when
the learnable standard deviation of SDF is large at early
stage, which means that it is hard to supervise the rendered
depth with depth priors. Alternatively we supervise zero-
level set with surface points obtained from a pre-trained
Multi-View Stereo network. We evaluate our method on the
DTU dataset and show that it outperforms the state-of-the-
arts neural implicit surface methods without mask supervi-
sion.

1. Introduction
3D reconstruction is an important task in 3D games and

AR/VR applications. As a key technique in computer vi-
sion and graphics, recovering surfaces and textures from
Multi-View calibrated RGB images has been widely studied
in recent decades. Early unsupervised Multi-View Stereo
(MVS) approaches [14, 20] provide solutions through a
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certain multistage pipeline, including grouping the related
views, depth prediction, filtering with photometric con-
sistency and geometry consistency, fusion of points from
different views, meshing the dense points by off-the-shelf
methods such as screened Poisson Surface Reconstruction
[8], and texture mapping finally.

Later MVS networks [5,20,27,36] are developed rapidly
benefiting from the available large-scale 3D datasets. This
kind of MVS networks use Convolutional Neural Network
(CNN) to predict depth maps effectively, then follow the
traditional pipeline to fuse a global dense point cloud and
mesh it. However, MVS networks suffer from texture-less
regions and sudden depth changes, so there usually exist
many holes in the recovered meshes.

Recently, neural implicit surface and differentiable ren-
dering methods present a promising way to improve and
simplify the progress of the Multi-View 3D reconstruction.
The surfaces are represented as Signed Distance Functions
(SDF) [18, 24, 32, 33] or occupancy field [16, 17]. At the
same time, neural radiance field [13, 35] are proposed with
different volume rendering. The neural surface-based ren-
dering method can recover reliable and smooth surfaces, but
it is hard to train without mask supervision. On the contrary,
the different volume rendering can achieve good 2D views
without mask supervision, but the quality of 3D geometry
is rather coarse.

Is there some connections between the SDF field and
occupancy field? NeuS [24] and VolSDF [32] point that
the connection can be conducted with a certain Cumula-
tive Distribution Function (CDF). Thanks to this significant
progress, it is able to learn 3D surfaces effectively from neu-
ral implicit surface with the self-supervised volume render-
ing. The necessary input can only be well-posed 2D images.
Masks could be removed, because it is hard to obtain accu-
rate masks for many complex objects in the real world.

Although these great methods have made big progress
on 3D reconstruction from calibrated multi-view images,
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the accuracy of meshes is still limited compared with those
methods [5, 14, 20, 20, 27, 36] in a classical pipeline. We
find that there exist unexpected convex or concave surfaces
in regions with poor texture or strong highlight. In addition,
the learned surface and rendered color tend to be smooth,
and the high frequency details can not be captured well.

Based on NeuS [24] and VolSDF [32], we further ana-
lyze the precision of the bridge between the SDF field and
density field, and we found that there exist a bias between
real depth and rendered depth by SDF-based volume ren-
dering. We argue that there are two factors leading to the
bias: (1) The angle between the view direction and the nor-
mal vector; (2) The learnable standard deviation of the SDF
field. The bias increases with the growth of the angle. It
decreases with the descent of the learnable standard devia-
tion, but it is still relatively large when the deviation is not
small enough at early training stage. More details of the
analysis are described in Section 3. In order to reduce the
bias caused by the various angles, we modify the transfor-
mation between the SDF field and the density field. Further-
more, we adopt dense point clouds predicted by an acces-
sible MVS network to reduce the bias further. Finally we
evaluate our method and compare it with other SDF-based
volume rendering methods on the public benchmark.

To summarise, we provides the following three contribu-
tions: a) We amend the conditions of unbiased SDF-based
volume rendering, and analyze the bias of VolSDF [32] and
NeuS [24]. b) We propose a new transformation between
the SDF field and the density field, which does not re-
quire a plane assumption and outperforms VolSDF [32] and
NeuS [24] even without geometry priors. In particular, we
scale the SDF field by the inverse of the angle between the
view direction and the normal vector. c) Geometry priors
from a pre-trained MVS network are used with the anneal-
ing sampling to further reduce the bias effectively at early
training stage and boost the reconstruction quality.

2. Related Work
Multi-view Stereo: Traditional Multi-View Stereo

methods reconstruct 3D point clouds from predicted depth
maps [5, 20, 27, 36]. As a typical PatchMatch-based MVS
method, COLMAP [20] optimizes depth and normal maps
with a graph model. Then a depth fusion step is pro-
cessed to get a dense point cloud, finally a meshing algo-
rithm like screened Poisson Surface Reconstruction [8] is
used to reconstruct surface. Benefiting from deep learn-
ing, supervised MVS methods have also become popu-
lar [6, 23, 28–30]. These methods show impressive perfor-
mance on multiple benchmarks [7, 9], but they have to be
trained on specific datasets [7, 31]. CasMVSNet [6] ap-
ply the cascade cost volume to the representative MVS-
Net [29]. In this work, the single cost volume is decom-
posed into a cascade formulation of multiple stages, thus

depth range and total number of hypothesis planes at each
stage can be reduced. This coarse-to-fine structure remark-
ably decreases time cost and GPU memory consumption,
and it also achieves the state-of-the-art performance on mul-
tiple benchmarks [7, 9].

Neural implicit surface: Recently, with the develop-
ment of differentiable rendering, neural implicit surface has
been introduced, which represent a surface as SDF [18] or
an occupancy field by a neural network [12, 19]. Moreover,
these representations are combined with surface rendering
[16, 22, 33, 34]. Different with data-driven MVS networks,
Implicit Differentiable Renderer (IDR) [33] is an end-to-
end self-supervised neural system. Although IDR [33] can
learn 3D surface, appearance, and cameras from posed im-
ages and noisy poses, it is heavily dependent on silhouette
masks. Drift of boundaries may result in either inaccurate
surfaces. Based on IDR [33], geometry constraints are in-
troduced in MVSDF [34] to improve the mesh quality and
relax the requirement of masks. They take advantage of
the knowledge of stereo matching and feature consistency
to optimize the implicit surface representation. Surface-
rendering methods assume that the color of a ray only re-
lies on the color of the first intersection of the ray with the
surface, which makes the gradient only backpropagated to a
local region near the intersection [24]. Thus such methods
are hard to handle with severe self-occlusions and sudden
depth changes.

Neural volume rendering: As a famous neural volume
rendering method, NeRF [3, 13, 15, 35] combines classical
volumetric rendering with implicit function to render high-
quality 2D images, but it can not export high-quality ge-
ometry. Recent works improve the geometric network and
build connections between density-based representation and
surface-based representation [2, 17, 21, 24, 32], which can
extract more accurate and smooth surfaces. VolSDF [32]
further models the volume density as Laplace Cumulative
Distribution Function applied to a SDF representation. Ben-
efiting from this simple but effective density representation,
a bound on the opacity approximation error can be deduced,
leading to more accurate sampling of the volume rendering
integral. Moreover, the background is modeled using an ad-
ditional NeRF network [35] to predict the point density and
radiance field outside of the focused object. Thus it can re-
construct surfaces even without silhouette masks. Similar
to VolSDF [32], NeuS [24] transform the SDF field to the
accumulated transmittance for volume rendering with the
Logistic Cumulative Distribution Function, and it is pointed
that the rendered weight should reach maximum at the first
intersection point from outside to inside. However, it is lim-
ited by the first-order approximation of local plane, and the
peak of weights declines with the growth of the angle be-
tween the view direction and the normal vector. Due to
these limitations, it tends to learn a smooth surface with less
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high frequency details, and unexpected concave-convex re-
gions occur on the recovered meshes. NeuralWarp [2] fur-
ther use image warping in combination with volumetric ren-
dering to improve the performance of VolSDF [32]. Firstly,
the original VolSDF [32] is trained for 50k iterations with
batches of 1024 pixel as initialization. Then the geometry
and radiance networks are finetuned by minimizing the sum
of the volumetric rendering loss and the patch warping loss.
Although the patch warping loss works very well, it partic-
ularly depends on the initialized VolSDF [32].

More recently, there are some concurrent methods pro-
posed for implicit surface reconstruction. Some methods
focus on improving geometric details, such as Geo-Neus [4]
and HF-NeuS [25]. Others aim to enhance training effi-
ciency via voxel-based representation, such as Voxurf [26]
and Vox-Surf [10]

3. Method
In this section, we introduce the conditions of the un-

biased SDF-based volume rendering, and we analyze the
bias of the density as transformed SDF with a certain Cu-
mulative Distribution Function. Then we provide a novel
transformation from SDF to volume density, which satisfies
the unbiased conditions above. Moreover, we find that the
bias is still non-negligible when the learnable scale is not
small enough at early training stage. Therefore we super-
vise the zero-level set with dense point clouds predicted by
a pre-trained MVS network. Finally, we present our full
optimization.

3.1. Unbiased SDF-based Volume Rendering

The Signed Distance Function f(p) means the minimal
signed distance between a point p and the surface. The sur-
face of the object can be is represented by the zero-level set
of its SDF, that is,

S = {p ∈ R3|f(p) = 0}. (1)

Consistent with previous works, SDF is encoded by Multi-
layer Perceptrons (MLP). We also use MLP to encode the
color related to a point p and a unit viewing direction v.
The ray emitted from the camera center o at the viewing
direction v is denoted as {p(t) = o+ tv|t ≥ 0}.

In the meanwhile, a classical volumetric rendering of ra-
diance field can be represented as the accumulation of col-
ors along the ray, that is

T (t) = exp(−
∫ t

0
σ(u)du), w(t) = T (t)σ(t)

Ĉ =
∫ +∞
0

w(t)c(p(t),v)dt, t̂ =
∫ +∞
0

w(t)tdt
, (2)

where σ(t) is the volume density, T (t) is the accumulated
transmittance along the ray, and w(t) can be regarded as the
weight function along the ray. Ĉ and t̂ denote the rendered
color and depth along the ray, respectively.

Conditions of the unbiased SDF-based volume ren-
dering. It is very important to build an accurate transfor-
mation from the SDF field to the radiance field. Here we
focus on opaque objects, so the rendered depth t̂ should be
equal to the distance t∗ between the first intersection point
and the camera center along the ray, which is formulated as

t̂− t∗ = 0, where t∗ = min {t|f(p(t)) = 0} (3)

It is noticed that this ideal condition is hard to be solved di-
rectly. A possible solution is modeling the weight function
w(t) as the Dirac delta function around t∗. In other words,
w(t) tends to be infinite when t gets close to t∗, and tends to
be zero when t moves away from t∗. Inspired by NeuS [24],
relaxed conditions are given: (a) The derivative of w(t) re-
spect to t is equal to zero at the intersection point when the
ray going from outside to inside. (b) It is greater than zero
when the ray gets close to the surface from outside to inside.
(c) It is less than zero when the ray goes in the surface or
goes from inside to outside. That is

dw
dt (t) = 0, if f(p(t)) = 0 and f ′(p(t)) < 0
dw
dt (t) > 0, if f(p(t)) > 0 and f ′(p(t)) < 0
dw
dt (t) < 0, if f(p(t)) < 0 or f ′(p(t)) > 0

, (4)

where f ′(p(t)) = ∇f(p(t)) · v = n(t) · v, which means
the cosine of the angle between the normal vector n(t) and
the viewing direction v. f ′(p(t)) is negative when the ray
goes from outside to inside, positive on the contrary. It is
zero when the ray is tangent to the surface.

If these conditions are met, w(t) will reach local maxi-
mum at each intersection point from outside to inside. Ben-
efiting from the property of the volume rendering, it will
reach global maximum at the first intersection point.

3.2. Transformation from SDF to density

Following the conditions above, we analyze the bias
of the existing SDF-based volume rendering methods, and
then we present a new rendering method by scaling the SDF
field with the angle between the viewing direction and the
surface normal vector.

According to VolSDF [32], the density can be modeled
by SDF with a scaled Cumulative Distribution Function,
such as Laplace distribution or Logistic distribution. It is
formulated as

σ(p(t)) = αΨβ(−f(p(t))), (5)

where Ψβ denotes the CDF, β > 0 is a learnable deviation,
and α = 1/β.

Considering any intersection point t̄ ∈ {t|f(p(t)) = 0},
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(a) A ray across multiple planes with a large angle.

(b) Weights rendered by NeuS and Our model with a specific β.

(c) Biases of t̂ rendered by NeuS and Our model, with the descent of β.

Figure 1. Simulation of SDF-based rendering when a ray goes
across multiple planes with a large angle. In subfigures (b) and (c),
green and blue lines represent our method and NeuS, respectively.
It is noted that the weights of NeuS (blue) are close to 0 in this case.

(a) A ray across multiple planes with a small angle.

(b) Weights rendered by NeuS and Our model with a specific β.

(c) Biases of t̂ rendered by NeuS and Our model, with the descent of β.

Figure 2. Simulation of SDF-based rendering when a ray goes
across multiple planes. It is noted that the weights of our (green)
and NeuS (blue) are very close in this case.

the derivative of w(t̄) respect to t̄ is

dw
dt (t̄) = T (t̄)

(
σ′(p(t̄))− σ(p(t̄))2

)
= T (t̄)

(
−αΨ

′

β(0)f
′(p(t̄))− α2Ψβ(0)

2
)

=

T (t̄)
(
− 1

2β2 f
′(p(t̄))− 1

4β2

)
, if Laplace

T (t̄)
(
− 1

4β2 f
′(p(t̄))− 1

4β2

)
, if Logistic

(6)
We can find that the derivative of w(t̄) is zero only when
f ′(p(t̄)) = −0.5 for the Laplace CDF, or f ′(p(t̄)) = −1
for the Logistic CDF. Since T (t̄) > 0, the derivative of w(t̄)
is less than zero when f ′(p(t̄)) > −0.5 for the Laplace
CDF, and is greater than zero when f ′(p(t̄)) < −0.5. As
for the Logistic CDF, the derivative of w(t̄) is less than zero
when f ′(p(t̄)) > −1. Therefore w(t̄) is biased with various
angles between the normal vector and the view direction.
The bias tends to be larger when the ray gets closer to the
tangential direction.

Different with VolSDF [32], NeuS [24] models the ac-
cumulated transmittance T (t) as the Logistic CDF of SDF.

The density and weight function are defined as

σ(p(t)) = max

(
−f ′(p(t))Ψ

′
β(f(p(t)))

Ψβ(f(p(t)))
, 0

)
w(p(t)) = max

(
−f ′(p(t))Ψ

′

β (f(p(t))) , 0
) (7)

The derivative of w(t̄) respect to t̄ at any intersection point
from outside to inside is

dw
dt (t̄) = − 1

4β f
′′(p(t̄)). (8)

It is only equal to zero when f ′′(p(t̄)) = 0, which is a first-
order approximation of local plane. If the local surface is
convex, f ′′(p(t̄)) > 0. On the contrary, f ′′(p(t̄)) < 0 for
the locally concave surface. It means that w(t̄) is biased
when the local surface is not a plane. Even if it can promise
that w(t̄) always reaches local maximum for a local plane,
w(t̄) is reduced much by the cosine value when the viewing
direction gets closer to the tangential direction. Thus the
rendered depth is biased obviously.

So it is necessary to transform SDF to density with an
unbiased function. Following the above analysis, we scale
f(p(t)) with the inverse of the absolute value of f ′(p(t)),
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(a) A ray across the sphere with a large angle.

(b) Weights rendered by NeuS and Our model with a specific β.

(c) Biases of t̂ rendered by NeuS and Our model, with the descent of β.

Figure 3. Simulation of SDF-based rendering when a ray goes
across the sphere with a large angle.

(a) A ray across the sphere with a small angle.

(b) Weights rendered by NeuS and Our model with a specific β.

(c) Biases of t̂ rendered by NeuS and Our model, with the descent of β.

Figure 4. Simulation of SDF-based rendering when a ray goes
across the sphere with a small angle.

then take the scaled SDF into a Cumulative Distribution
Function. It is formulated as

σ(p(t)) = αΨβ

(
−f (p(t))

|f ′ (p(t)) |

)
(9)

where α = 1
β for the Logistic CDF, or α = 2

β for the
Laplace CDF. Here we focus on the Logistic CDF, and the
result of the Laplace CDF is similar. The derivative of w(t̄)
respect to t̄ at any intersection point is

dw
dt (t̄) = T (t̄)

(
αΨ

′

β(0)
(

−f(p(t̄))
|f ′(p(t̄))|

)′
− α2Ψβ(0)

2

)
= 1

4β2T (t̄)
(
− f ′(p(t̄))

|f ′(p(t̄))| − 1
)

=

{
0, if f ′ (p(t̄)) < 0

− 1
2β2T (t̄), if f ′ (p(t̄)) > 0

(10)
It means that the derivative of w(t̄) is equal to zero for a
intersection point from outside to inside, and less than zero
for a intersection point from inside to outside. Thus w(t̄) al-
ways reaches local extremum at any intersection point from
outside to inside.

We also validate the bias of rendered weight and depth
of different methods for multiple planes and an unit sphere.
As shown in Fig. 1 and Fig. 3 respectively, we sample a ray
passing though multiple planes or an unit sphere at a direc-
tion which is close to tangent line, and compute w(t) and

t̂ by different SDF-based rendering models. Then the gaps
between rendered depth t̂ and real depth t∗ are measured
with the decrease of β. As for ideal multiple planes in Fig.
1b, both of w(t) rendered by our model and NeuS [24] reach
maximum at t∗, but our w(t∗) is much greater than w((t∗)
of NeuS [24]. The gaps between rendered depth t̂ and real
depth t∗ are shown in Fig. 1c. It is seen that rendered depth
t̂ by NeuS [24] is inaccurate along a view direction which is
close to tangent line. Compared with NeuS [24], the error
of our t̂ is very small.

Fig. 3 presents the cases of unit sphere for a large an-
gle. As shown in Fig. 3b, w(t) rendered by NeuS [24] is
biased obviously, and the maximum is small too. Moreover,
Fig. 3c indicates that its rendered depth t̂ drifts even if β ap-
proaches zero, which is consistent with the above analysis
for a locally convex surface. On the contrary, our w(t) still
reaches maximum at t∗, and the value is much greater. The
gaps of our t̂ between real depth t∗ tends to be zero when β
decreases.

The cases for small angles with respect to multiple
planes and a unit sphere are shown in Fig. 2 and Fig. 4
respectively. It is seen that the weights rendered by our
method and NeuS [24] are very close, and both reach max-
imum at t∗. The errors of all the t̂ decrease quickly to zero
with the descent of β.
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3.3. Supervision with zero-level set

It is noted that the bias of rendered depth is still obvious
when β is relatively large, and the rendered weight at the
first intersection point is much less than 1 for a large β. The
bias can not be erased at early stage if the model is trained
only by color loss. Supervising the neural implicit surface
directly with available geometry priors can reduce the bias
effectively. There exist many excellent multi-view stereo
works focused on depth prediction, such as MVSNet [29]
and CasMVSNet [6]. Although these methods suffer from
holes due to texture-less regions and are hard to obtain com-
plete surfaces, they can provide cheap and reliable geometry
priors for learning a neural implicit surface.

Since the rendered depth is biased at early training stage,
it is not appropriate to supervise rendered depth with real
depth directly. Alternatively, we map the predicted depths
to dense point clouds at each view, then encourage SDF val-
ues of these points to be 0. In other words, the zero-level set
of the neural implicit surface is supervised by dense point
clouds at each view. The zero-level set loss of SDF network
at each view is

LSDF =
1

N

N∑
i=1

prob(pi)|f (pi)− 0|, (11)

where 0 ≤ prob(pi) ≤ 1 denotes the probability predicted
by a certain MVS network, and it is set to 0 if the depth is
invalid.

3.4. Optimization details

Loss function. Similar to previous works, we adopt
L1 loss to minimize the error between rendered colors and
ground truth colors:

Lrgb =
1

N

N∑
i

|Ĉi − Ci|. (12)

Here Ĉi is the rendered color along a certain ray, and Ci

denotes the ground truth color.
Eikonal loss on the sampled points is also added to reg-

ularize the SDF field:

Leik =
1

MN

MN∑
i,j

∥∇f(pi,j)− 1∥2. (13)

Finally the zero-level set loss of dense point clouds is added,
and the total loss is defined as

L = Lrgb + λLeik + γLSDF . (14)

We use λ = 0.1 and γ = 1.0 for all experiments.
Architecture. Our network is built based on NeuS [24].

The SDF network is encoded by 8-layers MLP with 256

hidden units. The view-dependent color network is encoded
by 4-layers MLP with 256 hidden units. Since we focus on
reconstruction without masks, NeRF++ [35] is also used to
model the background. The frequencies of positional en-
coding for 3D position and viewing direction are 6 and 4
respectively.

Annealling Sampling. Valid point clouds are obtained
by removing outliers of dense point clouds from CasMVS-
Net [6] with photometric filtering and geometric consis-
tency filtering. We also introduce an annealling sampling
strategy to balance the weights of pixels with valid point
clouds and the weights of pixels without point clouds. At
the beginning of the training process, we only sample pix-
els with the valid point clouds per view. The ratio of the
valid pixels per batch is reduced with the growth of training
steps, until it reaches the proportion of all valid pixels with
points in an image. This simple strategy encourages our
network to learn more from geometry priors at early stage,
and pay more attention to other pixels without geometry pri-
ors at later stage. At the same time, We sample 3D points
long a ray with the hierarchical sampling strategy used by
NeuS [24].

4. Experiments

In this section, we provide quantitative and qualitative
comparisons with state-of-the-art neural implicit surface ap-
proaches on the public object-centered datasets. Since we
focus on reconstruction without masks, the approaches with
mask supervision are not presented. Then we conduct an
ablation study to evaluate the impact of different parts of
our technical contributions.

4.1. Datasets

The DTU dataset [7] is widely used for evaluation of
object-centered 3D reconstruction. There are 49 or 64 posed
images with the resolution of 1600 × 1200 and scanned
dense point clouds in each scene. Challenging cases are
included in different scenes, such as specular reflection,
texture-less regions and thin structures. Same as NeuS [24]
and VolSDF [32], we use 15 scenes selected by IDR [33] to
compare our method with others. Following the DTU eval-
uation pipeline, the reconstruction quality is measured with
the chamfer distance, which is the average of accuracy and
completeness.

4.2. Baselines

We mainly compare with state-of-the-art neural implicit
surfaces methods without mask supervision: NeuS [24],
VolSDF [32], NeuralWarp [2]. The results of MVSDF [34]
are also presented, because it also uses a pre-trained depth
estimation network. We also show the results of COLMAP
[20] without mask supervision provided by NeuS [24].
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ScanID 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

COLMAP 0.81 2.05 0.73 1.22 1.79 1.58 1.02 3.05 1.40 2.05 1.00 1.32 0.49 0.78 1.17 1.36
MVSDF 0.83 1.76 0.88 0.44 1.11 0.90 0.75 1.26 1.02 1.35 0.87 0.84 0.34 0.47 0.46 0.89
VolSdf 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86
NeuS 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54 0.84

NeuS-12 0.93 1.07 0.81 0.38 1.02 0.60 0.58 1.43 1.15 0.78 0.57 1.16 0.35 0.45 0.46 0.78
NeuralWarp 0.49 0.71 0.38 0.38 0.79 0.81 0.82 1.20 1.06 0.68 0.66 0.74 0.41 0.63 0.51 0.68

Our-50 0.56 0.92 0.39 0.39 0.85 0.58 0.51 1.20 0.90 0.78 0.42 0.84 0.32 0.43 0.44 0.64
Our 0.49 0.71 0.37 0.36 0.80 0.56 0.52 1.17 0.97 0.66 0.48 0.73 0.32 0.42 0.42 0.60

Table 1. Quantitative evaluation of chamfer distances on DTU. Most results come from original papers, except NeuS-12 which is cleaned
by masks with a dilation of 12 pixels. The best results are indicated in Bold, while the second best results are underlined.

ScanID 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

VolSDF 26.28 25.61 26.55 26.76 31.57 31.50 29.38 33.23 28.03 32.13 33.16 31.49 30.33 34.90 34.75 30.38
NeuS 28.20 27.10 28.13 28.80 32.05 33.75 30.96 34.47 29.57 32.98 35.07 32.74 31.69 36.97 37.07 31.97
Our 28.95 27.43 28.30 28.90 33.12 34.09 31.09 34.23 29.92 33.29 35.25 32.93 31.75 37.20 37.21 32.24

Table 2. Comparisons of PSNR for 2D view synthesis on DTU. Our method produces better PSNR than others.
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Figure 5. Rendered normal maps on DTU. The first column shows
ground truth point clouds from DTU. The second and third ones
show our method and NeuS, respectively

4.3. Implementation details

The region of interest is normalized as a unit sphere, cen-
tered at the object. 512 rays are sampled per batch with the
hierarchical sampling strategy in NeuS [24]. Geometric ini-
tialization [1] and weight normalization are also used. As
for the geometry priors, we choose CasMVSNet [6] as the
pretrained MVS network, which can provide reliable depth
maps and point clouds per view. In order to avoid train-
ing and testing on the same dataset, we select the check-
point pretrained on BlendedMVS [31]1. The depth predic-
tion is fast and only takes some minutes for a single scene.
The training of our SDF and color networks take around 9
hours on a single NVIDIA A30 GPU for 300k iterations per
scene. After network training, we run Marching Cubes al-
gorithm [11] to extract each mesh from the zero-level set of
trained SDF network. Similar to previous work [2, 24, 32],
the output meshes are cleaned with the dilated visibility
masks.

4.4. Quantitative Comparisons

As shown in Table 1, we compare our method with sev-
eral neural implicit surfaces methods on DTU. Most results
of compared methods come from the original papers. Our
method outperforms NeuS [24] and VolSDF [32] markedly.
It also outperforms NeuralWarp [2], which uses an extra
warping-based loss after training VolSDF [32] for 50k it-
erations with batches of 1024 pixels. Similar to our work,
MVSDF [34] also uses a supervised depth estimation net-
work to guide the SDF network, but it adopts the differen-
tiable surface rendering provided by IDR [33] rather than
SDF-based volume rendering. It should be noted that a cus-
tom filtering is used in MVSDF [34] while visual hull is
used to clean meshes in others, so its results are not directly

1https://github.com/kwea123/CasMVSNet pl
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comparable. Moreover, we find that the radiuses for mask
dilatation are different between NeuS [24], VolSDF [32]
and NeuralWarp [2]: 50 pixels for NeuS [24] and VolSDF
[32], 12 pixels for NeuralWarp [2]. For fare comparison,
we also measure the meshes of our method with a dilation
of 50 pixels, and the ones of NeuS [24] with a dilation of
12 pixels, denoted as Ours-50, NeuS-12 respectively. The
dilation of 12 pixels is used in our final results. Our method
still achieves better results with a dilation of 50 pixels. The
evaluation of 2D view synthesis by PSNR on DTU is re-
ported in Table 2. It is seen that our method outperforms
NeuS [24] and VolSDF [32]. It is able to capture more tex-
ture details compared with the existing SDF-based volume
rendering methods.

4.5. Qualitative Comparisons

We visually compare our method with NeuS [24] in Fig.
5 and Fig.6. Rendered normal maps are presented in Fig. 5.
Columns represent the ground truth points, meshes of NeuS
and Ours, respectively. Rows represent different scenes. As
shown in Fig. 5, wrong concave surfaces occur in the results
of NeuS, such as the rooftop of building in Scan24, the thin
structure in Scan37, the inner wall in Scan40, the top area of
the front apple in Scan63, the bottom and edge of the upper
can in Scan97, and the abdominal region in Scan110. The
stem of the apple on the right is lost. Compared with NeuS,
the results of our full model is much better, and there are
more high frequency details in our meshes. The rendered
images are shown in Fig.6. Benefiting from our unbiased
rendering model and geometry priors, the rendering quality
is also improved. More texture details are captured.
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Figure 6. Rendered 2D images on DTU. The first column shows
ground truth 2D views from DTU. The second and third columns
show our method and NeuS.

4.6. Ablation study

To evaluate different parts of our technical contributions,
an ablation study is conducted on the DTU dataset. We take
NeuS [24] as our baseline, and test the effect of unbiased
rendering and geometry priors independently. As shown
in the row ”w/o sdf” of Table 3, our method outperforms
NeuS [24] markedly even if the SDF loss is not used. It
also gets comparable performance against NeuralWarp [2].
As shown in the row ”w/o unbaised”, the supervision of
geometry priors is powerful, and it reduces the error of re-
construction remarkably. Finally we combine all of them to
achieve the best performance, as shown in the last row.

Method Chamfer distance

NeuS 0.84
NeuS-12 0.78
Our(w/o sdf) 0.71
Our(w/o unbaised) 0.65
Full model 0.60

Table 3. Ablation study on DTU. ”w/o sdf” denotes our unbiased
rendering without geometry priors. ”w/o unbaised” denotes NeuS
with the same geometry priors.

5. Conclusions
In this paper, we analyze the bias of existing SDF-based

volume rendering strategies, and provide an additional con-
dition for the unbiased SDF-based volume rendering: The
rendered depth should be equal to the distance between the
first intersection point and the camera center along the ray.
In order to reduce the bias, we introduce a novel transfor-
mation from the SDF field to the density field. We scale the
SDF field with the cosine of the angle between the viewing
direction and the surface normal vector, then the scaled SDF
field is combined with a certain CDF to model the density
field. Validations on toy data indicate that the bias of ren-
dered depth is reduced. Moreover, we find that the bias can
not be removed fully for a large deviation of SDF at early
training stage. Thus we supervise the SDF with cloud points
obtained from a pre-trained MVS network. Experiments on
DTU benchmark show our model outperforms the recent
neural implicit surface methods.

Limitations. There are still several limitations in our
method. First, it is time-consuming to reconstruct a cer-
tain object with high resolution. A promising solution is to
speed up the convergence with recent strategies proposed
by Instant-NGP [15] and Plenoxels [3]. Second, it is inter-
esting to extend our model to capture 3D dynamic scenes.
Third, it is worthy of studying to train general models across
various scenes. Finally, it is challenging to recover the cor-
rect geometry for complex objects with obvious specular or
translucent materials in the wild.
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