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Figure 1. For complex scenes or extreme lighting conditions, our method uses human discriminative representation to recover accurate

human meshes, especially in limb estimation, outperforming the state-of-the-art method TCMR. Best viewed on-screen by zooming in.

Abstract
Recovering 3D human mesh from videos has recently

made significant progress. However, most of the existing
methods focus on the temporal consistency of videos, while
ignoring the spatial representation in complex scenes, thus
failing to recover a reasonable and smooth human mesh
sequence under extreme illumination and chaotic back-
grounds. To alleviate this problem, we propose a two-
stage co-segmentation network based on discriminative rep-
resentation for recovering human body meshes from videos.
Specifically, the first stage of the network segments the video
spatial domain to spotlight spatially fine-grained informa-
tion, and then learns and enhances the intra-frame discrimi-
native representation through a dual-excitation mechanism
and a frequency domain enhancement module, while sup-

*represents corresponding author, † represents the equal contribution.

pressing irrelevant information (e.g., background). The sec-
ond stage focuses on temporal context by segmenting the
video temporal domain, and models inter-frame discrimina-
tive representation via a dynamic integration strategy. Fur-
ther, to efficiently generate reasonable human discrimina-
tive actions, we carefully elaborate a landmark anchor area
loss to constrain the variation of the human motion area.
Extensive experimental results on large publicly available
datasets indicate superiority in comparison with most state-
of-the-art. The Code will be made public.

1. Introduction
3D human mesh recovery from images and videos has

been widely concerned in recent years. Existing methods

for estimating human pose and shape from a single im-

age are based on parametric human models such as SMPL

[17] etc, which takes a set of model parameters as input

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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and finally outputs a human body mesh. These methods

capture the statistical information on human body shape

and provide human body mesh for various applications.

While these methods recover body mesh from a single im-

age [3, 12, 15, 16] can accurately predict human pose, they

may be jittery and intermittent when applied to videos.

The reason for this problem is that the body pose is in-

consistent over successive frames and does not reflect the

body’s motion in the rapidly changing complex scenes of

the video. This thus leads to temporal non-smoothness and

spatial non-accuracy. Several approaches [5, 7, 12, 14, 22]

have been proposed to efficiently extend single image-based

methods to video. They utilize different temporal encoders

to learn the temporal representation directly from videos to

better capture temporal information. However, these meth-

ods only encode spatial features, ignoring the effective uti-

lization of spatial fine-grained features and human motion

discriminative features. Therefore, it fails to recover a rea-

sonable and smooth human sequence in chaotic and extreme

illumination scenes. For example, TCMR [5] recovers the

unsatisfactory motion on the left arm of the actor in Figure

1 in complex scenes.

The background and the human in spatial features have

a complex relationship. When spatial features are input to

the network, it is difficult for the network to distinguish be-

tween the human body and the background. At the same

time, this relationship is not conducive to our discovery of

fine-grained and discriminable features. Specifically, in ex-

treme illumination and chaotic scenes, messy background

severely interferes with human details and movement infor-

mation, thus the network cannot reason about accurate hu-

man detail features in complex scenes and lacks the ability

to discriminate reasonable human movements. We consider

both intra-frame and inter-frame multi-level spatial repre-

sentations are ideal cues to efficiently reason about spa-

tial fine-grained information and temporal contextual dis-

criminative information. In addition, learning to repre-

sent features at different stages is expected to strengthen

the model to strip away the complex background and find

human-separable motion features, thereby further improv-

ing human-specific discriminative capabilities.

Based on the above perspectives, we propose a two-stage

co-segmentation network based on discriminative represen-

tation for recovering human mesh from videos. In contrast

to previous approaches using common spatial features for

encoding temporal features, we attempt to segment spatial

features into distinct hierarchical of spatial representations

and process them separately in different stages. Specifi-

cally, the network learns and models intra-frame and inter-

frame multi-level discriminative representations by seg-

menting spatial features along feature channels and tempo-

ral dimensions in two stages. In the first stage of the intra-

frame discriminative representation, we design a dual exci-

tation mechanism that combines self-excitation and channel

excitation mechanism to simulate and activate human mo-

tion while attenuating the interferences of complex back-

grounds. In addition, we design a frequency domain en-

hancement module to capture motion information that can

highlight motion features in the frequency domain. In the

second stage of inter-frame discriminative representation,

we offer a new discriminative representation: the superposi-

tion of fragments, which enhances the spatio-temporal rep-

resentation of past and future frames by a dynamic integra-

tion strategy, while modeling the discriminative represen-

tation of the temporal context. Furthermore, to ensure the

integrity and plausibility of discriminative motion represen-

tation in consecutive frames, we also carefully design a new

landmark anchor area loss to optimize the network, thereby

further helping the model to reconstruct accurate 3D human

actions and poses.

The core contributions of our work are as follows:

• We present a co-segmentation network based on dis-

criminative representation for recovering human mesh

from videos. Our method motivates and learns spatio-

temporal discriminative features at different stages.

• In Stage 1, our proposed dual excitation mechanism

and frequency domain enhancement effectively en-

hance human motion features and mitigate background

interference. In Stage 2, we develop a dynamic inte-

gration strategy to integrate the discriminative repre-

sentations of distinct stages. We also carefully design

a landmark anchor area loss to constrain the generation

of the reasonable pose.

• Both the quantitative and qualitative results of our

method show the effectiveness of the proposed method

on widely evaluated benchmark datasets in comparison

with state-of-the-arts.

2. Related Works
3D Human Mesh Recovery from a Single Image.

Most of the recent methods for 3D mesh recovery are based

on parametric models, such as SMPL [17], SCAPE [2],

etc. These methods predicted model parameters from a sin-

gle image and build statistical human models. The initial

work [4,8,20] predicted the 3D human body using keypoints

and silhouettes. These methods usually require additional

data and cannot effectively handle complex scenes or in-the-

wild images. With the rapid development of DCNN perfor-

mance, some methods regressed SMPL parameters directly

from pixels. [12] proposed an end-to-end trainable human

mesh recovery system that generated plausible 3D human

meshes using adversarial loss constraints. [16] combined

both HMR and SMPLify methods into a training loop to

derive better results. However, when applied to video, since
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Figure 2. An overview of our framework. Our method divides the spatial features extracted by ResNet into two stages to model multi-level

representations. The Stage 1 focuses on intra-frame discriminative features. Stage 2 focuses on inter-frame discriminative features. Finally,

the network uses the SMPL regressor to regress the refined features to the body mesh. Best viewed on-screen by zooming in.

human poses tend to change between frames and create mo-

tion, the single-image-based approach can predict bodies

with different poses in successive frames, resulting in the

recovery of jittery and intermittent human mesh sequences

and generating temporal inconsistency.

3D Human Mesh Recovery from Videos. Some meth-

ods exploited temporal information to estimate the body

mesh in videos. [13] employed a one-dimensional fully con-

volutional temporal encoder to encode spatial features as

temporal features, which learned the temporal representa-

tion by predicting the 3D pose of past and future frames

to reduce temporal inconsistency. [22] proposed a frame-

work for 3D mesh recovery based on skeleton disentangle-

ment. The framework divided the 3D mesh recovery task

into different spatial and temporal subproblems in a decou-

pled manner. Different from these methods, our method

divides the spatial features into multiple granularities and

simultaneously encodes them, making spatio-temporal fea-

tures independently uniform. VIBE [14] used a BiGRU [6]

to temporally encode spatial features throughout the video.

The discriminator was also introduced to make the regres-

sor produce a more plausible human body. MEVA [18]

solved this problem from coarse to fine. This method first

estimated the coarse 3D human motion using a variational

motion estimator and predicted the residual motion using

motion residual regression (MRR). TCMR [5] removed the

residual connection from spatial features to temporal fea-

tures as well as reduced temporal inconsistency. MPS-

Net [26] calibrated the temporal range in the sequence in an

attentional manner and then encodes spatial features. But

these methods are easily interfered by complex scenes, re-

sulting in poor human reconstruction accuracy.

3. Approach
3.1. Problem Formulation

Given a video VT = {It}Tt=1 as input, where It denotes

the frame t, we feed each frame It to the feature extrac-

tor, ResNet [9] pretrained by [16], to extract spatial features

FT = {ft}Tt=1, where ft ∈ R
2048. Our task is to recover

a human mesh sequence MT = {�θt, �βt}Tt=1, where �θ, �β de-

note the human pose and shape parameters at frame t.

MT = Φ(FT ) (1)

where Φ represents our objective function for estimating the

human body. To better represent the variability of the hu-

man body, we employ the SMPL parametric mesh model.

SMPL provides a function S (�θ , �β), which takes the pose

parameters �θ ∈ R
72 and shape parameters �β ∈ R

10 as in-

put and outputs the body mesh. The model transforms the

mesh M vertices to the body joints J by a mapping, i.e.,
J(Θ) = WM , where W denotes the linear regressor.

3.2. Stage 1: Intra-Frame Representation

As shown in Figure 2, in the first stage, we segment the

extracted features FT into two patches along the channel di-

mension, the patches F v1 , F v2 are shaped as N × T × C
2 ,

where N is the batch size, the T and C represent temporal

dimension and feature channels. We aim to obtain an intra-

frame spatial multi-level representation to focus on spatial
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fine-grained information by segmenting the spatial features

at this stage. Intuitively, due to the variability of human ac-

tions and the uncertainty of motion scenes, these spatial fea-

tures are hard to be learned by the network. By segmenting

the complete spatial features into two fine-grained features,

the network could simplify the complexity and difficulty of

human spatial feature learning and focus on localized re-

gions.

With these local spatial feature patches, we need to lo-

cate the human in complex scenes, i.e., focus on meaningful

human motion features, while mitigating irrelevant back-

ground interference information. We consider focusing on

human motion for feature representation. Many previous

works have utilized optical flow methods [27] or event cam-

eras [31] to represent motion versus capturing the motion

of moving objects. They are mostly limited to specific mo-

tion capture devices or require separate networks for learn-

ing. Unlike them, our dual excitation mechanism models

actual human movements by learning discriminative spatio-

temporal representations. Both motion features and spatio-

temporal features are combined for unified learning, and no

additional motion estimation network is required. A dual

excitation mechanism is shown in Figure 3. The dimen-

sions of the input spatial features F are N × T × C. The

F is first fed into the self-excitation mechanism, which is

composed of dot-product attention [23]. The self-excitation

mechanism first self-excites the global spatial features to

learn meaningful human features. Then the network seeks

motion representation among the available human features.

In general, human motion can be expressed as discrimina-

tive features that can be approximately represented as the

difference between two adjacent frames F (t) and F (t+1).
Instead of simply subtracting the raw spatial features, we

consider leveraging the self-excitation features.

MO(t) = σ(
θ(t) · φ(t)T√

ak
)ψ(t)− F (t) 1 ≤ t ≤ T (2)

where θ(t) = WθF (t), φ(t) = WφF (t), ψ(t) = WψF (t),
σ represents the softmax function, ak denotes the reduction

factor, MO(t) ∈ R
N×1×C is the human motion feature.

By subtraction, the interferences of similar complex back-

grounds are reduced. We concatenate all the motion fea-

tures MO(1), ..., MO(T ) to construct a discriminative rep-

resentation MO. We then segment MO along the channel

dimension to obtain MOv1 and MOv2 . Then a global aver-

age pooling is used to summarize time information. Since

we intend to excite the discriminative feature channel, we

opt to pool the temporal dimensions.

MOvi
p = GAP (MOvi) i = 1, 2 (3)

Ultimately, the sigmoid function is employed to ob-

tain the distinction weights. Meanwhile, we feed the two

patches F v1 , F v2 into the temporal encoder [6] to extract

the temporal features F vi

G . We obtain the output of the

dual excitation mechanism by channel-wise multiplication

between the temporal features FG and the discriminative

weights.

DEMi = F vi
G � δ(MOvi

p ) i = 1, 2 (4)

where DEMi ∈ R
T×N×C

2 , δ indicates the sigmoid func-

tion. The dual excitation mechanism dynamically gener-

ates weights and then utilizes the weights to excite spatio-

temporal features related to human movement and discrim-

inative features. As weights change dynamically during

training, the network is forced to perceive changes in hu-

man motion.

In addition, we enhance the spatial features using a non-

parametric frequency domain enhancement module. We use

the Fourier transform to perform the frequency domain en-

hancement. Given a sequence ft with t ∈ [0, T -1], the

Fast Fourier transform FFT () produces a new represen-

tation F̃k as the sum of all original input features ft. Af-

ter transformation, we get the enhanced motion feature F̃k.

Since the Fourier transform has a phase shift property, it

makes the Fourier transform algorithm sensitive to the over-

all motion. When the human body and the background are

present in the image, the human motion is usually reflected

in the frequency spectrum in the video. In the frequency

spectrum, the varying human motion can be represented as

high-frequency information. Since the spectrum has cor-

respondence with spatial motion as well as discrepancies

between observations in the time and frequency domains,

we use Fourier inversion FFT−1() to reformulate the high-

frequency motion features into spatial features Fk in time

domain and supplement the human motion information in

the time domain. We then encode Fk to obtain Ftk using

temporal encoder [6]. Finally, DEMi, Ftk are dynamically

integrated to obtain F stage1 and sent to the second stage.

The dynamic integration strategy will be introduced in the

following Section 3.3.

3.3. Stage 2: Inter-Frame Representation

In the second stage, we segment the extracted spatial

features along the temporal dimension into two fragments

Fh1 and Fh2 , each fragment is N × T
2 × C. Our goal

is to obtain an inter-frame spatio-temporal multi-level dis-

criminative representation by segmenting the spatial fea-

tures and modeling spatio-temporal context, thus effectively

enriching the important information of inter-frame subfrag-

ment representations and capturing spatio-temporal contex-

tual cues. We then send two fragments to the temporal en-

coder [6] for encoding, learning the temporal features in

each sub-fragment separately. We replicate subfragments

Fhi
st to obtain the same spatio-temporal features, which are
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Figure 3. The upper part of the figure shows the implementation of

the dual excitation mechanism (DEM), where SE stands for self-

excitation. The following is the implementation of the dynamic

integration strategy (DIS). Best viewed on screen when zoomed

in.

grouped into two branches. In the first branch, we apply

a dynamic integration strategy to the two encoded subfrag-

ments, which integrates past subfragments with future sub-

fragments. This aims to allow the network to discover the

discriminative information between the subfragments and to

identify the more relevant ones. After integration, the first

branch outputs Fh
bra1.

Human features have a similar tendency when moving.

Some potential motion features will fade away with tempo-

ral tendency. Therefore, we design a fragment superimposi-

tion mechanism in the hope to enhance the spatio-temporal

features. The fragment superposition mechanism adopts the

same fragment addition to aggregate consistent fragments.

The fragment superposition spatio-temporal features have

stronger spatio-temporal information, which enables the in-

trinsic human features in the fragments to be enhanced and

the motion features to be retained. This helps to explore

the intrinsic feature information of human motion. Hence,

in the second branch, we first superimpose the replicated

spatio-temporal features from the two sub-fragments to ob-

tain the superimposed, enhanced spatio-temporal features

Fhi
en . Then similar to the first branch, the two enhanced fea-

tures Fh1
en , Fh2

en are dynamically integrated to produce the

second branch result Fh
bra2.

In order to allow the network to perceive key video frag-

ments and provide a discriminative representation between

fragments, we introduce a dynamic integration strategy. As

shown in Figure 3, the dynamic integration strategy receives

a set of variable, semantic independent features, then con-

catenates all features along the channel dimension and goes

through multiple fully connected and activation layers. Ulti-

mately we apply the softmax function to generate the adap-

tive discriminative weights Ah = ani=1 ∈ R
n, where n is

the number of input features. When different features have

greater discrimination, the network will adaptively gener-

ate discriminative weights. The discriminative weights in-

(a) (b)

Figure 4. (a) corresponds to part of the 3d joint and SMPL kine-

matic tree, the numbers represent landmarks. (b) shows the se-

quence of human motion limb changes. The orange line and the

yellow area represent the effective calculation for the landmark

area loss.

dicate that the network focuses on fragments of different

importance, thus generating inter-frame discriminative rep-

resentation.

At the end of the network, we obtain the final spatio-

temporal representation Fall by dynamically integrating the

multi-level spatial features Fh
bra1, Fh

bra2, F stage1, where

F stage1 is the result of the first stage. Fall is sent to the

SMPL regressor and return to the final human body mesh.

3.4. Loss Function

To make the generated human discriminative movements

closer to the real ones, besides the mesh parameter loss, we

elaborate a landmark anchor area loss for the global dis-

criminative representation of human actions. Overall, our

loss aims to constrain human motion and pose to make deep

features more discriminative, where contains the landmark

area loss LA and the mesh parameter loss LM.

L = λALA + LM (5)

Landmark Anchor Area Loss. Human motion is often

accompanied by changes in the relative area between joints.

When the human motion in a video changes dramatically

(e.g., running) or is ambiguous by background interference,

it becomes critical for the network to learn this area change

in order to maintain a reasonable human pose for recovery.

Inspired by the human skeleton, we select five 3D landmark

joints (head, left wrist, right wrist, left ankle, right ankle)

that determine motion as anchor joints. These distal joints

are the five most flexible joints in the human body and are

heavily influenced by their parent joints. These joints re-

act more strongly to the rotation of the parent joint when

motion occurs, which is semantic and interpretable. We

argue that these five joints can help the network to better

learn discriminative human action information. As shown

in Figure 4, our landmark anchor area loss is divided into

two parts which are the anchor perimeter and anchor area.

First, we calculate the anchor area, and we pick three 3D
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landmark joints (head, left ankle, and right ankle) in these

five anchors as the key anchors to calculate the area. Then

we calculate the triangular motion area formed by these

key anchors. Given the three predicted 3D anchor joints

Ji = {Jh, Jla, Jra} ∈ R
3, we first calculate the spatial Eu-

clidean distance D(Ji, Ji+1) between any two 3D anchor

joints. Then we calculate the intermediate variable I , which

is half of the sum of the three sides in the triangle. Finally,

we calculate the final anchor area by the Helen formula.

I =
1

2

3∑
i=1

D(Ji, Ji+1) (6)

TΔ =

(
I ·

3∏
i=1

(I −D(Ji, Ji+1))

)
(7)

Similarly, for the anchor perimeter, we calculate and sum

the distances TP formed between the five anchor joints.

TP =

5∑
e=1

D(Ji, Ji+1) (8)

e represents the number of edges formed by the five an-

chors. To this end, l2-norm is adopted to calculate the an-

chor motion area difference between the ground truth T̂Δ &

T̂P , and predicted values T pred
Δ & T pred

P ,

LA = ‖T pred
Δ − T̂Δ‖22 + ‖T pred

P − T̂P ‖22 (9)

It is worth noting that our landmark anchor area loss

is based on the same gesture translational invariant in the

scene, so it focuses on the overall motion pose reasonably.

And it is more insensitive to unalignment between 3D hu-

man joints and ground truth joints than 3D joint loss. Com-

pared to previous works, our method not only has a joint

loss as the previous method, but also constrains the perime-

ter and area geometry to regulate the overall human motion

pose representation.

Mesh Parameter Loss. Mesh parameter loss mainly im-

proves the learning accuracy of the network, which consists

of three L2 losses between the predicted and groud-truth

2D/3D joint positions and SMPL parameters. The mesh pa-

rameter loss is derived as

LM = ω3dj

T∑
t=1

‖Xt − X̂t‖2 + ω2dj

T∑
t=1

‖xt − x̂t‖2

+ωshape‖β − β̂‖2 + ωpose

T∑
t=1

‖θt − θ̂t‖2
(10)

where Xt stands for 3d joints, xt for 2d joints, θ and β
represent the SMPL parameters, and ω(.) denotes the cor-

responding loss weights.

4. Experiments
4.1. Implementation Details

For data processing and network initialization, we set the

length of the input video sequence to 16 and the input frame

rate to 25-30 frames per second and initialize the backbone

and regression using pre-trained SPIN [16]. To identify

the appropriate human regions, following [12], we use the

groundtruth box for cropping in both the training and test-

ing. The cropped image is resized to 224×224. Meanwhile,

to reduce time and memory, we utilize ResNet [9] to pre-

compute spatial features from cropped images. We train the

network for 30 epochs using an NVIDIA RTX 2080Ti GPU.

Our network is implemented on the PyTorch.

4.2. Evaluation Datasets and Metrics

Evaluation Datasets. We use 3DPW [24], Human3.6M

[10], MPI-INF-3DHP [19], InstaVariety [13], Penn Ac-

tion [29], and PoseTrack [1] for training and evaluation.

3DPW is the only in-the-wild dataset that contains accurate

groundtruth SMPL parameters. Specific dataset details and

implementation details are in the supplementary material.

Evaluation Metrics. For the human mesh recovery

accuracy metrics per frame in the video, we calculated

the mean error per joint position (MPJPE) and Procrustes-

aligned MPJPE (PA-MPJPE) as the main metrics of accu-

racy. And we measured the Euclidean distance (MPVPE)

between the ground truth vertex and the predicted vertex.

In addition to this, we calculated the mean of the difference

between the predicted 3D coordinates and the ground truth

acceleration (Accel) for the temporal evaluation.

4.3. Comparison with State-of-the-Art Methods

Quantitative results. First, Table 1 tabulates the

comparison of our approach with previous state-of-the-art

(SOTA) video-based and image-based methods. All meth-

ods except HMMR are trained on a training set including

3DPW. Overall our method outperforms the previous video-

based methods with respect to per-frame 3D pose accuracy.

Our 3D pose errors MPJPE, and MPVPE in 3DPW (the wild

dataset) are substantially reduced compared to TCMR [5].

This demonstrates that our method can effectively recon-

struct reasonable and accurate human bodies in complex

outdoor scenes. In the MPI-INF-3DHP dataset, our recon-

struction error PA-MPJPE can still be optimal. Even in Hu-

man3.6m dataset for simple scenes, our method still outper-

forms TCMR.

To verify the robustness of our method, we also compare

the results of the above methods without training on 3DPW.

As shown in Table 2, our method outperforms the previous

image-based and video-based methods in both pose accu-

racy PA-MPJPE and acceleration error on MPI-INF-3DHP

dataset. With no in-the-wild dataset involved in the train-
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Table 1. Evaluation of state-of-the-art methods on 3DPW, MPI-INF-3DHP, Human3.6m. All video methods except HMMR do not use

Human3.6M ground truth SMPL parameters from Mosh, but use 3DPW train set for training. Red is the best and blue is the second best.

Method

3DPW MPI-INF-3DHP Human3.6M
Input Type or

Frame NumberMPJPE↓ PA-MPJPE↓ MPVPE↓ Accel↓ MPJPE↓ PA-MPJPE↓ Accel↓ MPJPE↓ PA-MPJPE↓ Accel↓
EFT [11] (2020) - 52.2 - - - 67.0 - - 43.8 - image

Zanfir et. al [28] (2020) 90.0 57.1 - - - - - - - - image

STRAPS [21] (2020) - 66.8 - - - - - - 55.4 - image

HMMR [13] (2019) 116.5 72.6 139.3 15.2 - - - - 56.9 - 20

VIBE [14] (2020) 91.9 57.6 - 25.4 103.9 68.9 27.3 78.0 53.3 27.3 16

MEVA [18] (2020) 86.9 54.7 - 11.6 96.4 65.4 11.1 76.0 53.2 15.3 90

TCMR [5] (2021) 86.5 52.7 103.2 6.8 97.6 63.5 8.5 73.6 52.0 3.9 16

MPS-Net [26] (2022) 84.3 52.1 99.7 7.4 96.7 62.8 9.6 69.4 47.4 3.6 16

Ours 83.4 51.7 98.9 7.2 98.2 62.5 8.6 73.2 51.0 3.6 16

Table 2. Evaluation of state-of-the-art methods on MPI-INF-

3DHP. All methods do not use 3DPW in training.

Method

MPI-INF-3DHP

MPJPE PA-MPJPE Accel

im
ag

e HMR [12] (2018) 124.2 89.8 -

SPIN [16] (2019) 105.2 67.5 -

DC-GNet [30] (2021) 97.2 62.5 -

v
id

eo

VIBE [14] (2020) 97.7 63.4 29

TCMR [5] (2021) 96.5 62.8 9.5

TePose [25] (2022) 99.5 62.9 17.2

Ours 95.2 61.4 8.5

ing, our method can still recover accurate human mesh in

complex scenes. The continuous improvement in the per-

formance of our approach emphasizes the importance of

multi-level spatio-temporal features. It is worth noting that

our method improves the pose accuracy while maintaining

similar acceleration errors as TCMR. More experimental re-

sults are available in the additional material.

Qualitative Results for Extreme Illumination Scenes.
Figure 1 shows the qualitative results of our method in ex-

treme illumination scenes. It can be seen that the recon-

struction results of TCMR are interfered by extreme illumi-

nation scenes. Although TCMR can reconstruct the overall

human mesh, it lacks the motion discrimination features of

some joints and is unable to discriminate between the back-

ground and the human, resulting in insufficient integrity of

the same view. Our method has better performance than

TCMR in the reconstruction of moving joints such as hands

and legs. This shows that our method makes reasonable use

of motion discriminative representations.

Qualitative Results in Complex Scenes and Gener-
alization. In complex scenes with indoor chaotic back-

grounds, the estimated pose of our method is more rea-

sonable than the previous SOTA methods VIBE [14] and

TCMR [5] as shown in Figure 5. In complex scenes with

outdoor chaotic backgrounds, our method still recovers the

accurate pose from a different perspective in Figure 6. The

results show that our method estimates the correct global
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M
R

O
ur

s

V
IB

E...

Figure 5. In complex scenes with indoor chaotic backgrounds, our

method can recover accurate human mesh compared to [5, 14].

Input

Positive 
Perspective

Other 
perspectives

Figure 6. Qualitative results of our approach in complex out-

door chaotic scenes. By observing from different perspectives, our

method can recover an accurate human mesh.

Figure 7. Qualitative results. For videos on the web, our method

can still recover smooth and accurate human motion sequences.

body rotation. To demonstrate the generalization of our

method, as shown in Figure 7, we randomly downloaded a

video with motion poses in complex scenes from the Inter-

net. We recover smooth and accurate human sequences for

complex scenes out of domain (from the web). Also, the se-

quences have better continuity and motion discrimination.

These qualitative results demonstrate that our method can

reasonably utilize discriminative information to recover ac-

curate human sequences.
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4.4. Ablation Study

We conduct ablation experiments on MPI-INF-3DHP.

Table 3. The impact of the segmentation method and numbers on

the network. Red is the best.

Segmentation Number of segments PA-MPJPE↓ Accel↓
Stage 1 Not segmented 62.6 8.5

Stage 1 4 patches 61.8 8.6

Stage 1 8 patches 62.8 8.8

Stage 2 Not segmented 62.3 8.7

Stage 2 4 fragments 61.8 10.5

Stage 2 8 fragments 63.1 11.6

Ours 2 patches & fragments 61.4 8.5

Effectiveness of Multi-level Spatial Representation.
We analyze the number of patches and fragments for seg-

menting features. First, we do not segment the spatial

representation. As shown in Table 3, the reconstruction

accuracy decreases substantially when we remove either

stage. Besides, in Stage 1, we segment the spatial features

into 4 and 8 patches respectively. We noticed too many

patches can destroy the information and structure of the

original spatial features, resulting in the network’s inability

to learn discriminative human motion and detail represen-

tations. Again, we maintain similar settings in Stage 2. As

the number of segments increases, the accuracy and tempo-

ral smoothness drop. Too short fragments cover less human

sequence information, which makes it harder for the net-

work to reason about sensible human information from the

available partial fragments.

Table 4. Effects of the network designs on the performance.

Model PA-MPJPE↓ Accel↓
Ours w/o DEM 62.2 8.7

Ours w/o Fragments Superposition 62.5 8.6

Ours w/o FDE 62.3 8.6

Ours 61.4 8.5

Effectiveness of Dual Excitation Mechanism, Frag-
ments Superposition, Frequency Domain Enhancement.
As shown in Table 4, we removed the dual excitation mech-

anism (DEM), and the reconstruction accuracy decreased.

We can see that, given the motion-discriminative represen-

tation, the discovery of motion-sensitive features will force

the network to focus on dynamic information that reflects

actual human actions. Meanwhile, we remove the frag-

ment superposition and FDE, respectively, and observe a

significant decrease in accuracy. This is because the human

discriminative representations gradually weaken over time.

Whereas the removal of the FDE causes the network to be

less sensitive to the overall motion discriminative features.

Effectiveness of Landmark Anchor Area Loss. Table

5 shows our experiments on the landmark anchor area loss.

First, for the anchor area, we select the head and both wrists,

five anchor joints, and randomly selected joints to calculate

the anchor area. As shown in Table 5, the accuracy is re-

Table 5. The impact of landmark anchor selection on the network.

LA represents the landmark anchor area loss.

Method Anchor Selection PA-MPJPE↓ Accel↓

Anchor area loss

Head-double wrist 62.6 8.7

Five anchors 62.9 8.7

Random Anchor 62.3 8.8

Ours (only area) 61.8 9.0

Anchor perimeter loss
Random Anchor 61.6 8.7

Ours (only perimeter) 61.7 8.8

without 61.9 8.6

LA Ours (area + perimeter) 61.4 8.5

Input w/o LA w/ LA w/o LA w/ LA

Figure 8. Mesh comparison and corresponding joints comparison.

Our LA is designed to recover a reasonable pose while being in-

sensitive to joint alignment.

duced. We notice that anchor selection is particularly im-

portant for pose estimation. In contrast, our anchor point

selection ensures maximum coverage of the human motion

area. We remove the anchor area loss and anchor perimeter

loss, respectively. Experiments show that the coexistence of

anchor area and anchor perimeter is necessary to achieve the

best performance. Finally, we removed the total landmark

anchor area loss, which resulted in a decrease in accuracy.

Figure 8 shows the qualitative image with and without LA.

We can observe that with the constraint of LA, the distance

between the wrist joint and the head is more reasonable, and

the fitting is also more accurate. This shows that the change

in the relative area between joints is crucial for the network

to learn human motion and maintain a reasonable pose.

5. Conclusion
We present a two-stage co-segmentation network based

on discriminative representation for recovering human

mesh from videos. We segment spatial features to obtain

multi-level spatial representation with dual excitation and

dynamic integration strategy to model the spatio-temporal

context, and we design a landmark anchor area loss to en-

hance the discriminative representation. Our approach im-

proves the accuracy of multiple challenge datasets.
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