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Abstract

Domain adaptive panoptic segmentation aims to miti-
gate data annotation challenge by leveraging off-the-shelf
annotated data in one or multiple related source domains.
However, existing studies employ two separate networks
for instance segmentation and semantic segmentation which
lead to excessive network parameters as well as compli-
cated and computationally intensive training and inference
processes. We design UniDAformer, a unified domain adap-
tive panoptic segmentation transformer that is simple but
can achieve domain adaptive instance segmentation and
semantic segmentation simultaneously within a single net-
work. UniDAformer introduces Hierarchical Mask Calibra-
tion (HMC) that rectifies inaccurate predictions at the level
of regions, superpixels and pixels via online self-training
on the fly. It has three unique features: 1) it enables uni-
fied domain adaptive panoptic adaptation; 2) it mitigates
false predictions and improves domain adaptive panoptic
segmentation effectively; 3) it is end-to-end trainable with
a much simpler training and inference pipeline. Exten-
sive experiments over multiple public benchmarks show that
UniDAformer achieves superior domain adaptive panoptic
segmentation as compared with the state-of-the-art.

1. Introduction

Panoptic segmentation [30] performs instance segmenta-
tion for things and semantic segmentation for stuff, which
assigns each image pixel with a semantic category and
a unique identity simultaneously. With the advance of
deep neural networks [5, 17–19, 31, 43], panoptic segmen-
tation [4, 7–9, 29, 30, 33, 35, 54, 55] has achieved very
impressive performance under the supervision of plenty
of densely-annotated training data. However, collecting
densely-annotated panoptic data is prohibitively laborious
and time-consuming [10,11,37] which has become one ma-
jor constraint along this line of research. One alternative is
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Figure 1. Existing domain adaptive panoptic segmentation [20]
adapts things and stuff separately with two isolated networks
(for instance segmentation and semantic segmentation) and fuses
their outputs to produce the final panoptic segmentation as in (a),
leading to excessive network parameters as well as complicated
and computationally intensive training and inference. Differently,
UniDAformer employs a single unified network to jointly adapt
things and stuff as in (b), which involves much less parameters
and simplifies the training and inference pipeline greatly.

to leverage off-the-shelf labeled data from one or multiple
source domains. Nevertheless, the source-trained models
often experience clear performance drop while applied to
various target domains that usually have different data dis-
tributions as compared with the source domains [20].

Domain adaptive panoptic segmentation can mitigate the
inter-domain discrepancy by aligning one or multiple la-
beled source domains and an unlabeled target domain [20].
To the best of our knowledge, CVRN [20] is the only work
that tackles domain adaptive panoptic segmentation chal-
lenges by exploiting the distinct natures of instance segmen-
tation and semantic segmentation. Specifically, CVRN in-
troduces cross-view regularization to guide the two segmen-
tation tasks to complement and regularize each other and
achieves very impressive performance. However, CVRN re-
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Multi-branch Architecture Unified Architecture

PSN [30] Panoptic FCN [35] MaskFormer [9] DETR [4]

mSQ mRQ mPQ mSQ mRQ mPQ mSQ mRQ mPQ mSQ mRQ mPQ

Supervised Setup 75.5 60.2 47.7 79.7 73.1 59.6 79.1 62.6 51.1 79.1 64.1 51.9
Adaptation Setup 59.0 27.8 20.1 47.5 19.7 15.8 56.6 19.2 16.2 56.4 21.8 18.3
Performance Drop -16.5 -32.4 -27.6 -32.2 -53.4 -43.8 -22.5 -43.4 -34.9 -22.7 -42.3 -33.6

Table 1. Panoptic segmentation with traditional multi-branch architecture [30] and recent unified architectures [4, 9, 35]: The Supervised
Setup trains with the Cityscapes [10] and tests on the same dataset. The UDA Setup trains with the SYNTHIA [45] and tests on Cityscapes.
It can be seen that the performance drops between the two learning setups come more from mRQ than from mSQ consistently across
different architectures. In addition, such a phenomenon is more severe for unified architectures. This demonstrates a clear false prediction
issue in unified domain adaptive panoptic segmentation as mRQ is computed with false positives and false negatives.

lies on a multi-branch architecture that adopts a two-phase
pipeline with two separate networks as illustrated in Fig. 1
(a). This sophisticated design directly doubles network pa-
rameters, slows down the training, and hinders it from being
end-to-end trainable. It is desirable to have a unified panop-
tic adaptation network that can effectively handle the two
segmentation tasks with a single network.

We design a unified domain adaptive panoptic segmenta-
tion transformer (UniDAformer) as shown in Fig. 1 (b). Our
design is based on the observation that one major issue in
unified panoptic adaptation comes from a severe false pre-
diction problem. As shown in Table 1, most recent unified
panoptic segmentation architectures [4, 9, 35] outperform
traditional multi-branch architectures [30] by large margins
under the supervised setup. However, the situation inverts
completely under unsupervised domain adaptation setup.
Such contradictory results are more severe for the recog-
nition quality in mRQ. This shows that the panoptic quality
drop of unified architecture mainly comes from False Posi-
tives (FP) and False Negatives (FN) as mRQ is computed
from all predictions (True Positives, False Negatives and
False Positives) while the segmentation quality in mSQ is
computed with True Positives (TP) only.

In the proposed UniDAformer, we mitigate the false
prediction issue by introducing Hierarchical Mask Cali-
bration (HMC) that calibrates inaccurate predictions at the
level of regions, superpixels, and pixels. With the cor-
rected masks, UniDAformer re-trains the network via an
online self-training process on the fly. Specifically, HMC
treats both things and stuff predictions as masks uniformly
and corrects each predicted pseudo mask hierarchically in
a coarse-to-fine manner, i.e., from region level that cali-
brates the overall category of each mask to superpixel and
pixel levels that calibrate the superpixel and pixels around
the boundary of each mask (which are more susceptible
to prediction errors). UniDAformer has three unique fea-
tures. First, it achieves unified panoptic adaptation by treat-
ing things and stuff as masks and adapting them uniformly.
Second, it mitigates the false prediction issue effectively

by calibrating the predicted pseudo masks iteratively and
progressively. Third, it is end-to-end trainable with much
less parameters and simpler training and inference pipeline.
Besides, HMC introduces little computation overhead and
could be used as a plug-in.

The contributions of this work can be summarized in
three aspects. First, we propose UniDAformer that en-
ables concurrent domain adaptive instance segmentation
and semantic segmentation within a single network. It is
the first end-to-end unified domain adaptive panoptic seg-
mentation transformer to the best our knowledge. Sec-
ond, we design Hierarchical Mask Calibration with online
self-training, which allows to calibrate the predicted pseudo
masks on the fly during self-training. Third, extensive ex-
periments over multiple public benchmarks show that the
proposed UniDAformer achieves superior segmentation ac-
curacy and efficiency as compared with the state-of-the-art.

2. Related Work
Panoptic Segmentation is a challenging task that as-

signs each image pixel with a semantic category and a
unique identity. The pioneer work [30] employs two net-
works for instance segmentation and semantic segmenta-
tion separately, and then combines the outputs of the two
segmentation networks to acquire panoptic segmentation.
The later studies [4, 7–9, 29, 33, 35, 54, 55] simplify the
complex pipeline by unifying the segmentation of things
and stuff within single network. For example, DETR [4]
predicts boxes around both things and stuff classes, and
makes a final panoptic prediction by adding an FPN-style
segmentation head. Panoptic segmentation has achieved
very impressive accuracy but requires a large amount of
densely-annotated training data that are often laborious and
time-consuming to collect. Domain adaptive panoptic seg-
mentation (DAPS), which leverages off-the-shelf annotated
data for mitigating the data annotation constraint, is instead
largely neglected.

Unsupervised Domain Adaptation (UDA) aims to ex-
ploit labeled source-domain data to learn a well-performing
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Figure 2. Overview of proposed unified domain adaptive panoptic segmentation transformer (UniDAformer): it involves two flows, i.e., a
pseudo mask generation flow that calibrates pseudo masks with momentum model Gm, and an unsupervised training flow that optimizes
model G with the calibrated pseudo masks. For pseudo mask calibration, we feed a given unlabeled target image xt into the momentum
model Gm to calibrate pseudo masks ŷt with HMC via a coarse-to-fine manner (i.e., from region level to superpixel and pixel levels). For
network optimization, we conduct simple augmentations (i.e., resize, crop and flip) for xt and its calibrated pseudo masks ŷt′, and then
optimize model G with self-training loss Lself .

model on unlabeled target-domain data. In recent years,
it has been studied extensively for various computer vi-
sion tasks, including image classification [12, 14, 38, 39,
42, 42, 47, 49, 51, 65], instance segmentation/detection [3,
6, 16, 21, 25, 32, 46, 48, 56, 59, 63] and semantic segmenta-
tion [22–24,27,34,41,52,57,60–62,65]. On the other hand,
domain adaptive panoptic segmentation is largely neglected
despite its great values in various visual tasks and practi-
cal applications. To the best of our knowledge, CVRN [20]
is the only work, which exploits the distinct natures of in-
stance segmentation and semantic segmentation and intro-
duces cross-view regularization to guide the two tasks to
complement and regularize each other for panoptic adapta-
tion. However, CVRN achieves panoptic adaptation by us-
ing two separate adaptation networks for things and stuff
respectively, which directly doubles network parameters,
slows down the network, and hinders it from being end-
to-end trainable. In contrast, our proposed UniDAformer
greatly simplifies training and inference pipeline by unify-
ing the adaptation of things and stuff in a single panoptic
adaptation network.

Self-training is a mainstream unsupervised domain
adaptation technique that retrains networks with pseudo-
labeled target-domain data. Most existing self-training
methods [22,25,26,28,36,53,58,60,64,65] involve an iter-
ative retraining process for effective learning from pseudo-
labeled data. In each training iteration, an offline pseudo
label generation process is involved which predicts and se-
lects pseudo labels according to their confidence. For ex-
ample, [64] proposes class-balanced self-training (CBST)

that globally selects the same proportion of predictions
as pseudo labels for each category for overcoming class-
imbalance issues. To sidestep the cumbersome multi-round
and offline training process, several studies [2, 40] ex-
plore ‘online’ self-training for semantic segmentation by di-
rectly enforcing pixel-wise consistency of predictions from
different data augmentations. Differently, the proposed
UniDAformer focuses on the false prediction issue in uni-
fied domain adaptive panoptic segmentation. It achieves ef-
fective ‘online’ self-training with a Hierarchical Mask Cali-
bration technique which allows pseudo label calibration and
correction on the fly.

3. Method

3.1. Task Definition

This work focuses on domain adaptive panoptic segmen-
tation. The training data involves a labeled source domain
Ds =

{
(xi

s, y
i
s)
}Ns

i=1
(yis is the panoptic annotation of sam-

ple xi
s) and an unlabeled target domain Dt =

{
xi
t

}Nt

i=1
. The

goal is to learn a model G from Ds and Dt that well per-
forms in Dt. The baseline model is trained with the source
domain data Ds only:

Lsup = l(G(xs)), ys), (1)

where l(·) denotes the panoptic segmentation loss that con-
sists of a matching cost and a Hungarian loss [4].
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Figure 3. Overview of Hierarchical Mask Calibration: it consists of three sub-modules, i.e., Region-wise Calibration Module, Superpixel-
wise Calibration Module and Pixel-wise Calibration Module. For simplicity, we skip visualizing Region-wise Calibration and directly
present pseudo mask after region-wise calibration in (a). In Superpixel-wise Calibration, we first compute superpixels MI and select the
superpixels (marked with yellow lines as in (b)) that overlap with the pseudo mask, based on which the pseudo mask is expanded into
superpixel-based mask Msp as in (c). In Pixel-wise Calibration, we discard the superpixels that are inconsistent with the calibrated overall
category through a pixel-wise voting mechanism to form the final calibrated mask M

′
as in (d).

3.2. UniDAformer Overview

This subsection presents the overall framework of pro-
posed UniDAformer, which consists of a supervised train-
ing process over the labeled source domain and an unsuper-
vised training process over the unlabeled target domain. For
the supervised training, the source samples (xs, ys) are fed
to a panoptic segmentation model G that is optimized via
the supervised loss Lsup as defined in Eq. 1.

The unsupervised training involves two flows as illus-
trated in Fig. 2. The first flow calibrates pseudo masks with
the momentum model Gm (the moving averaged of G, i.e.,
θGm ← γ θGm + (1 − γ)θG, and γ is a momentum co-
efficient). In pseudo mask calibration, we first feed target
image xt into the momentum model Gm and calibrate the
pseudo masks ŷt. The pseudo masks ŷt are then forwarded
to the Hierarchical Mask Calibration (HMC) module that
produces corrected pseudo masks ŷ′t via coarse-to-fine cal-
ibration. The second flow optimizes G with the calibrated
pseudo masks. Specifically, we first apply simple data aug-
mentations (i.e., resize, crop and flip) to xt and ŷ′t to obtain
xaug and ŷ′aug . The network model G is then optimized
with the augmented data and the self-training loss Lself as
defined in Eq. 9.

3.3. Hierarchical Mask Calibration

One key component in the proposed UniDAformer is
HMC that calibrates the predicted pseudo masks and en-
ables effective pseudo-label retraining on the fly. HMC
treats both things and stuff predictions as masks uniformly
and corrects each predicted mask hierarchically in a coarse-
to-fine manner. The correction involves three consecutive

stages of calibration including a Region-wise Calibration,
a Superpixel-wise Calibration and a Pixel-wise Calibration
as illustrated in Fig. 2. First, Region-wise Calibration cor-
rects the overall category of each mask by adaptively re-
weighting its category-wise probabilities. Leveraging the
feature that superpixels adhere well to the boundaries of
things and stuff, Superpixel-wise Calibration then adjusts
the shape of each mask by considering the boundary of the
computed superpixels. Finally, Pixel-wise Calibration in-
troduces pixel-level categorization information and further
refines the boundary of each mask with a simple pixel-wise
voting mechanism.

As the proposed calibration technique works for all pre-
dicted pseudo masks (i.e., things and stuff) uniformly, we
take one pseudo mask ŷkt from ŷt = {ŷkt }Kk=1 as an example
for illustration. Each pseudo mask ŷkt includes a predicted
category ĉkt = argmaxc p

c (pc ∈ {pc}Cc=1 is the probabil-
ity of belonging to the c-th category) and a predicted binary
mask M̂k

t of size H ×W .
Region-wise Calibration corrects the predicted category ĉkt
by re-weighting its category-wise probability pc as follow-
ing:

ckt
′
= argmax

c
(w(c,k) ⊗ pc), (2)

where ⊗ denotes the element-wise multiplication and
w(c,k) ∈ {w(c,k)}Cc=1 is the calibration weight of the cor-
responding c-th category probability for each pseudo mask.

The calibration weight w is calculated according to the
distance between ŷkt and the centroids δ over feature space
(i.e., feature center calculated and updated in Eqs. 5 and 6).
Given the feature fk

t ∈ RE×H×W (E, H and W denote
the feature’s channel, height and width respectively) as gen-
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erated by the momentum backbone, we pool the feature
within the mask M̂ into a region-wise vector vkr ∈ RE (sub-
script r denotes it is a region-wise vector) as follows:

vkr = GAP(M̂k
t ⊗ fk

t ), (3)

where GAP(·) denotes the global average pooling opera-
tion.

Generally, if the region-wise vector vkr is far from the
c-th centroid δc, the pseudo mask ŷkt should be assigned
with a lower probability of belonging to the c-th category,
and vice versa. Therefore, the calibration weight in Eq. 2 is
defined as follows:

w(c,k) = Softmax(−||vkr − δc||1), (4)

where the distance is measured using L1 distance and soft-
max operation is performed along the category dimension.

Here we demonstrate how we compute and update the
mask centroids along the training process. The mask cen-
troids are first initialized by all target predictions from the
baseline model. For each category, the mask centroid δc is
defined as follows:

δc =

∑
xt∈Dt

∑
k∈K vrm · 1(ĉk = c)∑

xt∈Dt

∑
k∈K 1(ĉk = c)

, (5)

where 1 is an indicator function that returns ‘1’ if the vector
vkm belongs to c-th category, and ‘0’ otherwise.

Along training process, we update the mask centroids
with the current batch of data:

δc ← γ′δc + (1− γ′)δc∗, (6)

where δc∗ is the mask centroid calculated with the current
data and model, and γ′ is a update coefficient for smooth
centroid update.
Superpixel-wise Calibration: Following region-wise cal-
ibration, we first correct the shape of the pseudo mask by
exploiting superpixels that adhere well to the boundaries of
things and stuff [1]. To this end, we first compute a super-
pixel map M I which includes total I superpixels M (i) for
target image xt. Then, we select the superpixels that over-
lap with the original mask M̂k

t to form an adjusted binary
mask Mk

sp as follows:

Mk
sp =

⋃
i∈I

M (i) · 1(A(i) > 0), (7)

where 1 is an indicator function and we denote the over-
lapping area between i-th superpixel and the mask M̂k

t as
A(i).

The superpixel-based mask Mk
sp adjusts the original

mask M̂ with the computed superpixels which adheres bet-
ter to the edge of things or stuff, as illustrated in Figs. 3 (b)
and (c).

Self-train. Region Superpixel Pixel mSQ mRQ mPQ

56.4 21.8 18.3

✓ 59.5 29.9 22.6
✓ ✓ 61.2 36.9 28.7
✓ ✓ 63.0 32.4 26.2
✓ ✓ 62.6 31.8 24.2
✓ ✓ ✓ 63.4 39.9 30.9
✓ ✓ ✓ 63.2 38.9 30.1
✓ ✓ ✓ 64.3 32.7 26.9
✓ ✓ ✓ ✓ 64.7 42.2 33.0

Table 2. Ablation study of the proposed Hierarchical Mask Cal-
ibration technique over task SYNTHIA → Cityscapes, where
‘Region’, ‘Superpixel’ and ‘Pixel’ stand for region-wise calibra-
tion, superpixel-wise calibration and pixel-wise calibration, re-
spectively.

Pixel-wise Calibration: Following superpixel-wise cali-
bration, we further introduce pixel-level categorization in-
formation and refine the boundary of the superpixel-based
mask Mk

sp in a more precise manner.
We design a simple pixel-wise voting mechanism to

achieve the fine-grained calibration: the superpixels are dis-
carded from the Mk

sp if a majority of pixel-wise feature vec-
tors within it are inconsistent with the overall category of
pseudo mask ŷkt as illustrated in Fig. 3 (d). Let v(k,j)p denote
a pixel-wise feature vector within superpixel M (j) ∈ Msp

(subscript p denotes it is a pixel-wise vector), and we deter-
mine that it is inconsistent with the pseudo mask if it does
not satisfy the following condition:

argmin
c

(||v(k,j)p − δc||) = ckt
′
, (8)

where ckt
′ is the corrected category of the pseudo mask ŷkt .

Such pixel-wise voting effectively suppresses the side effect
of outlier pixels by enforcing that pixels within the same
superpixel should share the same semantic category [1].

The final calibrated pseudo masks ŷ′t for target im-
age xt can be acquired by repeating the above-mentioned
processes for all the calibrated pseudo mask (i.e., ŷ′t =

{ŷk′

t }Kk=1, where ŷk
′

t = {ckt
′
,Mk

t
′}).

3.4. Network Optimization

With the calibrated pseudo masks ŷ′t, the self-training
loss Lself can be formulated as follows:

Lself = l(G(xaug), ŷ
′
aug), (9)

where l(·) denotes the panoptic segmentation loss that con-
sists of a matching cost and a Hungarian loss [4]. ŷ′aug and
xaug are the simple augmentations (i.e., resize, crop and
flip) of ŷ′t and xt, respectively.

The overall training objective is defined by minimizing
the supervised loss Lsup and the unsupervised loss Lself :

argmin
G

Lsup + Lself . (10)
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SYNTHIA→ Cityscapes Panoptic Segmentation

Methods road side. build. wall fence pole light sign vege. sky pers. rider car bus mot. bike mSQ mRQ mPQ

Baseline [4] 33.9 7.3 45.6 0.0 0.0 2.9 5.2 7.6 65.0 57.1 19.2 5.4 22.3 14.9 1.3 4.8 56.4 21.8 18.3
DAF [6] 34.6 7.5 53.8 0.0 0.0 2.1 3.1 2.6 72.8 67.5 21.3 9.4 28.2 22.7 4.4 4.4 59.0 28.3 20.9

FDA [57] 29.2 5.8 63.6 0.1 0.0 4.9 4.0 4.8 73.9 62.5 24.5 11.4 32.1 27.1 5.2 8.0 59.1 30.3 22.3
CRST [65] 46.8 11.8 56.8 0.9 0.0 4.0 2.6 3.5 70.9 64.3 20.7 11.8 32.9 32.2 6.2 7.9 62.5 31.9 23.3
SVMin [15] 48.0 11.8 56.9 0.5 0.0 3.9 3.8 4.4 72.5 68.9 26.4 15.0 35.3 25.8 6.3 7.6 63.3 32.6 24.2
AdvEnt [53] 55.9 14.4 64.0 0.0 0.0 4.6 3.3 2.7 75.5 72.3 24.9 9.7 33.8 26.7 5.2 7.1 60.2 33.0 25.0

CVRN [20] 66.2 19.4 72.5 2.1 0.0 3.8 6.5 4.4 79.7 75.1 26.5 11.5 36.6 34.1 7.1 8.2 61.4 35.9 27.9
UniDAformer 73.7 26.5 71.9 1.0 0.0 7.6 9.9 12.4 81.4 77.4 27.4 23.1 47.0 40.9 12.6 15.4 64.7 42.2 33.0

Table 3. Experiments with unified panoptic segmentation architecture [4] over task SYNTHIA → Cityscapes. PQ is computed for each
category. Mean SQ (mSQ), mean RQ (mSQ), mean PQ (mPQ) are computed over all categories.

Cityscapes→ Foggy Cityscapes Panoptic Segmentation

Methods road side. build. wall fence pole light sign vege. sky pers. rider car bus mot. bike mSQ mRQ mPQ

Baseline [4] 92.5 48.9 60.6 6.0 10.7 5.3 9.9 23.6 49.7 55.6 22.3 15.4 38.5 23.7 1.6 2.8 70.0 38.6 29.2
DAF [6] 94.0 54.5 57.7 6.7 10.0 7.0 6.6 25.5 44.6 59.1 26.7 16.7 42.2 36.6 4.5 16.9 70.6 41.7 31.8
FDA [57] 93.8 53.1 62.2 8.2 13.4 7.3 7.6 28.9 50.8 49.7 25.0 22.6 42.9 36.3 10.3 15.2 71.4 43.5 33.0

AdvEnt [53] 93.8 52.7 56.3 5.7 13.5 10.0 10.9 27.7 40.7 57.9 27.8 29.4 44.7 28.6 11.6 20.8 72.3 43.7 33.3
CRST [65] 91.8 49.7 66.1 6.4 14.5 5.2 8.6 21.5 56.3 50.7 30.5 30.7 46.3 34.2 11.7 22.1 72.2 44.9 34.1
SVMin [15] 93.4 53.4 62.2 12.3 15.5 7.0 8.5 18.0 54.3 57.1 31.2 29.6 45.2 35.6 11.5 22.7 72.4 45.5 34.8

CVRN [20] 93.6 52.3 65.3 7.5 15.9 5.2 7.4 22.3 57.8 48.7 32.9 30.9 49.6 38.9 18.0 25.2 72.7 46.7 35.7
UniDAformer 93.9 53.1 63.9 8.7 14.0 3.8 10.0 26.0 53.5 49.6 38.0 35.4 57.5 44.2 28.9 29.8 72.9 49.5 37.6

Table 4. Experiments with unified panoptic segmentation architecture [4] over task Cityscapes → Foggy cityscapes. PQ is computed for
each category. Mean SQ (mSQ), mean RQ (mSQ), mean PQ (mPQ) are computed over all categories.

4. Experiment

This section presents experiments including datasets,
evaluation metric, ablation studies, comparisons with the
state-of-the-art and discussions. Due to the space limit, the
implementation details are provided in the appendix.

4.1. Datasets

We evaluate UniDAformer over three widely used do-
main adaptation tasks with four datasets:
1) SYNTHIA [45] → Cityscapes [10] which aims for do-
main adaptation from synthetic images to real-world im-
ages. The training set in SYNTHIA are adopted as source
domain and the training set in Cityscapes are considered as
target domain. The evaluation is performed on the valida-
tion set of Cityscapes.
2) Cityscapes [10] → Foggy cityscapes [50] which aims
for domain adaptation across different weather conditions,
where Cityscapes is used as source domain and Foggy
Cityscapes is considered as target domain. The adaptation
performance is evaluated over the validation set of Foggy
Cityscapes.
3) VIPER [44] → Cityscapes [10] which aims for domain
adaptation from synthetic images to real-world images. We
adopt the training set of VIPER as source domain and the
training set in Cityscapes as target domain. The evaluation
is performed on the validation set of Cityscapes.

In evaluations, we adopt three panoptic segmentation
metrics [30] including segmentation quality (SQ), recogni-
tion quality (RQ) and panoptic quality (PQ) as in [20, 29,
30,35]. For each category, PQ can be computed as the mul-
tiplication of the corresponding SQ term and and RQ term
as follows:

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP |︸ ︷︷ ︸
segmentation quality (SQ)

× |TP |
|TP |+ 1

2
|FP |+ 1

2
|FN |︸ ︷︷ ︸

recognition quality (RQ)

,

(11)
where g is the ground truth segment and p is the matched
prediction. TP, FP and FN denote true positives, false pos-
itives and false negatives, respectively. IoU is the insertion
over union metric [13] which is widely used in semantic
segmentation evaluations. With the above definitions, RQ
captures the proportion of TP in all predictions, SQ cap-
tures the segmentation quality within TP while PQ inte-
grates PQ and SQ and captures the overall panoptic seg-
mentation quality.

4.2. Ablation Studies

The core of UniDAformer is Hierarchical Mask Cal-
ibration that consists of a Region-wise Calibration, a
Superpixel-wise Calibration and a Pixel-wise Calibration.
We first study the three calibration modules to examine how
they contribute to the overall domain adaptive panoptic seg-
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VIPER→ Cityscapes Panoptic Segmentation
Methods road side. build. fence light sign vege. sky pers. car bus mot. bike mSQ mRQ mPQ

Baseline [4] 25.2 5.7 35.1 0.0 5.9 3.9 75.3 68.7 21.2 39.7 21.4 11.4 0.0 59.7 32.0 24.1
DAF [6] 56.6 7.3 41.0 0.0 3.5 2.7 76.4 70.2 19.0 34.3 14.2 6.3 0.0 61.1 33.3 25.5

FDA [57] 50.0 7.6 59.4 0.0 6.2 6.1 73.3 65.9 19.4 38.2 15.5 8.1 0.0 61.0 35.2 26.9
AdvEnt [53] 52.6 10.8 51.0 0.0 2.0 4.8 73.9 70.1 15.9 38.2 19.9 12.4 0.0 61.2 35.4 27.0
CRST [65] 68.7 9.1 54.4 0.0 2.4 2.7 76.3 69.9 21.2 34.0 21.9 7.7 0.0 61.0 36.5 28.3
SVMin [15] 87.6 14.2 70.7 0.0 4.1 6.3 74.4 70.0 16.9 32.5 2.4 11.0 1.2 61.3 37.5 29.9

CVRN [20] 75.1 18.8 59.9 0.0 9.1 6.5 76.8 71.1 22.3 37.0 15.5 8.6 3.8 66.4 40.2 31.1
UniDAformer 87.1 22.1 71.1 0.0 8.2 8.6 78.3 71.8 25.4 46.8 13.7 12.8 2.8 68.9 43.0 34.5

Table 5. Experiments with unified panoptic segmentation architecture [4] over task VIPER → Cityscapes. PQ is computed for each
category. Mean SQ (mSQ), mean RQ (mSQ), mean PQ (mPQ) are computed over all categories.

SYNTHIA → Cityscapes Panoptic Segmentation

Methods road side. build. wall fence pole light sign vege. sky pers. rider car bus mot. bike mSQ mRQ mPQ

PSN [30] 32.3 5.1 58.5 0.9 0.0 0.9 0.0 4.6 61.7 61.3 27.6 9.5 32.8 22.6 1.0 2.7 59.0 27.8 20.1
FDA [57] 79.0 22.0 61.8 1.1 0.0 5.6 5.5 9.5 51.6 70.7 23.4 16.3 34.1 31.0 5.2 8.8 65.0 35.5 26.6

CRST [65] 75.4 19.0 70.8 1.4 0.0 7.3 0.0 5.2 74.1 69.2 23.7 19.9 33.4 26.6 2.4 4.8 60.3 35.6 27.1
AdvEnt [53] 87.1 32.4 69.7 1.1 0.0 3.8 0.7 2.3 71.7 72.0 28.2 17.7 31.0 21.1 6.3 4.9 65.6 36.3 28.1

CVRN [20] 86.6 33.8 74.6 3.4 0.0 10.0 5.7 13.5 80.3 76.3 26.0 18.0 34.1 37.4 7.3 6.2 66.6 40.9 32.1
UniDAformer 87.7 34.0 73.2 1.3 0.0 8.1 9.9 6.7 78.2 74.0 37.6 25.3 40.7 37.4 15.0 18.8 66.9 44.3 34.2

Table 6. Experiments with multi-branch panoptic segmentation architecture [30] over task SYNTHIA → Cityscapes. Mean SQ (mSQ),
mean RQ (mSQ), mean PQ (mPQ) are computed over all categories.

mentation.

Table 2 shows experimental results over task SYNTHIA
→Cityscapes. It can be seen that the baseline in the 1st Row
(trained with the labeled source data only) does not perform
well due to domain shifts. Including self-training over un-
labeled target data in the 2nd Row improves the baseline
from 18.3 to 22.6 in mPQ. On top of the self-training, in-
cluding any of the three calibration modules improves the
segmentation consistently as shown in Rows 3-5. Specif-
ically, region-wise calibration improves mRQ more (15.1
above the baseline) than the other two calibration modules
(10.6 and 10.0), showing that region-wise calibration sup-
presses false predictions effectively by calibrating the over-
all category of each mask. On the other hand, superpixel-
wise and pixel-wise calibrations improve mSQ more than
region-wise calibration (6.6 and 6.2 vs 4.8), showing that
superpixel-wise and pixel-wise calibrations focus on refin-
ing the boundary of each mask.

The three calibration modules correct pseudo masks
from different levels which complement each in domain
adaptive panoptic segmentation. We can observe that com-
bining any two modules further improves mSQ, mRQ and
mPQ consistently as shown in Rows 6-8, and combining
all three achieves the best mSQ, mRQ and mPQ. Such ex-
perimental results are well aligned with the motivation and
design of the proposed hierarchical mask calibration.

4.3. Comparisons with the State-of-the-art

Due to the lack of prior studies on unified domain adap-
tive panoptic segmentation, we conduct two sets of experi-
ments to benchmark UniDAformer with the state-of-the-art.

In the first set of experiments, we benchmark
UniDAformer over the unified panoptic segmentation ar-
chitecture (i.e., DETR [4]) by reproducing the state-of-
the-art [20] with DETR. Specifically, we re-implement the
cross-style regularization (one of two cross-view designs)
in DETR to reproduce CVRN (cross-task regularization re-
lies on multi-branch architecture and cannot work in the
unified architecture). Following [20], we also reproduce
several domain adaptive methods by directly implementing
their adaptation module in DETR. We perform comparisons
over three domain adaptive panoptic segmentation tasks as
shown in Tables 3-5. It can be seen that UniDAformer im-
proves the baseline [4] by large margins (8.3, 20.4 and 14.7
in mSQ, mRQ and mPQ) and it also outperforms the state-
of-the-art clearly for SYNTHIA→ Cityscapes. In particu-
lar, UniDAformer improves more in mRQ as compared with
the state-of-the-art, indicating that it corrects more false pre-
dictions effectively. Similar experimental results are ob-
served on the other two tasks as shown in Tables 4 and 5.

In the second set of experiments, we benchmark
UniDAformer over the multi-branch panoptic segmentation
architecture (i.e., PSN [30]). Since HMC introduces lit-
tle extra computation overhead and can be incorporated as
a plug-in, we directly apply HMC (with the online self-
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Figure 4. Prediction quality analysis over task SYNTHIA → Cityscapes.

Order R→S→P P→S→R S→P→R

mSQ mRQ mPQ mSQ mRQ mPQ mSQ mRQ mPQ

Results 64.7 42.2 33.0 62.0 38.9 29.9 62.2 39.9 30.1

Table 7. The calibration order affects domain adaptation perfor-
mance. The experiments are conducted over task SYNTHIA →
Cityscapes. R, S and P denote region-wise calibration, superpixel-
wise calibration and pixel-wise calibration, respectively.

Methods Architecture Parameter Training Speed Inference Speed

CVRN [20] Multi-branch 185.58 M 0.27 fps 0.36 fps
UniDAformer Unified 77.68 M 1.53 fps 5.23 fps

Table 8. Efficiency comparison with multi-branch panoptic adap-
tation network CVRN [20] in terms of parameter number, training
speed and inference speed.

training loss) on the multi-branch architecture for bench-
marking. Table 6 shows experimental results on SYNTHIA
→ Cityscapes. We can see that UniDAformer outperforms
CVRN in mSQ, mRQ and mPQ consistently. In addition,
it similarly improves mRQ by large margins, which further
verifies the motivation and design of the proposed HMC.

4.4. Discussions

Prediction Quality Analysis. UniDAformer suppresses
false predictions effectively via HMC. We examine it over
task SYNTHIA → Cityscapes with DETR [4]. As dis-
cussed in Section 4.1, the predictions in panoptic segmenta-
tion consists of three parts including TP, FP and FN. We
compute the proportion of each part over all predictions
and Fig. 4 shows experimental results. We can observe
that UniDAformer produces clearly more TP and less FN
and FP as compared with both baseline [4] and the state-
of-the-art [15, 20]. This demonstrates the superiority of
UniDAformer in suppressing false predictions in domain
adaptive panoptic segmentation.
The Calibration Order Matters. The proposed HMC cal-
ibrates predicted pseudo masks in a coarse-to-fine manner

(i.e., from region level to superpixel and pixel levels). We
study how calibration order affects panoptic segmentation
by testing two reversed calibration orders as shown in Ta-
ble 7. It can be seen that reversing calibration order leads
to clear performance drops, indicating the benefits of the
coarse-to-fine calibration in our design.
Efficiency Comparison with CVRN [20]. Beyond seg-
mentation accuracy, we also benchmark UniDAformer with
multi-branch panoptic adaptation network CVRN [20] in
parameter number, training speed and inference speed. As
Table 8 shows, UniDAformer has clearly less parameters
and its training and inference time is much shorter than
CVRN as well, demonstrating its great simplicity and ef-
ficiency.

5. Conclusion

This paper presents UniDAformer, a unified domain
adaptive panoptic segmentation transformer. UniDAformer
introduces a Hierarchical Mask Calibration (HMC) tech-
nique to calibrate the predicted pseudo masks on the fly
during re-training. UniDAformer has three unique features:
1) it achieves unified panoptic adaptation by treating things
and stuff as masks and adapting them uniformly; 2) it mit-
igates the severe false prediction issue effectively by cali-
brating the predicted pseudo masks iteratively and progres-
sively; 3) it is end-to-end trainable with much less param-
eters and simpler training and inference pipeline. Besides,
the proposed HMC introduces little extra computation over-
head and could be used as a plug-in. Extensive experiments
over multiple public benchmarks show that UniDAformer
achieves superior segmentation accuracy and efficiency as
compared with the state-of-the-art. Moving forwards, we
plan to continue to investigate simple yet effective tech-
niques for unified domain adaptive panoptic segmentation.
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