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Abstract
Research on continual learning has recently led to a va-

riety of work in unimodal community, however little atten-
tion has been paid to multimodal tasks like visual question
answering (VQA). In this paper, we establish a novel VQA
Continual Learning setting named VQACL, which contains
two key components: a dual-level task sequence where vi-
sual and linguistic data are nested, and a novel composi-
tion testing containing new skill-concept combinations. The
former devotes to simulating the ever-changing multimodal
datastream in real world and the latter aims at measuring
models’ generalizability for cognitive reasoning. Based on
our VQACL, we perform in-depth evaluations of five well-
established continual learning methods, and observe that
they suffer from catastrophic forgetting and have weak gen-
eralizability. To address above issues, we propose a novel
representation learning method, which leverages a sample-
specific and a sample-invariant feature to learn represen-
tations that are both discriminative and generalizable for
VQA. Furthermore, by respectively extracting such repre-
sentation for visual and textual input, our method can ex-
plicitly disentangle the skill and concept. Extensive exper-
imental results illustrate that our method significantly out-
performs existing models, demonstrating the effectiveness
and compositionality of the proposed approach. The code
is available at https://github.com/zhangxi1997/VQACL.

1. Introduction
Continual learning [43] has recently gained a lot of at-

tention in the deep learning community because it enables
models to learn continually on a sequence of non-stationary
tasks and is close to the human learning process [2, 36].
However, the vibrant research in continual learning mainly
focuses on unimodal tasks such as image classification [37,
46, 51] and sequence tagging [4, 48], and the demand of
multimodal tasks is ignored. In recent years, the volume of
multimodal data has grown tremendously [8, 56, 57]. For
example, tens of millions of texts, images, and videos are
uploaded to social media platforms every day, such as Face-

Figure 1. The illustration of real-world scenario for VQA system,
which may continuously receive new types of questions, fresh
visual concepts, and novel skill-concept compositions.

book and Twitter. To cope with such constantly emerging
real-world data, a practical AI system should be capable of
continually learning from multimodal sources while allevi-
ating forgetting previously learned knowledge.

Visual Question Answering (VQA) is a typical multi-
modal task and has drawn increasing interest over the past
few years [12, 49, 60], which can automatically generate
a textual answer given a question and an image. To deal
with ever-changing questions and visual scenes in real life,
applying continual learning to VQA is essential. However,
it is not easy to set up a suitable continual learning setting
for this task. We identify that two vital issues need to be
considered. First, the VQA input comes from both vision
and linguistic modalities, thus the task setting should si-
multaneously tackle continuous data from both modalities
in a holistic manner. For example, as shown in Fig. 1, the
AI system might deal with new types of questions (e.g.,
Where ..., Why ...) as well as fresh visual concepts (e.g., Lo-
quat, Deer). Second, compositionality [24], a vital property
of cognitive reasoning, should be considered in the VQA
continual learning. The compositionality here denotes the
model’s generalization ability towards novel combinations
of reasoning skills (i.e., question type) and visual concepts
(i.e., image object). As illustrated in Fig. 1, if the system
has been trained with question type Count (e.g., How many)
with a variety of objects (e.g., Person, Cat, and Dount), as
well as another question type (e.g., What color) about a new
object (e.g., Truck). Then, it is expected to answer a novel
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question like ‘How many trucks are there?’, even if the
composition of skill Count and concept Truck has yet to be
seen. Such ability is very crucial when deploying a model
in the real world because it is infeasible to view all possible
skill-concept compositions. Remarkably, several works has
addressed continual learning with VQA [14, 16, 25]. How-
ever, they still apply a classic unimodal-like continual learn-
ing setting for the task by devising a set of VQA tasks sim-
ply based on question type or image scene, which ignores
above two crucial issues: handling continuous multimodal
data simultaneously and testing model’s compositionality.

To achieve these two keypoints, in this paper, we propose
a novel generative VQA continual learning setting named
VQACL based on two well-known datasets: VQA v2 [13]
and NExT-QA [49]. Specifically, as shown in Fig. 2(a), our
VQACL setting consists of a dual-level task sequence. In
the outer level, we set up a sequence of linguistic-driven
tasks to evaluate models’ ability for the ever-changing ques-
tion types. Moreover, to process the continuously shifted
visual contents, for each outer level task, we further con-
struct a series of randomly ordered visual-driven subtasks
according to image object categories in the inner level. Such
dual-level setting is similar to the cognitive process of chil-
dren, who master a skill by trying it on various objects. For
example, when learning to recognize colors, a baby usually
asks all the things surrounding him ‘what color’ they are.
Besides, to evaluate models’ compositionality, we construct
a novel composition split. As shown in Fig 2(b), we remove
a visual-driven subtask from each task in the outer level
during training and utilize it for testing. In this way, the
testing data contain novel skill-concept combinations that
are not seen at the training time. In conclusion, on the
one hand, our VQACL setting requires models to perform
effective multimodal knowledge transfer from old tasks to
new tasks while mitigating catastrophic forgetting [31]. On
the other hand, the model should be capable of generalizing
to novel compositions for cognitive reasoning.

Using the proposed VQACL setting, we establish an
initial set of baselines by adapting several well-known and
state-of-the-art continual learning methods [1, 3, 7, 22, 45]
from image classification to the generative VQA tasks.
The baselines are implemented on an advanced vision-and-
language transformer [9] without pre-training. After bench-
marking these baseline models, we find that few of them
can do well in the novel composition testing, which limits
their wide applications in practice. To enhance the model’s
compositionality, it is critical to learn an excellent repre-
sentation that is discriminative for seen skills or concepts,
and is generalizable to novel skill-concept compositions. To
achieve it, recent static VQA methods [27, 47, 59] always
first learn joint representations for visual and textual inputs,
and then utilize contrastive learning to implicitly disentan-
gle the skill and concept within the joint feature. How-

ever, such implicit disentangling makes existing models still
dogged by the interference between the skill and concept,
leading to suboptimal generalization results. Moreover, the
complex contrastive sample building process makes these
works tough to be applied to continual learning.

Inspired by above discussions, we propose a novel repre-
sentation learning method for VQACL, which introduces a
sample-specific (SS) and a sample-invariant (SI) feature to
learn better representations that are both discriminative and
generalizable. To explicitly decouple the reasoning skills
and visual concepts, we learn the SS and SI representation
for visual and textual input separately. Specifically, the
SS feature for each modality is learned through a trans-
former encoder that stacks multiple self-attention layers,
which can encode the most attractive and salient contents
into the SS feature to make it discriminative. For the SI
feature, we resort to prototype learning to aggregate the
object class or question type information into it. Because
the category knowledge is stable and representative across
different scenarios, the SI feature can possess strong gen-
eralizability. Besides, to fit the continual learning setting,
we constantly update the SI feature in training. In this way,
it can capture new typical knowledge while retaining his-
torical experience, helping alleviate the forgetting problem.
In conclusion, combining the SS and SI features, we can
obtain the representation that is conducive to the model’s
compositional discriminability and generalizability.

In summary, the major contributions of our work are
threefold: (1) We introduce a new continual learning set-
ting VQACL to simulate real-world generative VQA. It can
not only simultaneously tackle the continuous data from
vision and linguistic modality, but also test models’ com-
positionality for cognitive reasoning. (2) We propose a sim-
ple but effective representation learning method for contin-
ual VQA, which novelly deploys a discriminative sample-
specific feature and a generalizable sample-invariant feature
to alleviate forgetting and enhance the models’ composition
ability. (3) We re-purpose and evaluate five well-established
methods on our VQACL, and observe that they struggle
to obtain satisfactory results. Remarkably, our model con-
sistently achieves the best performance, demonstrating the
effectiveness and compositionality of our approach.

2. Related Work
2.1. Visual Question Answering

Visual question answering (VQA) has gained much at-
tention in AI, which requires co-reasoning over both visual
and textual input to automatically generate a correct answer.
These years, various approaches have been proposed for
this task [50, 52, 54, 55, 58–61], which mainly focus on ex-
ploiting attention mechanism and multimodal fusion tech-
niques. Recently, mirroring the success of language trans-
formers [19], vision-language transformers have achieved
remarkable success in VQA [9,35,62]. For example, Cho et
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al. [9] propose a generative transformer to do VQA, which
performs answer generation based on image objects and
question words. Nevertheless, most existing methods are
designed without explicitly considering the generalization
ability, thus having limited compositionality. As discussed
in [20, 24], compositionality is an ability to systematically
understand and generalize to novel combinations of known
components, which is critical for cognitive reasoning.

In recent years, researchers have begun to explore the
composition issue in VQA [17,18,27,47,59]. For example,
Johnson et al. [18] study the composition of visual attributes
(e.g., color, size) and objects (e.g., cube, cylinder) and pro-
pose a dataset for compositional reasoning. More similar to
us, Whitehead et al. [47] also investigate the composition
of reasoning skills and visual concepts, and leverage con-
trastive learning to implicitly disentangle the skill and con-
cept in a joint feature to enhance the model’s composition-
ality. However, the implicit decoupling may lead to subopti-
mal generalization performance, and the contrastive sample
building process is complex. In contrast, our work ex-
plicitly decouples the skill and concept through separately
learning sample-specific and sample-invariant features for
the textual and visual input, which can make the learned
representation more discriminative and generalizable. Be-
sides, these existing VQA models perform offline training
and ignore the demand for tackling continuous multimodal
data in practice. Differently, we apply continual learning to
VQA and train the model with a sequential series of tasks,
which is more consistent with real world applications.

2.2. Continual Learning
Continual learning aims to train a single model that

can incrementally update knowledge with a new stream of
tasks while preserving previously learned information [10].
The major challenge is to learn without catastrophic forget-
ting [10]: the model’s performance on previously learned
tasks should not significantly degrade over time. To over-
come the challenge, existing continual learning algorithms
can be categorized into regularization, rehearsal, and ar-
chitectural methods. Specifically, the regularization meth-
ods [1, 22, 33, 40] impose a regularization constraint to the
objective to limit parameter changes. The rehearsal-based
methods [3,6,7,42,44] store some training examples of pre-
vious tasks in a memory buffer, and retrain the model on old
data to review past knowledge. Differently, the architectural
approaches [26, 39, 53] dynamically expand the network
to learn specific parameters for each task. Although these
methods have shown remarkable results in unimodal tasks
such as image classification and sequence tagging, their use
within multimodal tasks remains under-explored.

Recently, a number of work has shown interest in multi-
modal continual learning [11, 14, 32, 41]. For example, Del
et al. [11] consider continual image captioning with LSTM-
based models. More similarly, several works [14, 16, 25]

introduce a continual VQA setting that is composed of a
sequence of tasks with different question types, and [25]
also designs a setting containing VQA tasks with differ-
ent image scenes. However, they cannot simultaneously
tackle multimodal continuous data and ignore the essential
composition generalization issue for VQA. Differently, we
propose the VQACL, a more challenging and realistic set-
ting for generative VQA continual learning. Specifically,
our VQACL consists of a dual-level task sequence to tackle
the multimodal data, where the outer level setups sequential
linguistic-driven tasks with different question types and the
inner level builds serial visual-driven subtasks with shifting
object categories. Besides, we design a novel composi-
tion testing to further evaluate the model’s compositionality.
Based on the VQACL, we also propose a rehearsal-based
representation learning method to boost the continual VQA
performance and alleviate the forgetting problem.

3. VQA Continual Learning Setting
In this section, we introduce our proposed generative

VQA Continual Learning setting (VQACL), which aims to
test the learning algorithm’s ability to adapt to a sequentially
arriving datastream of VQA.
3.1. Problem Definition

In our work, we formulate the VQA as a generation task,
which aims to generate textual answers automatically given
an image and a question. Unlike traditional offline training
that the model can visit entire training data, we focus on
a continual learning setup, where the model visits a non-
stationary stream of the data. Specifically, we optimize a
single neural network over a sequence of VQA tasks, and
search the parameters that can maximize the average VQA
performance. Each VQA task contains its own training data.

We do continual VQA on two standard datasets: VQA
v2 [13], an image QA dataset with 1.1 Million pairs of
real-world images and human-written questions; and NExT-
QA [49], a video QA dataset with 52K manually annotated
question-answer pairs. In the following, we introduce the
building details of the continual learning setting for VQA.

3.2. VQACL
Continual VQA comes with two unique requirements:

(1) the setting should be capable of tackling continuous data
from both vision and linguistic modality; and (2) the setup is
expected to evaluate models’ generalizability on novel skill-
concept composition. Informed by these issues, we design
the VQACL setting as follows.
Dual-level task sequence. Inspired by the cognitive pro-
cess of baby, we design a dual-level task sequence, where
the visual and textual data are nested to construct continu-
ous datastream. Specifically, the standard training and test-
ing process is shown in Fig. 2(a). In the outer level, we de-
fine a series of linguistic-driven tasks {Rq1, ..., R

q
T }, where

T denotes the number of the task, and each task corresponds
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Figure 2. The proposed VQACL setting. (a) Standard training and testing. (b) Composition training and novel composition testing. The
data covered with the gray box denotes that it is removed.

to learning a specific reasoning skill. For example, for the
‘Count’ task illustrated in Fig. 2(a), its training data mainly
contain the examples that can teach the model how to count,
such as ‘How many’ and ‘What number is’. According to
the question types in the dataset, we define T = 10 for
VQA v2 and T = 8 for NExT-QA. Detailed information
can be found in the supplementary material. In the inner
level, each linguistic-driven task is further composed of
a sequence of visual-driven subtasks {Rv1 , ..., RvK}, where
each subtaskRvk contains the images from object groupGk.
Specifically, we uniformly partition all the object classes
{ci}Ci=1 into K parts to obtain the {Gk}Kk=1, which are then
randomly assigned to different visual subtasks. For both
VQA v2 and NExT-QA, the K is set to 5, and the class
number C is set to 80 according to COCO [28].
Novel Composition Testing. Compositionality is an impor-
tant property in cognitive reasoning, which is crucial in real-
world scenarios. To this end, in VQA continual learning,
besides the common stability-plasticity issue, our VQACL
also focuses on measuring the model’s compositionality of
the reasoning skill (e.g., Count, Color) and visual concept
(e.g., Cat, Surfboard). To achieve it, based on the standard
process in Fig. 2(a), a composition training and testing
process is built and shown in Fig. 2(b). Specifically, we
randomly remove a visual-driven subtask Rvk from each
linguistic-driven task during training and utilize it as the
novel compositions for testing. As a result, our testing data
involve unseen combinations that consist of image objects
in Rvk and each question type. Besides, to guarantee that
the elements contained in the novel compositions have been
seen before, we train the model in the first linguistic-driven
task with all the visual objects. To make the testing results
more convincing, we perform K-fold object independent
cross-validation. In detail, we repeat the above process
for K times and each time remove a different visual-driven
subtask, so that all the objects could fairly appear.

In conclusion, under our VQACL setting, the model
requires to not only minimize the forgetting of multimodal
tasks seen earlier in training, but also facilitate generalizable
knowledge transfer to improve performance on constantly

emerged skills, concepts, and skill-concept compositions.
3.3. Evaluation Metrics

In the VQACL setting, we use two standard continual
learning metrics [5, 6, 29]: Final Average performance (i.e.,
AP) and Average Forgetting (i.e., Forget). Specifically, the
AP is the average performance of the model for all learned
tasks, which shows the model’s capability when continually
learning new tasks. Suppose ai,j is the testing performance
on task Rqi when the model completes learning task Rqj ,
AP = 1

T

∑T
t=1 at,T . Besides, the Forget measures per-

formance degradation in subsequent tasks and is defined
by Forget = 1

T−1
∑T−1
t=1 maxz∈{t,...,T−1}(at,z − at,T ).

For a fair comparison, we compute ai,j in NExT-QA fol-
lowing [49], and use Wu-Palmer similarity (WUPS) [30]
to evaluate the quality of generated answer. In VQA v2,
following [9], we leverage the percentage of correctly an-
swered questions as the ai,j .

4. Proposed Method
4.1. Overall Architecture

We present a simple but effective representation learning
approach to enhance the model’s compositionality in our
VQA continual learning setting (VQACL). In our method,
for both vision and linguistic modality, a sample-specific
(SS) and a sample-invariant (SI) feature are introduced to
help learn a discriminative and generalizable representation
for the VQACL. The architecture of our model is shown
in Fig. 3, which adopts a transformer encoder-decoder net-
work [9] as the backbone and includes a prototype learning
module. Besides, following the common rehearsal meth-
ods [7,29], to alleviate the catastrophic forgetting in contin-
ual learning, we also construct a memory bufferM, which
stores randomly selected training examples from each past
task. As shown in Fig. 3, given an image V and a question
Q from either the current task or memory M, we first
extract the visual embeddings Ev and textual embeddings
Eq . Then, Ev and Eq are fed into the transformer encoder
to capture attractive and salient contents in V and Q, thus
making the output features discriminative. The features
are then adopted as the visual and textual sample-specific
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Figure 3. The overall architecture of our proposed method, which
incorporates a transformer backbone, a memory buffer, and a pro-
totype learning module.

features V SS and QSS in our method. In the prototype-
learning module, we learn and update prototypes of differ-
ent question types and object classes. Since the prototype
can aggregate typical category information that is robust to
novel data, we select suitable visual and textual prototypes
as the sample-invariant feature V SI and QSI based on the
V and Q. Finally, the vectors V SS , QSS , V SI , and QSI

are combined and fed into the text decoder to generate
the answer. A conventional negative log-likelihood loss is
leveraged to optimize the whole network.
4.2. Visual and Textual Embedding

Given n object regions for image V , each region is
encoded as a sum of three types of features: (1) region
feature, (2) region bounding box coordinates, and (3) re-
gion id ∈ {1, ..., n}. Specifically, the region feature and
bounding box coordinates are encoded by a linear layer, and
the region id is encoded with learned embeddings [19]. In
this way, we obtain visual embedding Ev ∈ Rn×d for V ,
where d is the dimension of the embedding. For question
Q, we first tokenize it to words and then encode them as
textual embedding Eq ∈ Rm×d through an embedding
layer, where m is the number of words.
4.3. Sample-specific and Sample-invariant Repre-

sentation Learning
A VQA model with good compositionality should be

equipped with two capabilities: discriminative for seen
question types or image objects, and generalizable to novel
combinations of them. We believe that the key is to perform
effective representation learning. To achieve this, we pro-
pose a simple but effective representation learning method
by leveraging a sample-specific and a sample-invariant fea-
ture. In this way, the representation learned by our method
contains not only prominent contents of the input, but also
representative category knowledge.
Sample-specific Feature. To learn a discriminative SS fea-
ture, we utilize a bidirectional multimodal encoder Enc(·)
that consists of a stack of transformer blocks. Specifically,
each transformer block contains a multi-head self-attention

layer and a fully-connected layer with residual connections,
which helps capture the most attractive and prominent fea-
ture of the input. Formally, the SS feature Qss ∈ Rn×d and
V ss ∈ Rm×d for the question and image are encoded as:

Qss, V ss = Enc(Eq, Ev). (1)
Sample-invariant Feature. For the SI feature, we hope it
contains typical reasoning knowledge for a type of question,
or common attribute information for a class of image, which
is invariant across different domains and can be adapted
to novel scenarios. To achieve it, we design a prototype
learning module to construct prototypes for different kinds
of questions and objects, and each prototype aggregates rep-
resentative category information of corresponding training
examples. Specifically, we first initialize a set of question
prototypes {P qt }Tt=1 and object prototypes {P vc }Cc=1, where
P qt , P

v
c ∈ Rd, and T and C denote the number of ques-

tion types and object classes in our VQACL. Then, to fit
the continual learning setting, the prototypes are constantly
updated based on the mini-batch data from the current task
or memoryM. Taking the update of P qt as an example, we
first compute the expectation Et over all the questions that
belong to the t-th question type as follows:

Et =
1

j

j∑
i=1

Pool(Enc(Eq,it )), (2)

where j denotes the number of questions with type t in the
current mini-batch, Eq,it represents the textual embedding
of the i-th question with type t, and Pool(·) represents
the mean pooling operation. Then, the expectation Et is
leveraged to refresh the prototype as follows:

P qt = (1− α)Et + αP qt , (3)
where α is the parameter to adjust the updated degree.
With the above strategy, on the one hand, we can update
the prototype with the latest information to make it more
representative, thus enhancing the feature’s generalization
ability. On the other hand, the prototype retains the knowl-
edge of historical data, which helps mitigate the forgetting
for continual learning. After that, given a question, we can
obtain its SI feature QSI by looking up a suitable prototype
from {P qt }Tt=1 based on its specific feature QSS . Formally,
QSI ∈ Rd can be selected by solving following objective:

QSI = arg max
P

q
t

cos(th(QSS), th(P qt )), t = 1, ..., T, (4)

where th(·) is the hyperbolic tangent function, and cos(·, ·)
denotes the cosine similarity. In this way, QSI can con-
tain essential skill knowledge of the corresponding question
type. Similar to QSI , the visual SI featue V SI ∈ Rd for the
image V can be learned through Eq. (2-4) with the different
input and a new parameter β in Eq. (3).
4.4. Text Decoder and Objective Function

Similar toEnc(·), the text decoderDec(·) is also a stack
of transformer blocks, where each block has an additional
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Table 1. Model performance on VQA v2 and NExT-QA with the VQACL setting. #Mem: memory size; Standard Test: standard testing;
Novel Comp. Test: novel composition testing; AP: Final Average Performance (%); Forget: Average Forgetting (%).

Methods
VQA v2 NExT-QA

#Mem
Standard Test Novel Comp. Test

#Mem
Standard Test Nove Comp. Test

AP (↑) Forget (↓) AP (↑) Forget (↓) AP (↑) Forget (↓) AP (↑) Forget (↓)

Joint - 51.64 - 51.10 - - 35.92 - 36.24 -

Vanilla None 14.49 30.80 11.79 27.16 None 11.97 26.14 12.59 28.04
EWC [22] None 15.77 30.62 12.83 28.16 None 13.01 24.06 11.91 27.44
MAS [1] None 20.56 11.16 23.90 6.24 None 18.04 10.07 21.12 10.09

ER [7] 5000 36.99 5.99 33.78 5.76 500 30.55 4.91 32.20 5.57
DER [3] 5000 35.35 8.62 31.52 8.59 500 26.17 5.12 21.56 12.68
VS [45] 5000 34.03 8.79 32.96 5.78 500 28.13 4.45 29.47 6.14
Ours 5000 38.77 3.96 35.40 4.90 500 32.27 3.00 34.22 3.80

cross-attention layer. Given the previously generated tokens
Y<j and the extracted SS and SI feature, the decoder pre-
dicts the probability of future text tokens as follows:

Pθ(Yj |Y<j , Q, V ) = Dec(Y<j , Q
SS , V SS , QSI , V SI). (5)

In Eq. (5), we utilize the representations that simultaneously
involve discriminative sample-specific content and gener-
alizable sample-invariant knowledge to perform continual
learning in VQA. Finally, we train our model parameters θ
by minimizing the negative log-likelihood of label text Y
tokens as follows:

L = −
|Y |∑
j=1

logPθ(Yj |Y<j , Q, V ). (6)

5. Experimental Results
5.1. Implementation Details

We construct the proposed model according to Fig. 3.
Specifically, to obtain the visual embedding, for the image
in VQA v2, we use a Faster R-CNN [38] trained on Visual
Genome [23] to extract 36 region features. For the video in
NExT-QA, we adopt the clip-level motion feature captured
by inflated 3D RexNeXt-101 [15] as the region feature and
n = 16. In the transformer backbone, we stack 12 blocks
forEnc(·) andDec(·), and the attention layer in each block
further has 12 attention heads. The embedding dimension d
is set as 768, and the size of the memory bufferM is set as
5, 000 for VQA v2 and 500 for NExT-QA according to the
volume of the datasets. In the prototype learning module,
we set α and β as 0.5 and 0.3, respectively. During the
model learning, we train each task for 3 epochs with a batch
size of 80. Adam [21] is adopted as the optimizer, and the
initial learning rate is 10−4. We implement our proposed
method based on PyTorch [34].

5.2. Experimental Results in the VQACL setting
The proposed VQACL setting enables a comprehensive

analysis of models’ continual learning capacity and com-
positional generalization ability. In this section, we inves-

tigate and evaluate five well-established and state-of-the-
art continual learning methods in both the standard test-
ing and novel composition testing to verify the effective-
ness of our approach, including two regularization meth-
ods (EWC [22], MAS [1]) and three rehearsal approaches
(ER [7], DER [3], and VS [45]). Besides, we also provide
a lower bound (Vanilla) that simply performs gradient up-
date without any countermeasure for the forgetting in the
VQACL setting, and an upper bound (Joint) that trains all
tasks jointly. For a fair comparison, all the methods are real-
ized using official codes and added to the same transformer
backbone introduced in Section 5.1 as our method.

Performance Analysis of Standard Testing. The orange
parts in Table 1 provide the model performance on the stan-
dard continual learning test set of VQA v2 and NExT-QA.
From the results, we can draw the following conclusions:
(1) compared with other continual learning approaches, our
proposed method consistently achieves the best in terms of
both AP and Forget. Take a closer look at the results, on
the VQA v2 and NExT-QA, our model respectively exceeds
the rehearsal methods (ER [7], DER [3], and VS [45])
from 1.78% to 4.74% and 1.72% to 6.1% on the AP, and
achieves 2.03% to 4.83% and 1.45% to 2.12% reduction in
terms of the Forget. The results demonstrate the superiority
of our proposed representation learning method in VQA
continual learning. (2) Through the comparison between
the regularization methods (EWC [22], MAS [1]) and the
rehearsal methods, we observe that the former lags signifi-
cantly behind the latter on the AP. This may be because that
in the regularization methods, the regularization constraint
that designed for reducing forgetting limits the model’s abil-
ity to adapt to new tasks. (3) Compared with the offline
training model JOINT, the models trained in the VQACL
setting largely underperform on both VQA v2 and NExT-
QA. This indicates that catastrophic forgetting is prevalent
in VQA continual learning, demonstrating the difficulty of
our VQACL. (4) Among the compared rehearsal methods,
ER [7] achieves the best performance in most cases. This is
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Table 2. Fine-grained VQA performance AP (%) on the Novel and Seen skill-concept compositions of VQA v2 and NExT-QA. +∆ denotes
the improvement of our method over the baseline ER [7].

Dataset Method
Group-1 Group-2 Group-3 Group-4 Group-5 Avg

Novel Seen Novel Seen Novel Seen Novel Seen Novel Seen Novel Seen

VQA v2

DER [3] 30.80 29.89 32.19 33.24 34.88 34.08 29.60 30.90 30.14 32.56 31.52 32.13
VS [45] 33.35 33.87 33.18 32.21 34.50 33.84 31.29 33.98 32.46 33.87 32.96 33.55
ER [7] 34.52 37.03 33.40 35.55 34.79 34.20 33.86 35.02 32.34 35.91 33.78 35.54
Ours 36.12 37.99 35.39 36.92 36.26 35.16 34.85 35.64 34.36 36.28 35.40 36.40
+∆ 1.60 0.96 1.99 1.37 1.47 0.96 0.99 0.62 2.02 0.37 1.62 0.86

NExT-QA

DER [3] 27.56 26.09 26.14 24.54 23.53 26.43 9.30 9.79 21.26 23.74 21.56 21.38
VS [45] 31.42 30.88 29.17 31.26 25.23 26.10 30.01 29.10 31.54 31.79 29.47 29.83
ER [7] 31.86 34.51 32.36 35.08 29.50 34.30 33.57 33.30 33.71 32.91 32.20 34.02
Ours 35.50 35.54 33.97 35.91 31.34 35.62 34.08 33.57 36.71 33.46 34.22 34.82
+∆ 3.64 1.03 1.61 0.83 1.84 1.32 0.51 0.27 3.00 0.55 2.02 0.80

in contrast to the results in continual learning on unimodal
tasks, where DER [3] and VS [45] achieve state-of-the-
art results. We think it may be caused by the discrepancy
between different continual learning settings.

Performance Analysis of Novel Composition Testing.
The blue parts in Table 1 show the comparison results in
the novel composition testing, which can measure mod-
els’ skill-concept compositionality for cognitive reasoning.
From the results, we can see that our method obtains the
best generalization performance, and outperforms the other
continual learning models with clear improvements on both
VQA v2 (i.e., 1.62% to 22.57% for AP) and NExT-QA
(i.e., 2.02% to 22.31% for AP), which demonstrates the
effectiveness of our proposed method.

We illustrate more fine-grained results in Table 2.
Specifically, the results shown in each column mean that the
corresponding object group is removed during training. For
example, Group-1 represents that the visual-driven subtask
with object group G1 is omitted. With such training setting,
we conduct two types of testing: the Novel illustrated in
Table 2 represents evaluating the model on novel skill-G1

compositions, and the Seen denotes the testing on seen skill-
G2,3,4,5 combinations. The average performance across all
groups is provided in the last column. From Table 2, we
can find that our approach consistently achieves the highest
performance for both novel compositions and seen ones.
Besides, to better understand the improvement compared
with existing methods, we illustrate the improvement over
the state-of-the-art method ER [7] in the last line (+∆) in
Table 2. From the results, we can observe that the improve-
ment on Novel is much higher than that on Seen, which
indicates that our method can really enhance the model’s
compositional generalizability. It may benefit from the
learned discriminative sample-specific feature and general-
izable sample-invariant feature. In addition, by comparing
the results in Novel and Seen, we find that most continual
learning methods obtain lower performance on Novel than
Seen, which implies that compositional generalization is

quite challenging for VQA models, and establishing a novel
composition testing is rewarding.

5.3. Ablation Study and Analysis
Effect of Each Component. To investigate the effective-
ness of each component in our method, we design sev-
eral ablated versions and the results are shown in Table 3.
Specifically, in Line 1 and Line 2, the variant Ours w/o SS
and Ours w/o SI respectively delete the SS feature (i.e.,
QSS , V SS) and SI feature (i.e., QSI , V SI ) in Eq. (5). The
comparison between Ours and these two models suggests
that both the SS and SI feature can effectively boost the
VQA continual learning and improve the model’s gener-
alization ability. Besides, we find that Ours w/o SS gets
a quite low performance, which is an unsurprising result
because the SI feature only contains category information
and lacks detailed contents of the input. In addition, in Line
3, the variant Ours QV SI replaces the QSI and V SI in
Ours with a single SI feature that fuses the visual and textual
input. Compared with Ours, the Ours QV SI obtains a clear
performance decrease, which indicates that disentangling
the skill and concept is critical for VQA, especially for the
model’s compositionality. Finally, our full model shown in
the last line outperforms all the variants, demonstrating the
effectiveness of our representation learning approach.
Sensitive Analysis on Memory Size. Fig. 4 illustrates
the model performance on standard and novel composition
testing with different memory sizes. From Fig. 4, we can
observe that our method always achieves the best perfor-

Table 3. Ablation study in both standard testing (Standard) and
novel composition testing of Group-1 (Composition).

Method
Standard Composition

AP Forget AP Forget

Ours w/o SS 15.07 11.79 15.49 13.23
Ours w/o SI 30.55 4.91 31.86 7.67
Ours QV SI 31.88 3.06 32.35 9.47

Ours 32.27 3.00 35.50 4.45
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Figure 4. Sensitivity analysis on the memory size in both standard and novel composition testing (Group-1) of VQA v2 and NExT-QA.
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mance, regardless of how many examples are stored. The
result indicates the efficacy of the proposed method for
continual VQA. Besides, when the memory is larger, the
performance of all continual learning methods can obtain
clear improvements in most cases, suggesting that more re-
played data helps mitigate the forgetting problem. However,
as shown in Fig. 4(a) and Fig. 4(c), the performance of
VS [45] and DER [3] tends to decrease with larger memory
sizes. We think it may be due to that the VS and DER over-
fit to the data stored in the memory.
Impact of hyperparameter. We investigate the influence
of two important parameters involved in our method, i.e.,
α and β in Eq. (3). Specifically, we train models with
α, β ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, and the results are depicted
in Fig. 5. From the figure, considering the model’s perfor-
mance in both standard and novel composition testing, we
find that α = 0.5 and β = 0.3 works the best. Therefore,
we set α = 0.5 and β = 0.3 in our experiments.
Effect of Task Order. Fig. 6 provides the performance of
the Vanilla model with three different task orders, which
respectively adopt Causal Why (CW), Descriptive Location
(DL), and Temporal Next (TN) as the first linguistic-driven
task. Each line in Fig. 6 illustrates the AP on the tasks

observed so far. From the figure, we find that the task order
causes the model performance to vary from 0.42% to 2.19%
in terms of the AP for the last task, which suggests that
the impact of the order is not significant and our VQACL
setting is robust to the task order. Besides, among the
three sequences, the one beginning with TN achieves the
worst final performance. This may be because that the
task about temporal relationships requires a higher-order
reasoning ability.

6. Conclusion
In this paper, we propose and analyze VQACL, a gener-

ative VQA continual learning setting. To meet real-world
requirements, our VQACL constructs a dual-level task se-
quence where the vision and linguistic input are nested to
cope with continuous multimodal data, and builds a novel
composition test to evaluate modes’ compositionality. Be-
sides, we design a novel rehearsal representation learning
method for the VQACL by extracting sample-specific and
sample-invariant features, which can effectively deal with
the forgetting problem and is beneficial to improve the com-
position ability of the model. In experiments, we evalu-
ate five well-known continual learning approaches in our
VQACL setting and provide extensive analysis. The com-
parison between these methods and our approach demon-
strates the effectiveness and generalizability of the proposed
model. In the future, we hope the VQACL would open a
new avenue for the community and contribute to the devel-
opment of new generative VQA models. We also plan to
apply our method to relevant tasks, such as visual dialog
and image captioning.
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