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Figure 1. Given a wide-angle image (as shown in (a) e.g.), this paper proposes a new image rectification method which automatically
corrects evident wide-angle lens distortions (e.g. curved ceiling lines, and skewed face), and obtains a rectified image (e.g. (h)). This is
achieved by deep-learning based image content analysis ((e)), as well as content-aware conformal mapping. Our method effectively reduces
wide-angle distortions, and at the same time maintains the original ultra-wide field of view, without sacrificing salient image contents. For
comparison, we also show results by previous methods in (b,c,d,f,g). Our method achieves the best results. For more comparisons please
see the paper as well as the supplemental material. Better viewed on screen with zooming in.

Abstract

Despite the proliferation of ultra wide-angle lenses on
smartphone cameras, such lenses often come with severe
image distortion (e.g. curved linear structure, unnaturally
skewed faces). Most existing rectification methods adopt a
global warping transformation to undistort the input wide-
angle image, yet their performances are not entirely satis-
factory, leaving many unwanted residue distortions uncor-
rected or at the sacrifice of the intended wide FoV (field-
of-view). This paper proposes a new method to tackle these
challenges. Specifically, we derive a locally-adaptive polar-
domain conformal mapping to rectify a wide-angle image.
Parameters of the mapping are found automatically by an-
alyzing image contents via deep neural networks. Experi-
ments on a large number of photos have confirmed the su-
perior performance of the proposed method compared with
all available previous methods.

1. Introduction

It has become trendy to equip modern smartphone cam-
eras with ultra wide-angle lenses, to allow the user to shoot
photographs of natural landscapes or buildings with a wide
field-of-view (FoV), or capture a group-selfie in a tight
space. This trend can be easily seen on high-end phones
for example iPhone 13 which features a rear camera with
120◦ FoV, or Samsung S21 that is 123◦.

While such lenses provide the user with an immersive vi-
sual experience, they also induce apparent and unavoidable
image distortions, resulting in e.g. curved straight lines or
sheared human faces. Traditional methods for lens distor-
tion removal solve this problem by finding a global para-
metric geometric transformation to warp the input image.
Their performances are however far from satisfactory, with
either obvious residual distortions on linear structure or lo-
cal shapes, or missing image contents at the image bound-
aries due to a much compromised field of view.

In contrast, human eyes, while enjoying a wide field of
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view (about 120◦ in monocular case [24]), are capable of
perceiving a wide environment without obvious distortions.
In our mind’s eye, lines appear to be straight, and objects
preserve their natural shapes. Our brain seems to be able
to intelligently “undistort” different parts of the view-field
by applying different content-aware transformations. More-
over, it is also recognized that human vision is most sensi-
tive to global linear structures as well as perceptually salient
regions in a scene. Given that distortions are unavoidable
when one projects a view-sphere onto a flat image plane, our
goal of this paper is not to eliminate all distortions (which
is impossible), but to minimize those most visually salient
distortions such that they become unnoticeable or tolerable.

To this end, this paper develops a content-aware image
projection method which focuses on correcting the most
salient distortions (e.g. visual features), while preserving
local shapes in the scene as much as possible. Specifically,
our method searches for an optimal content-aware confor-
mal mapping which warps a wide-angle input image to a
rectified one, in a locally adaptive manner by respecting lo-
cal image contents. This way, it not only eliminates most
noticeable distortions in the scene, but also retains the wide
FoV, offering the user the intended immersive experience
endowed by the wide-angle lens.

Specifically, key contributions of the paper are:

• An automatic content-aware wide-angle image rec-
tification method which preserves both local shapes
and global structures by analyzing image contents via
deep-learning.

• A new formulation for Least-Squares Conformal Map-
ping (LSCM) in the polar domain to achieve locally
adaptive shape-preserving transformation.

• A new optimization procedure which incorporates
multiple energy terms, each encodes a different prior
on local shapes, linear structures, smoothness and im-
age boundaries, respectively.

Our method strikes an excellent balance between local-
shape-preserving (e.g., “circles remain circular”) and global
linear-structure-preserving (e.g., “straight lines must be
straight”), making the rectified images look both real, natu-
ral, and visually pleasing, while at the same time enjoying
the immersive wide-angle visual experience by retaining
the original wide field of view. Our method evidently out-
performs all previous methods for wide-angle rectification,
including both global warp based methods (e.g. perspec-
tive correction, Mercator projection), and local optimization
method [4] that alters the orientation of local shapes, and
method that is restricted to portrait photo only [22]. Our
method is fully automatic, without the need of human in-
tervention. It also runs fast, taking about 1-2 seconds per
image, and can be easily optimized on a mobile-GPU to

reach sub-second processing time, sufficient for real-world
photography applications.

2. Related Work

This section gives a brief review of existing methods for
wide-angle image rectification task. Although the task is
closely related to radial lens calibration (e.g., fisheye undis-
tortion [6,14,25,26] or learning-based methods [15,27,28]),
their purposes and objectives are different. Radial lens cal-
ibration aims to recover a perspectively correct image from
a radially distorted one. The resulted images still contain
obvious distortions (i.e., foreshortening) which twist shapes
in the scene, especially for wide-angle lens. Moreover, if
image cropping is applied to the result in order to obtain
a rectangular image boundary, there will be significant re-
duction in the field of view. In contrast, wide-angle image
rectification, as studied in this paper, aims to remove (or
minimize) prominent distortions including but not limited
to perspective foreshortening, while at the same time retain-
ing the original wide field of view.

Existing methods for wide-angle image rectification can
be roughly classified in two groups: (i) global rectification,
and (ii) locally adaptive rectification.

Global Rectification. Global rectification applies a sin-
gle global geometric mapping to the input image aiming to
undo the lens distortion. Examples of global methods in-
clude perspective projection, stereographic map, Mercator
map, and Pannini projection [21]. These global methods,
while are able to remove some degree of distortions, often
suffer from various residual distortions and at the loss of
FoV. Many unwanted distortions remain un-corrected, as il-
lustrated in Fig. 1. Taking the perspective rectification for
example, while a perspective mapping always keeps straight
lines straight, it unnaturally stretches shapes in the scene
especially at the peripheral of an image [19]. For camera
lenses whose FoV exceed 60◦, stereographic, Mercator, or
Pannini projections [21, 23] are popular choices to rectify
distortion, as shown in Fig. 1. These projections only par-
tially preserve shapes along certain directions, but cause
stretches in other directions. Stereographic projection, as
a special conformal mapping, preserves circular shapes but
often bends long straight lines in the scene.

Local Adaptive Rectification. In a classic work, Car-
roll et al. [4] applied local optimization to correct curved
linear structures while preserving the natural shape of ob-
jects. However, visual contents on the boundary are miss-
ing. More importantly, it alters orientations of local shape
(e.g., the girl’s head in Fig. 1(h)), which requires much user
interaction and fixed line-orientation constraints. Given the
obvious radial symmetry of camera distortion, the confor-
mal mapping based on Cartesian coordinates and axisym-
metric Mercator projection, we believe, is the reason. It
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also leads their method to stretch scene at poles and even
destroy linear structure. In contrast, the proposed auto-
matic method based on polar coordinates rectifies the im-
age visually pleasing. Recently, Shih et al. [22] (at Google
AI) rectify distortions on facial regions starting from a per-
spective image (Fig. 1(d)). However, noticeable perspec-
tive distortions on other parts of the image remain, and be-
come more evident with wider FoV, as shown in Fig. 1(e).
As such, their method fails on ultra wide-angle lens (FoV
above 120◦), whereas the proposed method achieves a good
balance among different distortions. Locally adaptive pro-
jection idea has also been used in other tasks of image
manipulation, for example for content-aware image resiz-
ing [3, 5, 16] and panorama squaring [7, 13, 29]. The goal is
to manipulate the image while keeping those perceptually
salient image contents as intact as possible. With simple
modification, the framework of our method can be adapted
to solve those tasks as well.

3. Conformal Mapping in Polar Domain
To solve the wide-angle rectification problem, we op-

timize a geometric transformation which warps the image
such that its visually salient features are undistorted, while
keeping its wide field of view. In this paper, we employ
Conformal Mapping as the particular form of the geomet-
ric transformation. Mathematically, a conformal mapping
is defined as a holomorphic function between two domains
that preserves both angles and local shapes.

Conformal maps are typically formulated in the Carte-
sian domain. As discussed in Sec. 2, Carroll’s method
based on Cartesian domain alters the shape-orientations,
stretches scene at poles, and destroy linear structure, (also
see in Fig. 7). However, due to the obvious radial symmetry
of camera lenses (also see in Fig. 3), it is more convenient
to derive wide-angle rectification methods in the polar do-
main. Polar domain is a two dimensional coordinates in
which each position is determined by an angle and a ra-
dial distance with respect to a center. Formally, the polar
transform between the polar domain and Cartesian domain
(image space (u, v)) is defined [9, 31] in complex form:

U = u+ iv = ρ(θ) cosϕ+ iρ(θ) sinϕ, (1)

where ρ(θ) and ϕ indicate the radial and angular coordi-
nates, θ is the angle between the principal axis and the in-
coming ray for specialization of radially symmetry projec-
tions. X = θ+ iϕ is the complex form of polar coordinates.

3.1. Polar-form Cauchy-Riemann Condition

To take advantages of polar domain in our optimization,
we first derive a polar-form conformal mapping. According
to Eq. (1) and [2], U could be considered as a mapping from
a polar domain (θ, ϕ) to a image space, and U is conformal
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Figure 2. By a polar-form conformal mapping N , angles and
shapes are locally preserved in the polar gradient directions.
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Figure 3. This figure (top row) shows the polar meshes before and
after our optimization. The bottom row visualizes the conformali-
ties (i.e. shape-preserve-ness) before and after the optimization.

if it satisfies Cauchy-Riemann condition in polar domain,

N (θ, ϕ)
∂U
∂θ

=
∂U
∂ϕ

, (2)

where N (θ, ϕ) represents the orthogonal preservation of
polar gradient directions under mapping U in the complex
form, as shown in Fig. 2.

Stereographic and Mercator projections are popular con-
formal maps for local shape preservation [21, 31]. Com-
pared with axisymmetric Mercator projection used in [4],
stereographic projection is radially symmetric and more
suitable for polar parameterization [9]. We then obtain its
polar-form Cauchy-Riemann condition:

∂U
∂ϕ

− i sin θ
∂U
∂θ

= 0. (3)

3.2. Optimal Mesh Placement

Since Eq. (3) cannot be strictly enforced in general, we
first formulate the task as an optimization defined on the
polar mesh. Vertices on the polar mesh are uniformly sam-
pled in radial and angular directions as shown in Fig. 3(a).
We then parameterize the polar mesh M as {um,n} in the
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(a) Input (b) Visual features (c) Optimized mesh (d) Output

Figure 4. Pipeline: (a) given an input wide-angle image with obvious wide-angle distortions; (b) we first extract salient visual features
including curved lines and prominent regions, using deep neural nets (see Sec. 4.1); (c) we then optimize the polar mesh by minimizing the
energy function defined in Sec. 4.2; (d) Finally, our obtain our rectification result, where most lines are rectified and local shapes preserved,
and the original wide field of view (given by the rectangular image frame) maintained.

image plane. um,n=(um,n, vm,n) is the Cartesian coordi-
nates of the polar vertex, as per Eq. (1) and polar coordi-
nates (θm,n, ϕm,n), where m and n denote the indices of
polar vertices in the radial and angular directions, respec-
tively. Fig. 3 shows an example of mesh placement before
and after our optimization.

3.3. Least-Squares Polar Conformal Map

To introduce Eq. (3) to polar mesh placement, we after-
ward derive a least-squares approximation to the Cauchy-
Riemann equation in the polar domain. This can be viewed
as a natural extension of the LSCM (least-squares confor-
mal mapping) as reported in [12]. Strictly speaking, an
LSCM is not a mathematically valid conformal mapping,
but an approximate, or quasi-conformal mapping.

Within each of the quad-cells in the polar domain, angle-
preserving Eq. (3) is enforced approximately in the least-
squares sense. Suppose that the polar cell is small enough,
we discretize the domain such that the conformal mapping
is locally linear. Denote Um,n as a vertex of a polar cell,
Um+1,n,Um,n+1 denote the vertices in the polar gradient
directions, as shown in Fig. 2, we derive a linear transfor-
mation on the polar cell according to Eq. (3). Conformality
criterion C in the least-squares sense is therefore given as:

C(Um,n)=
∂U
∂ϕ

−i sin θ ∂U
∂θ

=

 1− i sin θ
i sin θ
−1

⊤ Um,n

Um+1,n

Um,n+1

 . (4)

Fig. 3 illustrates an example of the computed conformal-
ity before and after the optimization. Warmer (red) colors
indicate higher distortions. It can be seen that, before opti-
mization, the violations of conformality increase radially as
they get closer to image boundaries. In contrast, after opti-
mization those values are significantly reduced, suggesting
more local shapes are preserved.

4. Automatic Content-Aware Rectification
In a nutshell, our goal aims to search for an optimal

content-aware approximate conformal mapping on a polar

mesh, to correct a wide-angle image so that global lines be-
come more straight and local shapes are kept. The overall
pipeline is illustrated in Fig. 4.

4.1. Deep Image Content Analysis

To develop a fully-automatic content-aware rectification
method, the first stage of our pipeline is automated image
contents analysis. By “image content”, in this paper, we
only attend to global (long) linear structures (e.g. vertical
pillars, ceilings, window frames) and visually salient re-
gions (e.g. foreground objects). This is because human eyes
pay more attention to these salient features when observing
a wide field of view, as shown in Fig. 5. Other visual fea-
tures can also be handled similarly by our framework.

For this purpose, we simply employ existing state-of-
the-art deep neural networks with modification. Specifi-
cally, for linear structure detection, we adopt and modify
the Wireframe-Net proposed in [8]. Their network is based
on Pyramid Residual Modules and Stacked Hourglass net-
work [18]. However, [8] is designed for detecting straight
lines only, which is unfit for our task at hand. Therefore,
we present a curvilinear line perception network (CLP-Net)
for wide-angle images. The curvilinear heat map tailored

for our task is defined as h(u) =
{

S(d) u ∈ l
0 u /∈ l

, where

S(d) = (1 + e−d/(4D))−1 refers to a radial sigmoid func-
tion, d is the distance from the line to the image center. D is
the half image diagonal distance. Using the radial sigmoid
function, the heat map implicitly contains the radial distor-
tion strength which aids the perception of curved lines far-
ther away from the image center. We simulate a wide-angle
distorted version of the wireframe dataset used in [8] un-
der different lens models and re-train the network to detect
curved lines.

For automatic salient region detection, we directly ap-
ply a pre-trained model using a boundary-aware salient ob-
ject detection network (BAS-Net) proposed by Qin et al.
[20]. We then normalize the salient weights wSa in range
[0, 1] before adding them to local weights to improve shape
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Figure 5. Image content analysis. The top, and bottom rows are the raw inputs, and the detected salient regions by BAS-Net (white) as
well as curved line segments by CLP-Net (blue). From left to right, the fields of view increase from 100◦ to fisheye 180◦.

preservation in those salient regions. It is worth noting that
other algorithms for curved line detection and salient region
segmentation may also be used. Previously we tested the
well-known LSD algorithm for line segment detection, but
found it only detects small and short segments hence it is
unfit for our purpose.

4.2. Energy Formulation

We then design an energy function to search for the
optimal shape-preserving LSCM transformation, satisfy-
ing a set of additional structure-preserving conditions (i.e.,
straight lines, and the rectangular FoV boundaries).

Local Shape Preserving. Our shape-preserving term EC

encourages each polar cell to undergo a linear LSCM trans-
formation, as discussed in Sec. 3.3. It is defined as

EC =
∑

Um,n∈M

∥∥∥ωC
m,nC(Um,n)

∥∥∥2

, (5)

where C is the conformality criterion (Eq. (4)). ωC
m,n is the

spatially-varying weight of each polar vertex, which is ini-
tialized as 1. Image content analysis allows us to adaptively
minimize the violation of conformality in places where it is
most likely to be noticed. We add the normalized salient
weights to ωC

m,n to strengthen shape preservation on the no-
ticeable regions. To avoid excessive distortion, we also ap-
ply the radial sigmoid function S(d)=(1 + e−d/(4D))−1 to
weights near the endpoints of curved lines, where d is the
distance from line segments on the polar cell to the image
center.

Line Preserving. Our line-preserving energy term is in-
spired by previous works [4,26], but is modified to fit for the
polar domain. We also discard the orientation-preserving
term in [26], for it is already taken care of by the LSCM
(see [12]). We subdivide all the curved lines into multiple
line segments, one in each of the polar cells. To propagate
the line direction between cells, we require that all the line

segments belonging to the detected curve share the same or
similar direction. To speed up the optimization, we only
evaluate the line-preserving term at the midpoint of each
segment.

Let ul
k denote the midpoint in the k-th cell-line of l. Its

position is defined by bilinear interpolation of its four neigh-
boring vertices in polar form, i.e. ul

k =aum,n+bum+1,n+
cum,n+1+dum+1,n+1. These bilinear coefficients are con-
stant during optimization. We also define the rectified ori-
entation unit vector e(ul

s,u
l
e) of l using the difference vec-

tor of its two endpoints ul
s and ul

e. Consequently, for l, the
line-preserving term El,n is defined as,

El,n =
∑
k

∥∥∥e(ul
s,u

l
e)

⊤ul
k

∥∥∥2

2
, (6)

where k indexes the k-th line segment. The total line-
preserving energy EL is the sum of terms {El,n},

EL =
∑
n

ωl,nEl,n (7)

where n indexes detected curved lines. Considering wide-
angle images have more severe deformation on the bound-
ary, ωl,n is defined to increase the straightness of the lines
close to the boundary. Based on Sec. 4.1, we compute
ωl,n=S(d) by defining distances between the image center
and the line connecting two endpoints ul

s and ul
e.

Unlike the method proposed by Carroll et al. [4], there is
no need to manually mark the curved lines with fixed orien-
tations in our formulation. It is also helpful to use the end-
points in Eq. (6) instead of orientation, since the locations
of the lines are optimized in the process. Besides, they only
use the orientation vector from one endpoint to optimize the
straight line. The points neighboring the endpoint are more
sensitive compared to other sides during optimization.

Smoothness. The line-preserving term and conformality
may cause “seams” between the neighboring transforma-
tions, especially on visual features. To remedy this, we also
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add a smoothness energy term which acts as the regular-
ization term to ensure the obtained geometric warping is
smooth everywhere on the image plane.

We directly minimize a second-order energy term, given
by the squared norm of the Hessian, as opposed to [4] that
enforces a second-order condition on the warping function:

ES =

∥∥∥∥∂2U
∂θ2

∥∥∥∥2

2

+

∥∥∥∥∂2U
∂ϕ2

∥∥∥∥2

2

+ 2

∥∥∥∥ ∂2U
∂θ∂ϕ

∥∥∥∥2

2

. (8)

Eq. (8) is then discretized via finite difference approxima-
tions to the second derivatives and defined as a smoothness
energy term ES based on polar mesh,

ES=
∑∥∥∥wC

m,n (um+1,n−2um,n+um−1,n)
∥∥∥2

2

+
∑∥∥∥wC

m,n (um,n+1−2um,n+um,n−1)
∥∥∥2

2

+2
∑∥∥∥wC

m,n (um+1,n+1−um,n+1−um+1,n+um,n)
∥∥∥2

2
,

(9)

where wC
m,n is the spatially-varying weight that equals to

shape-preserving term.

Boundary Preserving. In order to retain the rectangular
field of view, we apply force to points on the four sides of
the image boundary. Similar to the term used for line pre-
serving, we treat the four boundaries as four straight lines,
and interpolate the midpoints for each line segment via bi-
linear interpolation in the polar domain. ub

k = (ub
k, v

b
k)

denotes the k-th midpoint of a boundary divided by polar
mesh. The boundary preserving energy term EB is written
as:

EB=
∑

ub
k
∈L

∥∥∥ub
k

∥∥∥2

2
+
∑

ub
k
∈R

∥∥∥ub
k −W

∥∥∥2

2
+
∑

ub
k
∈T

∥∥∥vbk∥∥∥2

2
+

∑
ub

k
∈B

∥∥∥vbk −H
∥∥∥2

2
,

(10)
where L/R/T/B refer to the left/right/top/bottom image
boundaries, and W/H are the width/height of the target
frame.

4.3. Optimization Procedure

The total energy function is the weighted combination of
energy terms from Eqs (5), (7), (9) and (10),

E = λCEC + λLEL + λSES + λBEB . (11)

In experiments, we find that line preservation (λL) is more
important than shape preservation (λC) because the linear
structures are distorted severely compared with local shapes
in a wide-angle image. Furthermore, the boundary preser-
vation weight λB is sensitive: a higher value leads to over-
stretched areas near the boundary, whereas a lower value
results in an irregular frame. Empirically, we fix λC , λL,
λS and λB to 1, 100, 2 and 10 throughout the paper. Sup-
plemental material contains more details and ablation study.

To speedup the optimization, we initialize vertices by ap-
plying stereographic projection, and ignore the curved lines

Table 1. Quantitative evaluations of our method and baselines.

Carroll’s Shih’s Ours Oursw.o.EB

StraightAcc↑ 0.9743 0.9907 0.9864 0.9872
ShapeAcc↑ 0.9407 0.8771 0.9683 0.9736
ConformalAcc↑ 0.7639 0.5794 0.8259 0.8458

Oursw.o.EB
indicates our methods without boundary preservation.

near the projection center. Furthermore, distortions of short
line segments are less perceivable, so only line segments
longer than a pre-defined length are used.

5. Experiments
5.1. Implementation Details

We apply Levenberg-Marquardt optimizer [11, 17] to
minimize the energy in Eq. (11). Our code is written in C++
with Ceres solver [1], on a standard laptop (single-core).
We achieve good convergence usually after 4-10 iterations.
Since the core computation involves only constrained Least
squares apart from the feed-forward networks, the compu-
tation is fast by our un-optimized CPU code. We compare
the proposed method with both global methods and local
methods. For methods proposed by Carroll et al. [4] and
Shih et al. [22], we set the mesh resolutions at 192 × 122
and 201 × 105, resp., while ours is 100 × 180 in all tests.
The implement details could be found in the supplemental
material. Salient visual features extracted by deep neural
networks are fed into the optimization. Note that [22] uses
perspectively-corrected images as its input, in which lines
are already corrected, but at the cost of losing FoV (after
cropping) and amplification of perspective distortion.

5.2. Quantitative Evaluation

To demonstrate the performance of our method, we con-
duct quantitative comparisons with other methods, as shown
in Tab. 1. We introduce three measures, i.e. StraightAcc,
ShapeAcc, and ConformalAcc, for evaluation. Specifi-
cally, according to the line-preserving term of Eq. (7) and
straightness in [10], we define the straight line measure
as, StraightAcc=min

({
1

1+∥e(ul
s,u

l
e)

⊤ul
k∥2

}
k

)
, which is

computed from the endpoints ul
s,u

l
e of marked lines and

the midpoint ul
k of k-th line segment. StraightAcc is close

to 1 if the distortion of the line segment is low.
For shape preservation, ShapeAcc [30] is used. Con-

sidering ShapeAcc only works on portrait regions, Confor-
malAcc of salient regions based on the conformality Eq. (4)
is also defined,

ConformalAcc=
min ({∥um+1,n + um,n+1 − 2um,n∥2})
max ({∥um+1,n + um,n+1 − 2um,n∥2})

. (12)

Being closer to 1 means less distortion on the local shape
around the salient region. For fair comparisons, all methods
use the same Cartesian meshes for evaluation. As shown in
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Figure 6. Example results of our rectification compared with global projection methods and local methods, by Carroll et al. [4] and Shih
et al. [22]. FoVs of each input are 149◦ and 117◦. Compared with state-of-the-art methods, our method has effectively removed the
wide-angle distortions while at the same time maintaining an ultra-wide field of view, without sacrificing salient image contents.

Tab. 1, our method achieves a decent balance between local
shapes (ShapeAcc and ConformalAcc) and linear structures
(StraightAcc). Meanwhile, our method obviously outper-
forms baselines in terms of ShapeAcc and ConformalAcc.
And there are only slight differences in StraightAcc be-
tween ours and baselines, especially Shih’s method. Also,
with the introduction of boundary preservation, the evalua-
tions of our method slightly decrease.

5.3. Qualitative Evaluation

We demonstrate the performance of the proposed
method on test examples. Additional results and ablation
studies are included in the supplemental material. Our ex-
periments confirm the superior performance of the proposed
method on shape, orientation, line and boundary preserving,
compared with all previous state-of-the-arts.

Fig. 6 illustrates the comparison with global projections
and local methods. Global projections, while are able to
reduce certain type of distortions, often leave other resid-

ual distortions. In particular, wide FoV is well beyond the
typical limit for perspective images, causing severe stretch-
ing. Note Shih’s method uses perspective images as inputs
to correct facial regions only. We can see that wide FoVs
lead to the visual disharmony between corrected portraits
and perspective regions (e.g. body in first scene or cube in
second scene) and suffer severe loss of image content. It
also bends the linear structures near local shapes, such as
guardrail behind the portraits. Carroll’s method preserves
local shapes and linear structures, but alters the field of view
as well as orientation (e.g. the heads in first scene). Com-
pared with them, our method achieves a decent balance be-
tween distortion-minimization and FoV-retaining.

To demonstrate the benefits of our polar-form LSCM, we
also perform our method without the boundary-preserving
term, as shown in Fig. 7. It could be considered as the abla-
tion study of conformal mapping in polar and Cartesian do-
mains. Specifically, Carroll’s approach stretches the scene
heavily near the poles, even destroying the line preserva-
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(a) Input (b) Carroll’s (c) Ours w/o boundary preservation

Figure 7. The comparison between our method without boundary-preserving term and the method proposed by Carroll et al. [4]. The only
difference of two methods is the conformal constraints and the corresponding smoothness in polar and Cartesian domains.

tion. For example, the white floor of the second scene in
Fig. 7 become crooked. The reason for this phenomenon
is that the conformal map based on Mercator projection is
an axisymmetric projection. Interestingly, it also results in
the deflection of the orientation of local objects in Carroll’s
method, such as the portraits and window frames in Fig. 7.
That is why the original Carroll’s method requires manu-
ally fixing some lines’ orientation. In contrast, our results
are free from those residual distortions automatically, giv-
ing rise to natural looking and pleasing images. Since cam-
era distortions are consensus to be radial symmetry, polar
coordinates are indeed a better fit for parameterizing them,
as verified by comparisons above.

5.4. User Study

Because our ultimate goal is to create wide-angle visual
experiences without noticeable and irritating distortions for
a human user, we recruit 60 participants to conduct the user
study. Among them, 5 are technical artists, 10 are graduate
students working in computer vision and graphics, 15 are
research scientists, and the rest are volunteers from the gen-
eral public. We collect 150 wide-angle images from Flickr,
from 100◦ to 180◦. These images contain both local ob-
jects and global linear structures. For each participant, we
randomly sample 30 images, and compare the results ob-
tained by our method, and by another method side-by-side,
and report his/her preferred result. The order of display-
ing the pair is entirely random and totally blind to the par-
ticipant. Results of our User Study are given in the table
below, which confirms that our method consistently outper-
forms all competing methods by a large margin. (We did not
test [22] because it only works on perspectively-corrected
images as input and behaves poorly for Larger FoV).

Table 2. User Preference Study (Ours Versus Others)

Method Perspective Mercator Stereographic Carroll

Ours → 95.2% 91.6% 86.5% 74.3%

6. Closing Remarks

Our method has a few limitations in the following as-
pects, and showcases could be found in the supplemen-
tal material. 1). the visual quality of the rectified im-
ages is influenced by image content analysis, especially
the curved line detection. 2). there is a trade-off between
shape-preserving and line-bending. When a curved line cuts
across one local shape (e.g. face), the shape may be bent,
because the weight applied to line-energy is heavier.

In this paper, we combine the advantages of traditional
geometric vision and modern learning-based methods for
wide-angle image rectification. Specifically, deep networks
are used to detect scene contents (e.g. curved line segments
and salient regions) which are crucial for structural anal-
ysis but hard to optimize. To perform the locally adapt-
able shape-preserving transformation, a least-squares polar
conformal mapping is developed. A set of energy terms
is introduced to leverage geometry knowledge (e.g. shape-
preserving conformal map and line-preserving constraint)
to achieve content-aware image rectification. Experiments
on a large number of images confirm the superiority of the
proposed method.
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