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Abstract

Recent studies on semi-supervised semantic segmenta-
tion (SSS) have seen fast progress. Despite their promising
performance, current state-of-the-art methods tend to in-
creasingly complex designs at the cost of introducing more
network components and additional training procedures.
Differently, in this work, we follow a standard teacher-
student framework and propose AugSeg, a simple and clean
approach that focuses mainly on data perturbations to boost
the SSS performance. We argue that various data aug-
mentations should be adjusted to better adapt to the semi-
supervised scenarios instead of directly applying these tech-
niques from supervised learning. Specifically, we adopt a
simplified intensity-based augmentation that selects a ran-
dom number of data transformations with uniformly sam-
pling distortion strengths from a continuous space. Based
on the estimated confidence of the model on different un-
labeled samples, we also randomly inject labelled infor-
mation to augment the unlabeled samples in an adaptive
manner. Without bells and whistles, our simple AugSeg can
readily achieve new state-of-the-art performance on SSS
benchmarks under different partition protocols1.

1. Introduction
Supervised semantic segmentation studies [5, 6, 37, 53]

have recently achieved tremendous progress, but their suc-
cess depends closely on large datasets with high-quality
pixel-level annotations. Delicate and dense pixel-level la-
belling is costly and time-consuming, which becomes a sig-
nificant bottleneck in practical applications with limited la-
belled data. To this end, semi-supervised semantic segmen-
tation (SSS) [27, 39] has been proposed to train models on
less labelled but larger amounts of unlabeled data.

Consistency regularization [42, 43], the currently domi-
nant fundamental SSS method, effectively incorporates the

*Corresponding authors (luping.zhou@sydney.edu.au, wangjing-
dong@baidu.com). This work is supported by Australian Research
Council (ARC DP200103223).

1Code and logs: https://github.com/zhenzhao/AugSeg.
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Figure 1. Comparison between current SOTAs and our simple
AugSeg on Pascal VOC 2012, using R101 as the encoder.

training on unlabeled data into standard supervised learn-
ing [16, 44]. It relies on the label-preserving data or model
perturbations to produce the prediction disagreement on
the same inputs, such that unlabeled samples can be lever-
aged to train models even if their labeled information is un-
known. Some studies in [17, 29, 50, 51] explored different
data augmentations to benefit the SSS training while works
in [7,16,46] mainly focused on various model perturbations
to obtain competitive SSS performance. On top of these
fundamental designs, recent state-of-the-art (SOTA) meth-
ods aim to integrate extra auxiliary tasks [1,47,56,57], e.g.,
advanced contrastive learning techniques, and more train-
able modules [28, 30, 36, 38], e.g. multiple ensemble mod-
els and additional correcting networks, to further improve
the SSS performance. Despite their promising performance,
SSS studies along this line come at the cost of requiring
more complex methods, e.g., extra network components or
additional training procedures.

In this paper, we break the trend of recent SOTAs
that combine increasingly complex techniques and propose
AugSeg, a simple-yet-effective method that focuses mainly
on data perturbations to boost the SSS performance. Al-
though various auto data augmentations [9,10] and cutmix-
related transformations [17, 52] in supervised learning have
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Method Augmentations More Supervision Pseudo-rectifying

SDA FT MBSL CT UCL UAFS ACN PR

CCT [44] ✓ ✓ ✓
ECS [38] ✓ ✓

SSMT [26] ✓ ✓ ✓
PseudoSeg [58] ✓ ✓

CAC [31] ✓ ✓ ✓
DARS [24] ✓ ✓ ✓

PC2Seg [56] ✓ ✓ ✓ ✓
C3-Semiseg [57] ✓ ✓ ✓ ✓

ReCo [34] ✓ ✓ ✓
CPS [7] ✓ ✓

ST++ [50] ✓ ✓
ELN [30] ✓ ✓ ✓

USRN [20] ✓ ✓ ✓ ✓
PSMT [36] ✓ ✓ ✓ ✓
U2PL [47] ✓ ✓ ✓

AugSeg (ours) ✓

Table 1. Comparison of recent SSS algorithms in terms of
“Augmentations”, “More supervision”, and “Pseudo-rectifying”
(sorted by their publication date). We explain the abbrevia-
tions as follows. “SDA”: Strong data augmentations, including
various intensity-based and cutmix-related augmentations, “FT”:
Feature-based augmentations, “MBSL”: multiple branches, train-
ing stages, or losses, “CT”: Co-training, “UCL”: unsuper-
vised contrastive learning, “UAFS”: uncertainty/attention filter-
ing/sampling, “ACN”: additional correcting networks, “PR”:
prior-based re-balancing techniques. Note that, branches of
“more supervision” and “pseudo-rectifying” typically require
more training efforts. Differently, our method enjoys the best sim-
plicity but the highest performance.

been extensively utilized in previous SSS studies, we ar-
gue that these augmentations should be adjusted precisely
to better adapt to the semi-supervised training. On one
hand, these widely-adopted auto augmentations are essen-
tially designed for supervised paradigm and aim to search
the optimal augmentation strategies from a predefined fi-
nite discrete space. Their optimal objective is constant and
clear across the training course. However, data perturba-
tions in semi-supervised learning consist in generating pre-
diction disagreement on the same inputs, without a constant
and specific objective or a predefined discrete searching
space. Thus, we simplify existing randomAug [10] and de-
sign a highly random intensity-based augmentation, which
selects a random number of different intensity-based aug-
mentations and a random distortion strength from a contin-
uous space. On the other hand, random copy-paste [18]
among different unlabeled samples can yield effective data
perturbations in SSS, but their mixing between correspond-
ing pseudo-labels can inevitably introduce confirmation
bias [3], especially on these instances with less confident
predictions of the model. Considering the utilization effi-
ciency of unlabeled data, we simply mix labeled samples
with these less confident unlabeled samples in a random and
adaptive manner, i.e., adaptively injecting labeled informa-
tion to stabilize the training on unlabeled data. Benefiting
from the simply random and collaborative designs, AugSeg

requires no extra operations to handle the distribution is-
sues, as discussed in [51].

Despite its simplicity, AugSeg obtains new SOTA perfor-
mance on popular SSS benchmarks under various partition
protocols. As shown in Figure 1, AugSeg can consistently
outperform current SOTA methods by a large margin. For
example, AugSeg achieves a high mean intersection-over-
union (mIoU) of 75.45% on classic Pascal VOC 2012 us-
ing only 183 labels compared to the supervised baseline of
59.10% and previous SOTA of 71.0% in [50]. We attribute
these remarkable performance gains to our revision – that
various data augmentations are simplified and adjusted to
better adapt to the semi-supervised scenarios. Our main
contributions are summarized as follows,

• We break the trend of SSS studies that integrate
increasingly complex designs and propose AugSeg,
a standard and simple two-branch teacher-student
method that can achieve readily better performance.

• We simply revise the widely-adopted data augmenta-
tions to better adapt to SSS tasks by injecting labeled
information adaptively and simplifying the standard
RandomAug with a highly random design.

• We provide a simple yet strong baseline for future SSS
studies. Extensive experiments and ablations studies
are conducted to demonstrate its effectiveness.

2. Related work
The key to semi-supervised learning lies in effectively

leveraging the unlabeled data [19,21,33,42]. Recent consis-
tency regularization (CR) [32, 46] has become a fundamen-
tal semi-supervised technique to train models on labeled
and unlabeled data simultaneously. Such CR-based meth-
ods, in either classification [14, 45, 48, 54] or segmentation
tasks [17,25,36,58], rely on various perturbation techniques
to generate disagreement on the same inputs, so that models
can be trained by enforcing prediction consistency on unla-
beled data without knowing labeled information. Along this
line, many SSS methods have been proposed recently.

Based on our summary, as shown in Table 1, there are
three different main directions to enhance the SSS per-
formance, including “augmentations”, “more supervision,”
and “pseudo-rectifying”. Almost all existing studies applied
various strong data augmentations to perturb unlabeled data
while some of them [36, 44, 49] also perturbed the inputs at
the feature level. In the branch of “more supervision”, mul-
tiple training branches, training stages, or losses (MBSL)
are widely adopted from the perspective of model pertur-
bations [26, 31, 36, 50]. As the quality of pseudo-labels
is critical for semi-supervised training [55], ECS [38] and
ELN [30] also introduced additional trainable correcting
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Figure 2. Diagram of AugSeg. In a standard teacher-student framework, AugSeg trains the student model, parameterized by θs, on labeled
data (x, y) and unlabeled data u simultaneously, via minimizing the corresponding supervised loss Lx and unsupervised consistency loss
Lu, respectively. The teacher model, parameterized by θt, is updated by the exponential moving averaging (EMA) of θs, and generates the
pseudo-label on unlabeled data, pt. The core of AugSeg is to apply various augmentation techniques on input unlabeled samples, including
the weak geometrical augmentation Ag , the random intensity-based augmentation Ar and the adaptive label-aided augmentation Aa. The
red and blue lines represent the forward path of labeled and unlabeled data, respectively. The dashed line means“stop gradient”.

networks (ACN) to further polish the pseudo-labels. Re-
cent SOTA methods [20, 30, 36, 47] can achieve promising
performance at the cost of combining increasingly complex
mechanisms, e.g. contrastive learning [35] and multiple en-
sembling models. Differently, in this work, we aim to pro-
pose a simple and clean method that relies mainly on data
augmentations to boost the SSS performance.

As the most straightforward and effective way to pro-
duce label-preserving perturbations, data augmentations
have played a central role in CR-based semi-supervised
studies [17, 40, 48]. Recently, various auto augmentation
strategies [9,11,41] in supervised learning have been widely
adopted in semi-supervised research. However, directly ap-
plying such techniques is not satisfying for the following
reasons. The goal of auto augmentations is to find out the
optimal augmentation strategies. Such studies aim to search
best augmentation operations and distortion strengths from
a pre-defined finite discrete space. In contrast, the objective
of applying data augmentation in SSS is to generate differ-
ent inputs without specific goals and searching spaces. Be-
sides, as discussed in [51], directly applying these augmen-
tations may over-distort unlabeled data and hurt the data
distribution, resulting in performance degradation. Instead
of using additional rectifying strategies like distribution-
specific BN [4], we simplify the standard randomAug [10]
with a highly random design. Instead of using a predefined
number of augmentations with finite and discrete strength
possibilities, we select a random number of augmentations
and sample the augmentation strength uniformly from a
continuous interval. In this way, our design enjoys better
data diversity and is less likely to over-distort samples.

3. Augseg
In this section, we first present an overview of our simple

AugSeg and then describe our main augmentation strate-

gies, random intensity-based and adaptive cutmix-based
augmentations, in Section 3.2 and Section 3.3, respectively.

3.1. Overview

Following current dominant consistency regularization
methods in semi-supervised learning [43], we train our seg-
mentation model on labeled and unlabeled data simulta-
neously. As shown in Figure 2, we adopt a simple and
clean semi-supervised framework, which consists of a stu-
dent model and a teacher model, parameterized by θs and
θt, respectively. Specifically, the teacher model is capable
of producing pseudo-labels for training on unlabeled data,
and will be updated gradually via the exponential moving
averaging of the student weights, i.e.,

θt ← αθt + (1− α)θs, (1)

where α is a common momentum parameter, which is, fol-
lowing [46], set as 0.999 by default. On the other hand,
at each iteration, provided with a batch of labeled sam-
ples Bx = {(xi, yi)}|Bx|

i=1 and a batch of unlabeled samples
Bu = {ui}|Bu|

i=1 , we aim to train the student model via min-
imizing a supervised loss Lx and an unsupervised consis-
tency loss Lu at the same time. Thus the total training loss
for the student model is,

L = Lx + λuLu, (2)

where λu is a scalar hyper-parameter to adjust the unsuper-
vised loss weight. Similar to most SSS methods [27,38,44],
we adopt a standard pixel-wise cross-entropy loss ℓce to
train on labeled data directly,

Lx =
1

|Bx|

|Bx|∑
i=1

1

H ×W

H×W∑
j=1

ℓce(ŷi(j), yi(j)), (3)
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Weak Geometrical Augmentation - Apply all

Random Scale Randomly resizes the image by [0.5, 2.0].
Random Flip Horizontally flips the image with a probability of 0.5.
Random Crop Randomly crops an region from the image.

Random Intensity-based Augmentation - Apply k randomly

Identity Returns the original image.
Autocontrast Maximizes (normalize) the image contrast.
Equalize Equalize the image histogram.
Gaussian blur Blurs the image with a Gaussian kernel.
Contrast Adjusts the contrast of the image by [0.05, 0.95].
Sharpness Adjusts the sharpness of the image by [0.05, 0.95].
Color Enhances the color balance of the image by [0.05, 0.95]
Brightness Adjusts the brightness of the image by [0.05, 0.95]
Hue Jitters the hue of the image by [0.0, 0.5]
Posterize Reduces each pixel to [4,8] bits.
Solarize Inverts image pixels above a threshold from [1,256).

Table 2. List of various image transformations in the weak geo-
metrical augmentation and random intensity-based augmentation.

where ŷi = f(Ag(xi); θs), represents the segmentation re-
sult of the student model on the i-th weakly-augmented
labeled instance. j represents the j-th pixel on the im-
age or the corresponding segmentation mask with a res-
olution of H × W . The weak geometrical augmentation
Ag , as shown in Table 2, includes standard resizing, crop-
ping, and flipping operations. As for leveraging the unla-
beled data, which is the key to semi-supervised learning,
we rely mainly on the data perturbation T (·) to generate the
prediction disagreement. First, we obtain the segmentation
predictions, psi and pti, of the student model on augmented
T (ui) and of the teacher model on augmented Ag(ui), re-
spectively,

pti = f(Ag(ui); θt), (4)
psi = f(T (Ag(ui)); θs). (5)

Subsequently, the unlabeled loss is formulated as,

Lu =
1

|Bu|

|Bu|∑
i=1

1

H ×W

H×W∑
j=1

ℓce(p
s
i (j), p

t
i(j)). (6)

Different from recent SSS methods, our AugSeg follows
a clean and simple two-branch teacher-student framework.
We rely mainly on our augmentation strategy T (·) to pro-
duce prediction disagreement on the same input, which is
also the key to semi-supervised learning. The augmentation
T , the core of AugSeg, consists of two kinds of augmen-
tation in a cascade fashion, i.e., T (·) = Ar(Aa(·)), which
are detailed in following sections.

3.2. Random Intensity-based Augmentations

In most existing semi-supervised learning studies, either
in classification tasks or segmentation tasks, various auto
augmentation techniques [9], especially the simplified Ran-
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Figure 3. A visualization of random intensity-based augmentation.

domAug [10], have been widely adopted to perturb unla-
beled samples. However, its different objective from semi-
supervised learning limits its effectiveness. Specifically, the
goal of various auto augmentations is to search for the opti-
mal augmentation strategies for a specific downstream task.
RandomAug further simplified this searching procedure in
a finite discrete space. Whereas, the goal of data perturba-
tion in semi-supervised learning is to generate two differ-
ent views from the same image, where no specific optimal
augmentation strategy is required. Besides, as discussed
in [51], over-distorted augmentations will hurt the data dis-
tribution and degrade the SSS performance. To this end, we
design a random intensity-based augmentation, denoted by
Ar, to perturb unlabeled data. As shown in Fig. 3, we

• sample the distorting degree uniformly in a continuous
space instead of a finite discrete space.

• sample a random number of augmentations, bounded
by a maximum value of k, from an augmentation pool
instead of using a fixed number.

• remove strong intensity-based transformations like the
Invert operations [51] in our augmentation pool. Our
pool is directly simplified from the pool in Rando-
mAug [11], as shown in Table 2.

In this way, our random intensity-based augmentation
can enjoy better data diversity and adapt more to tsemi-
supervised tasks. More importantly, different from [51], our
highly random designs will not hurt the data distribution re-
markably. Thus we can get rid of additional distribution-
specific revisions [4] and extra filtering strategies [51].

3.3. Adaptive Label-aided CutMix

CutMix-related [13, 52] or copy-paste [18] augmenta-
tions have shown their effectiveness in supervised and semi-
supervised segmentation tasks. Recent studies in SSS
[17,36,47] apply the random copy-paste between unlabeled
samples within a mini-batch and revise their pseudo-label
accordingly. However, relying highly on the pseudo-labels
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Method Encoder 1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732) Full (1464)
Supervised R50 44.03 52.26 61.65 66.72 72.94
PseudoSeg [58] R50 54.89 61.88 64.85 70.42 71.00
PC2Seg [56] R50 56.90 64.63 67.62 70.90 72.26
AugSeg R50 64.22 72.17 76.17 77.40 78.82

Supervised R101 43.92 59.10 65.88 70.87 74.97
CutMix-Seg [17] R101 52.16 63.47 69.46 73.73 76.54
PseudoSeg [58] R101 57.60 65.50 69.14 72.41 73.23
PC2Seg [56] R101 57.00 66.28 69.78 73.05 74.15
CPS [7] R101 64.07 67.42 71.71 75.88 -
PS-MT [36] R101 65.80 69.58 76.57 78.42 80.01
ST++ [50] R101 65.20 71.00 74.60 77.30 79.10
U2PL [47] R101 67.98 69.15 73.66 76.16 79.49
AugSeg R101 71.09 75.45 78.80 80.33 81.36

Table 3. Compared with the state-of-the-art methods on classic Pascal VOC 2012 val set under different partition protocols. ‘1/n’ means
that ‘1/n’ data is used as labeled dataset, and the remaining images are used as unlabeled dataset.

may inevitably result in confirmation bias [2], especially
for some difficult-to-train samples, or at the early training
stages. Thus we tend to leverage the confident labeled sam-
ples to augment unlabeled data, so that labeled information
can be fully exploited. However, mixing confident labeled
information to unlabeled data is naturally beneficial but may
under-utilize the unlabeled data. It is simply because some
regions of unlabeled data are covered by regions from la-
beled samples and never utilized during the training. To this
end, as shown in Figure 4, we design an adaptive label-aided
augmentation that can make full use of labeled data to aid
the training on unlabeled samples in an instance-specific
and confidence-adaptive manner. In specific, we first esti-
mate a confidence score, ρi, indicating the confidence level
of the current model on its prediction on i-th unlabeled in-
stance,

ρi=
1

H×W

H×W∑
j=1

max(pti(j))(1−
−
∑

pti(j) log p
t
i(j)

logN
)

(7)
where we use the weighted average of the normalized pre-
diction entropy on ui to estimate the confidence score. Ap-
parently, the score ρ is instance-specific and closely related
to the generalization probability of the current model. We
then use ρi as a triggering probability to randomly apply the
mixing between labeled and unlabeled instances to obtain
the mixing candidates {u′

n},

u
′

n ←Mn ⊙ un + (1−Mn)⊙ xn, (8)

where Mn denotes the randomly generated region mask.
After that, we apply the final mixing step between unlabeled
instance {um} and the permuted mixing candidates {u′

n},

Aa(um)←Mm ⊙ um + (1−Mm)⊙ u
′

n, (9)

Permute

Yes

No: Mix

Yes

No: Mix

Yes

No: Mix

Confidence-based Selections

Copy & Paset

Figure 4. A visualization of adaptive label-aided CutMix augmen-
tation in a mini-batch. xi and ui denote the labeled and unlabeled
crops, respectively. ρi denote the confidence score for i-th unla-
beled sample. The core idea of Aa is that, these less confident
unlabeled samples, with lower values of ρi, are more likely to be
aided (mixed) by these confident labeled samples.

where Mm, similar to Mn, denotes the randomly generated
binary region mask.

4. Experiments
In this section, we first describe our experimental setups

and then compare our method with recent SOTAs on SSS
benchmarks. A series of ablation studies are also conducted
to verify the effectiveness and stability of AugSeg further.

4.1. Experimental setup

Dataset. We examine the efficacy of AugSeg on two
widely used segmentation datasets, Pascal VOC 2012 [15]
and Cityscapes [8]. Pascal VOC 2012 is a standard se-
mantic segmentation benchmark with 21 semantic classes
(including the background). The classic VOC 2012 in-
cludes 1,464 fine-labeled training images and 1,449 vali-
dating images. Following [7, 47, 50], we also include the
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Method ResNet-50 ResNet-101

1/16 (662) 1/8 (1323) 1/4 (2646) 1/16 (662) 1/8 (1323) 1/4 (2646)

Supervised 63.72 68.49 72.46 67.76 72.13 75.04
MT [46] 66.77 70.78 73.22 70.59 73.20 76.62
CCT [44] 65.22 70.87 73.43 67.94 73.00 76.17
GCT [29] 64.05 70.47 73.45 69.77 73.30 75.25
CPS [7] 68.21 73.20 74.24 72.18 75.83 77.55
CPS w/ CutMix [7] 71.98 73.67 74.90 74.48 76.44 77.68
ST++ [50] 72.60 74.40 75.40 74.50 76.30 76.60
PS-MT [36] 72.83 75.70 76.43 75.50 78.20 78.72
AugSeg 74.66 75.99 77.16 77.01 77.31 78.82

Supervised‡ 67.66 71.91 74.53 70.63 75.02 76.47
U2PL‡∗ [47] 74.74 77.44 77.51 77.21 79.01 79.30
AugSeg‡ 77.28 78.27 78.24 79.29 81.46 80.50

Table 4. Comparison with the state-of-the-art on the PASCAL VOCAug val set under different partition protocols. The VOCAug trainset
consists of 10,582 labeled samples in total. ‡ means the same split as U2PL, which prioritizes selecting high-quality labels from classic
VOCs. Other methods use the same split as CPS. ∗ presents our reproduced results for U2PL [47] using ResNet-50.

additional coarsely-labeled 9,118 images from the Segmen-
tation Boundary dataset (SBD) [22] as the training images,
leading to 10,582 images in total. We adopt the same par-
tition protocols in [7, 47] to evaluate our method on both
classic and blender sets. Cityscapes consists of 19
semantic classes of urban scenes, including 2,975 training
and 500 validating images with fine annotations.
Training. Following previous SSS studies [30, 36, 47], we
adopt DeepLabV3+ [6] with ResNet [23] pretrained on Im-
ageNet [12] as our segmentation backbone. Different from
U2PL [47], we use an output stride of 16 by default (instead
of using 8). We use an SGD optimizer with a momentum
of 0.9 and a polynomial learning-rate decay with an initial
value of 0.01 to train the student model. Referring to [7,47],
we use the crop size of 512×512 with a training epoch of 80
and the crop size of 800× 800 with a training epoch of 240
on VOC2012 and Cityscapes, respectively. A batch size of
16 and the sync-BN are adopted for both datasets.

Evaluations. We use the mean of intersection-over-
union to evaluate the segmentation performance for all runs,
using ResNet-50 and ResNet-101 as the encoder separately.
Following CPS [7] and U2PL [47], we also adopt the sliding
evaluation to examine the performance on validation images
of Cityscapes with a resolution of 1024× 2048.

4.2. Comparison with SOTAs

We demonstrate the superiority of AugSeg by compar-
ing it with current SOTAs on both datasets under differ-
ent partition protocols. Since U2PL prioritizes selecting
high-quality labels from classic VOCs for testing on blender
VOC 2, we reproduce the supervised baseline and its perfor-

2https://github.com/Haochen-Wang409/U2PL/issues/3

mance on ResNet-50 for fair comparisons.
Pascal VOC 2012. In Table 3 and Table 4, we com-

pare our AugSeg with recent SOTAs on classic and blender
VOC, respectively. It can be clearly seen from Table 3 that,
despite its simplicity, AugSeg can consistently outperform
current SOTAs by a large margin, e.g. obtaining a 4.45%
performance gain on 1/8 split using R101 as the encoder.
Note that AugSeg can even achieve higher performance of
71.09% with only 92 labels than the previous SOTA perfor-
mance of 71.00% with 183 labels. We can also observe that
the performance gains become more noticeable and obvi-
ous when using ResNet-50 as the encoder and when fewer
labels, e.g. 92 and 182 labels, are available. Even though
the performance gap between different SSS methods is de-
creasing as more labeled data is involved, our method can
still improve the previous SOTA by 1.91% and 1.35% with
1/2 and full fine annotations, respectively.

As shown in Table 4, under 1/16, 1/8 and 1/4 partition
protocols with the same split as U2PL, our AugSeg obtains
new SOTA performance of 79.29%, 81.46%, and 80.50%
based on ResNet-101, which obtains around 2% perfor-
mance improvements again previous SOTA. It is notewor-
thy that AugSeg obtains a higher mIoU with 1323 labels
than that with 2646. It is simply because the 2646 split
involves more noisy (coarsely-annotated) labels than 1323
split (there are 1464 fine annotations in total). As discussed
in Sec. 3.3, AugSeg can make full use of labeled data to sta-
bilize the training on unlabeled data. Thus the noisy labeled
information will degrade the performance of AugSeg. This
is also why the superiority of AugSeg is more noticeable in
Table 3 than in Table 4 with the same split as CPS [7].

Cityscapes. In Table 5, we evaluate our method on
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Method ResNet-50 ResNet-101

1/16(186) 1/8(372) 1/4(744) 1/2(1488) 1/16(186) 1/8(372) 1/4(744) 1/2(1488)

Supervised 63.34 68.73 74.14 76.62 64.77 71.64 75.24 78.03
MT [46] 66.14 72.03 74.47 77.43 68.08 73.71 76.53 78.59
CCT [44] 66.35 72.46 75.68 76.78 69.64 74.48 76.35 78.29
GCT [29] 65.81 71.33 75.30 77.09 66.90 72.96 76.45 78.58
CPS [7] 69.79 74.39 76.85 78.64 70.50 75.71 77.41 80.08
CPS ∗ [7] - - - - 69.78 74.31 74.58 76.81
PS-MT† [36] - 75.76 76.92 77.64 - 76.89 77.60 79.09
U2PL [47] 69.03 73.02 76.31 78.64 70.30 74.37 76.47 79.05

AugSeg 73.73 76.49 78.76 79.33 75.22 77.82 79.56 80.43

Table 5. Comparison with state-of-the-art on Cityscapes val set under different partition protocols. Cityscapes (Citys) includes 2, 975
samples in total. ∗ means the reproduced results in U2PL [47]. All the results are reported by the sliding evaluations. †means PS-MT [36]
runs more epochs (320, 450, 550 epochs on 1/8, 1/4, 1/2 splits, respectively) than ours (240 epochs for all splits.)

more challenging Cityscapes, using ResNet-50 and ResNet-
101 as the encoder, respectively. We can easily see that
AugSeg can readily outperform other SSS methods, espe-
cially with scarce labels. Though AugSeg is embarrassingly
simpler than the recent SOTA U2PL in terms of the training
procedure and encoded feature size, AugSeg can improve
U2PL by 4.92%, 3.45%, 3.09%, and 1.38%, using ResNet-
101 as the encoder, under 1/16, 1/8, 1/4, and 1/2 partition
protocols, respectively. Not relying on advanced unsuper-
vised techniques or multiple trainable models, AugSeg can
consistently achieve the best performance on SSS bench-
marks. Such impressive performance improvement further
demonstrates the effectiveness and importance of our claim
that various data augmentation should be simplified and ad-
justed to better adapt to semi-supervised learning.

In addition, we highlight the importance of labeled sam-
ples in semi-supervised learning, in terms of the quantity
and quality. First, regardless of different semi-supervised
approaches, we can see from Tables 3, 4 and 5 that pro-
viding more labeled samples can easily boost the semi-
supervised performance. Second, comparing the perfor-
mance on classic and blended VOCs, we observe that the
quality of labeled samples is always crucial. For example,
our AugSeg can achieve a high performance of 78.80% us-
ing 366 high-quality labels but require 2646 labels from the
blender dataset to obtain a comparable mIOU of 78.82%.

4.3. Ablations studies

In this section, we conduct a series of ablations studies
on Pascal VOC 2012 with 366 (1/4) labels and Cityscape
with 744 (1/4) labels using ResNet-50 as the encoder.

Effectiveness of different components of AugSeg. We
first investigate the effectiveness of each component of
AugSeg in Table 6. Our simplified augmentations Ar and
Aa can effectively improve the SSS performance, obtain-

AugSeg mIoU
MT Ar Aa VOC (366) Citys (744)

61.65 (supervised) 74.14 (supervised)
✓ 69.06 (7.41↑) 75.96 (1.82↑)
✓ ✓ 72.41 (10.76↑) 77.29 (3.15↑)
✓ ✓ 74.33 (12.68↑) 77.44 (3.30↑)
✓ ✓ ✓ 76.17 (14.52↑) 78.76(4.62↑)

Table 6. Ablation studies on our AugSeg. “MT” means the stan-
dard mean-teacher semi-supervised framework. Ar and Aa repre-
sent the two main augmentation strategies, the random intensity-
based and adaptive label-aided augmentations, respectively. Im-
provements over the supervised baseline are highlighted in blue.

72
72.5
73
73.5
74
74.5
75
75.5
76

Plain Ours LargePool Ours LargePool Ours

CutMix IntensityAug AugSeg

Figure 5. Ablation studies on different designs of AugSeg, where
“LargePool” refers to the augmentation pool in [51].

ing 10.76% and 12.68% improvements against the super-
vised baseline, 3.35% and 5.27% improvements against the
plain mean-teacher, on VOC 2012 with 366 labels, respec-
tively. Using adaptive label-aided augmentationAa can ob-
tain better performance than using Ar individually. Inte-
grating both augmentations can further improve each indi-
vidual component and achieve the best performance.

Impact of different augmentation designs. As shown
in Figure 5, we test the impact of our simplified and adap-
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λu 0.0 0.5 1.0 1.5 2.0

VOC (366) 61.65 75.21 76.17 75.95 77.05
Citys (744) 74.14 77.02 78.76 78.99 78.68

Table 7. Ablations on the loss weight λu, set as 1.0 by default.

k 0 1 2 3 4

VOC (366) 74.38 75.50 76.10 76.17 76.32
Citys (186) 71.26 72.10 73.42 73.73 73.03
Citys (744) 77.44 78.34 78.11 78.76 78.48

Table 8. Ablations on the maximum number of selected intensity-
based augmentations, using R50 as the encoder. k = 3 by default.

tive designs on intensity-based and cutmix-based augmen-
tations. We adopt Aa to stabilize the training on unla-
beled data adaptively, which benefits the SSS training ap-
parently. Following SimpleBaseline [51], we also examine
our random intensity-based designs with a larger augmen-
tation pool. Consequently, although more augmentation se-
lections can improve individual performance, incorporating
both augmentations with more strong augmentation selec-
tions can degrade the performance, resulting from the dis-
cussed over-distortion issues in [51]. Similar observations
can be found from Figure 6 that using a fixed strategy to
select more augmentations can harm the SSS performance.
Our highly random and simplified designs can naturally al-
leviate this issue without introducing extra operations like
Distribution-specific BN [4].

Impact of hyper-parameters. We also examine the seg-
mentation performance of AugSeg with different maximum
numbers of selected augmentations, k and different values
of unsupervised loss weight λu, in Table 8 and Table 7, re-
spectively. λu = 0 means no training on unlabeled data
while k = 0 means not applying the rand intensity-based
augmentation. We can observe that thanks to our random
design, a larger k will not degrade but enhance the SSS per-
formance, compared to the results with fixed selecting in
Figure 6. It can also be seen from both tables that no spe-
cific parameters can consistently outperform others on both
datasets. To keep our method simple and consistent, we set
k = 3 and λu = 1.0 for all runs by default.

Qualitative Results. Figure 7 shows some qualitative
results on the Pascal VOC 2012 dataset. The supervised
baseline obtains the worse segmentation results, e.g., not
capable of differentiating the train and bus. Using more
unlabeled data in the plain MT can enhance the model’s
capability to separate confusing classes. Among the com-
parisons, some challenging small-sized objects, such as the
wheels, grass, or humans in a large background, can only be
effectively identified by our AugSeg, which further demon-

0 1 2 3 4
# of selected augs

74.5

75.0

75.5

76.0

m
IO

U
 (%

)

Fixed Selecting
Random Selecting

Figure 6. Impact of different selecting strategies in intensity-based
augmentations with different numbers of selected operations.

Figure 7. Qualitative results on Pascal VOC 2012 with 366 labels
and ResNet-50 as the encoder. Columns from left to right denote
the original images, the ground-truth, the supervised results, the
plain MT results, and our AugSeg results, respectively.

strates the effectiveness of AugSeg. Though our method
obtains the SOTA SSS performance, AugSeg is limited at
identifying some hard-to-segment objects, e.g., cars in the
advertisement. We believe there is still great potential to
further improve the SSS performance on top of our AugSeg.

5. Conclusion
In this paper, we propose AugSeg, a simple-yet-effective

approach to semi-supervised semantic segmentation. Un-
like recent SSS studies that tend to combine increasingly
complicated mechanisms, AugSeg follows a standard two-
branch teacher-student framework to train models on la-
beled and unlabeled data jointly. The key to AugSeg lies
in the simplification and revisions of two existing augmen-
tation models, i.e., the random intensity-based and adaptive
label-aided CutMix-based augmentations. Without any ad-
ditional complicated designs, AugSeg readily obtains new
SOTA performance on popular SSS benchmarks under dif-
ferent partition protocols. We hope our AugSeg can serve
as a strong baseline for future SSS studies.
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