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Figure 1. Face swapping results of DiffSwap at 512 × 512 resolution. In each group, we show the swapped face (right) generated by
replacing the target face (bottom-left) with the source face (top-left). Benefiting from the generative power and controllability, our model
can produce high-fidelity swapped faces that are robust to the differences in face shape, face pose and skin color between the source face
and target face. Best viewed in color.

Abstract

In this paper, we propose DiffSwap, a diffusion model
based framework for high-fidelity and controllable face
swapping. Unlike previous work that relies on carefully de-
signed network architectures and loss functions to fuse the
information from the source and target faces, we reformu-
late the face swapping as a conditional inpainting task, per-
formed by a powerful diffusion model guided by the desired
face attributes (e.g., identity and landmarks). An impor-
tant issue that makes it nontrivial to apply diffusion mod-
els to face swapping is that we cannot perform the time-
consuming multi-step sampling to obtain the generated im-
age during training. To overcome this, we propose a mid-
point estimation method to efficiently recover a reasonable
diffusion result of the swapped face with only 2 steps, which
enables us to introduce identity constraints to improve the
face swapping quality. Our framework enjoys several fa-
vorable properties more appealing than prior arts: 1) Con-
trollable. Our method is based on conditional masked diffu-
sion on the latent space, where the mask and the conditions
can be fully controlled and customized. 2) High-fidelity.
The formulation of conditional inpainting can fully exploit
the generative ability of diffusion models and can preserve
the background of target images with minimal artifacts. 3)
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Shape-preserving. The controllability of our method en-
ables us to use 3D-aware landmarks as the condition during
generation to preserve the shape of the source face. Ex-
tensive experiments on both FF++ and FFHQ demonstrate
that our method can achieve state-of-the-art face swapping
results both qualitatively and quantitatively.

1. Introduction
There has been growing interest in face swapping tech-

nology from both vision and graphics communities [1, 2, 6,
21,36,39] because of its broad applications in creating digi-
tal twins, making films, protecting privacy, etc. The goal of
face swapping is to transfer the identity of the source face to
a target image or a video frame while keeping the attributes
(e.g., pose, expression, background) unchanged.

There are two essential steps in realizing high-quality
face swapping: encoding the identity information of the
source face effectively and blending identity and attributes
from different images seamlessly. Early work [4,24] on face
swapping adopts 3D models [5] to represent the source face
and directly replace the reconstructed faces in the target im-
age based on 3D structural priors, leading to recognizable
artifacts. The development of generative adversarial net-
works (GAN) [12] provides a strong tool to generate photo-
realistic face images. Many recent methods [2, 6, 21, 39]
perform face swapping by extracting the identity feature
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from the source image and then injecting it into the gen-
erative models powered by adversarial training. However,
these methods tend to make minor modifications to the tar-
get image, which may fail in totally transferring the identity
information when the face shapes of the source and the tar-
get face largely differ.

Very recently, diffusion-based models (DM) [22, 25, 26]
have exhibited high customizability for various conditions
and impressive power in generating images with high res-
olution and complex scenes. It is natural to ask: whether
the strong generation ability of diffusion models can benefit
face swapping? However, we find it is nontrivial to apply
diffusion models to the task of face swapping. Since there is
no ground-truth data pair for face swapping, face swapping
models are usually trained in a weakly-supervised manner,
where several losses about image fidelity, identity, and fa-
cial attributes are imposed to guide the training. These su-
pervisory signals can be easily added to GAN-based models
but it is difficult for DMs. Different from previous genera-
tive models like GANs [12, 16] and VAEs [14, 19], DMs
learn a denoising autoencoder to gradually recover the data
density step-by-step. Although the autoencoder can be ef-
ficiently learned by performing score matching [15] at an
arbitrary step during training, image generation using an al-
ready trained DM requires executing the autoencoder se-
quentially for a large number of steps (typically, 200 steps),
which is computationally expensive.

To tackle these challenges, we propose the first diffusion
model based face swapping framework, which can produce
high-fidelity results faces with high controllability. Figure 2
shows the overview of our method. Different from existing
methods [1,6,21,36] that modify the target face to match the
identity of the source face, we reformulate face swapping
as a conditional inpainting task guided by the identity fea-
ture and facial landmarks. Our diffusion model is learned
to generate a face that shares the same identity as the source
face and is spatially aligned with the target face. In order to
introduce identity constraints during training, we propose
a midpoint estimation method that can efficiently generate
swapped faces with only 2 steps. Our framework is by de-
sign highly controllable, where both the conditioned land-
mark and the inpainting mask can be customized during in-
ference. Thanks to this property, we propose the 3D-aware
masked diffusion where we perform the inpainting inside
the 3D-aware mask conditioned on the 3D-aware landmark
that explicitly enforces the shape consistency between the
source face and the swapped face.

We conducted extensive experiments on FaceForen-
sics++ [27] and FFHQ [16] to verify the effectiveness of
our model both and quantitatively. On FF++ dataset, our
method outperforms previous methods in both ID retrieval
(98.54%) and FID (2.16), while achieving comparable re-
sults on pose error and expression error. Qualitative results

show that our method can generate high-fidelity swapped
faces that can better preserve the source face shape than the
previous method. Besides, we also demonstrate the scala-
bility and controllability of our method. Our model can be
easily extended to higher-resolution such as 512× 512 with
affordable extra computational costs and allows region-
customizable face swapping by controlling the inpainting
mask. Our results demonstrate that DiffSwap is a very
promising face swapping framework that is distinct from
the existing methods and enjoys high fidelity, controllabil-
ity, and scalability.

2. Related Work

Face Swapping. Existing face swapping methods can
be roughly categorized into 3D-based methods and GAN-
based methods. The 3D-base methods [4, 24] usually lever-
age the 3DMM [5] to introduce structural priors. How-
ever, these methods are involved human intervention or
produce recognizable artifacts. The GAN-based meth-
ods [6,17,21,23,29,36,38] are mostly target-oriented, which
fuses the identity information from the source face to the
target features and uses GAN to ensure the fidelity of the
swapped face. However, these methods always contain mul-
tiple loss functions and balancing them requires careful tun-
ing of the hyper-parameters. Besides, these methods tend to
make minor modifications on the target face and thus can-
not deal with the cases where the shapes between the source
face and the target face largely differ. Although some ex-
isting works using the 3DMM features [20, 36] to guide
the swapping, we find this implicit incorporation of 3D in-
formation still cannot ensure the shape consistency. Dif-
ferent from previous works, our method train a diffusion
model conditioned on the identity feature and facial land-
mark, which enables us to delicately control the facial shape
using 3D priors during inference.

Diffusion Models. Diffusion models, emerging as another
family of generative models, have achieved state-of-the-
art results [9] recently. Different from previous generative
models like GANs [12, 16] and VAEs [14, 19, 32] that often
suffer from instability during training, the optimization of
diffusion models is equivalent to score matching [3] and can
be implemented using a simple MSE loss [15]. The stable
training of the diffusion model also makes it more flexible
to capture the conditional data density [3, 26]. Therefore, it
is a promising direction to further exploit the controllabil-
ity and high-fidelity of the diffusion models. However, the
application of the diffusion model to the face swapping task
is nontrivial because 1) we do not have the ground truth of
the swapped face, thus the original objectives in DMs can
not help to perform face swapping. 2) the image generation
of DMs requires multiple steps of model evaluation which
is prohibited during training, leading to the difficulty to in-
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Figure 2. Overview of DiffSwap. DiffSwap is a diffusion model based framework for face swapping. During training (left), we train
a conditional denoising U-Net ϵθ to predict the gradient of the data density ϵ. We also devise a midpoint estimation method to obtain a
swapped face to enable explicit identity constraint. During inference (right), we leverage 3D face reconstruction to obtain the swapped 3D
face and use the projected landmark to perform 3D-Aware masked diffusion to produce shape-preserving face swapping results.

clude identity constraints for face swapping. In this work,
we solve the above issues by reformulating face swapping
as conditional inpainting to make use of the original DM
objective and by adopting a new midpoint estimation to re-
cover the swapped face during training to enable the compu-
tation of identity loss. Benefiting from the success of DMs,
our framework can generate high-fidelity face swapping re-
sults with high controllability.

3. Method
In this section, we will describe our method DiffSwap,

the first diffusion model based face swapping framework in
detail. An overview of our method is illustrated in Figure 2.

3.1. Preliminaries: Diffusion Models

Diffusion Models [30] are a family of generative models
that can recover the data distribution from a Gaussian noise
by learning the reverse process of a Markov Chain. Let zt
be the random variable at t-th timestep, the Markov Chain
is defined as

zt ∼ N (
√
αtzt−1, (1− αt)I), (1)

where {αt} is a predefined sequence of coefficients con-
trolling the variance schedule. The close form of the dis-
tribution p(zt|z0) of can be easily derived from the above
formulation:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ,

ᾱt =

t∏
s=1

αs, ϵ ∼ N (0, I),
(2)

which makes it possible to efficiently sample an arbitrary
zt during training. By minimizing the ELBO of the reverse
process, the training objective of diffusion models can be
decomposed into a summation of step-wise KL-divergence
between the predicted distribution of a reverse step and the
corresponding posterior of the forward process, which can
be further simplified into the following form through repa-
rameterization:

LDM = Ez0,ϵ,t

[
∥ϵ− ϵθ(zt(z0, ϵ), t)∥22

]
, (3)

where zt is obtained using Equation (2) and ϵθ denotes the
denoising autoencoder learned to predict the ϵ, which can
be viewed as the gradient of the log data density. In visual
generative tasks, the denoising autoencoder is usually im-
plemented as an U-Net. During inference, diffusion models
gradually predict the ϵθ(xt, t) and recover the z0.

However, the vanilla diffusion models suffer from heavy
computational costs in both training and inference, since
the diffusion process is directly operated on the pixel space
(zt ∈ R3×H×W ). To address this issue, [26] find it helpful
to decompose the whole generative procedure into seman-
tic and perceptual levels. They propose the latent diffusion
model (LDM) where the image is first compressed into a la-
tent space (e.g. 64×64) through a pre-trained VQGAN [10],
and a diffusion model is trained on that latent space in-
stead of the original pixel space. Following LDM [26], our
method also performs face swapping on the latent space for
efficient training and inference.
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3.2. Face Swapping as Conditional Inpainting

The goal of face swapping is to transfer the identity of
the source face to a target image while keeping the attributes
(pose, expression, background, etc.) unchanged. Most ex-
isting face swapping methods [1,6,21] adopt a pipeline sim-
ilar to face editing, where the model gradually injects the
identity information into the features from the target im-
age. However, these methods tend to make small modifica-
tions to the target image, thus often failing to preserve the
shape of the source face. Although some recent work [36]
adopts the shape-identity feature to guide the face swap-
ping, we find that this implicit injection of the shape infor-
mation cannot produce satisfactory results when the shapes
of the source and target faces largely differs (e.g., Figure 4).

To address the above issues, we reformulate face swap-
ping as conditional inpainting, where both the identity and
the attributes of the generated faces are controllable through
the conditioning vectors. Specifically, we first train a VQ-
GAN that can transform the input image x0 ∈ R3×H×W to
the latent space as z0 ∈ RC×H′×W ′

. We then train a con-
ditional diffusion model on that latent space with a specific
emphasis on identity consistency. The diffusion model can
be written as ϵθ(zt, t; C), which performs denoising given
the conditioning set C and the timestep t. During inference,
we construct a maskM∈ {0, 1}H′×W ′

on the latent space
and use it to control the inpainting region.

Design of Conditioning Inputs. From a generative per-
spective, we aim to generate a new face that shares the iden-
tity with the source face and spatially aligns well with the
target face. To extract the identity feature, we use a pre-
trained face recognition model [7] Eid. We then use a two-
layer MLP to project the identity feature to a pre-defined
dimension D to obtain the identity condition:

cid = MLP(Eid(x)) ∈ RD. (4)

Another important condition input is the facial landmark
ℓ ∈ R68×2, since it can control both the pose and the ex-
pression of the generated face. Similarly, we can use an
MLP to extract landmark features clmk ∈ RD.

A diffusion model trained with the identity feature and
facial landmark as the conditioning inputs can already
achieve face swapping by using the identity feature from
the source image and the landmark feature from the target
image. Inspired by [37], we also include the region fea-
tures (e.g., eyes, nose, mouth) as another conditioning in-
puts to further improve the similarity between the swapped
face and the source face. Specifically, we consider three
regions including the eyes, nose, and mouth. For the sake
of simplicity, we use the facial landmark to get the region
masks Meyes,Mnose,Mmouth, and apply them on z0 to
extract region features. Similarly, the region features are
projected into a D dimension feature cregion ∈ R3×D us-

ing an MLP. We then utilize the multi-head self-attention
mechanism [33] (MHSA) to capture the interactions among
different regions:

cregion ← cregion +MHSA(LayerNorm(cregion)), (5)

where the region feature is updated via a residual connec-
tion. By combining cid and cregion, we are able to better
leverage the identity information from both global and lo-
cal levels. The final conditioning features that are fed into
our network are C = {cid, clmk, cregion}.
Training Objectives. The optimization of our DiffSwap is
similar to the diffusion model, where we use the condition-
ing features C to guide the denoising in each timestep. The
loss function for the diffusion model is defined as

LDM = Ez0=E(x),C,ϵ∈N (0,1),t

[
∥ϵ, ϵθ(zt, t; C)∥22

]
. (6)

From the theoretical analysis of the underlying mechanism
of diffusion models [15], the ϵθ can be viewed as the learned
conditional score ∇ log p(z|C) [3]. Therefore, optimizing
Equation 6 helps the model to learn how to recover the con-
ditional distribution p(z|C).

In the face swapping task, it is crucial to make sure
the swapped face can preserve the identity of the source
face. Previous methods often explicitly introduce an iden-
tity loss that aims to maximize the cosine similarity be-
tween the swapped face and the source face in the fea-
ture space. However, since the image generation of diffu-
sion models requires multiple model evaluations on differ-
ent timesteps (e.g., 200 steps), obtaining such an image is
time-consuming during training. Therefore, it is nontrivial
to add identity loss to our framework. A naive solution is
to recover the z0 directly from the zt and the learned con-
ditional score ϵθ. Considering the reparameterized forward
process (Equation (2)), given the feature zt and the learned
conditional score ϵθ(zt, t; C), we have:

ẑvanilla
0 =

zt −
√
1− ᾱtϵθ√
ᾱt

. (7)

However, the above prediction of z0 is inaccurate because
the gradient of the data density is computed at zt. To obtain
a better estimation of z0 with minimal extra computational
costs, we propose a midpoint estimation method that only
requires two times of model evaluations and can produce
a reasonably swapped face for the computation of identity
loss. Specifically, we first divide the t by half to get t1 =
⌊t/2⌋. From the forward process, we have

zt =

√√√√ t∏
τ=t1+1

ατzt1 +

√√√√1−
t∏

τ=t1+1

ατϵ

=
√

ᾱt/ᾱt1zt1 +
√
1− ᾱt/ᾱt1ϵ, ϵ ∈ N (0, 1).

(8)
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We can then first estimate the zt1 given the predicted score
at zt:

ẑt1 =
zt −

√
1− ᾱt/ᾱt1ϵθ(zt, t; C)√

ᾱt/ᾱt1

. (9)

Once we have the predicted ẑt1 , we can then apply Equa-
tion (7) to estimate z0 by substitute zt to ẑt1 :

ẑmidpoint
0 =

ẑt1 −
√
1− ᾱt1ϵθ√
ᾱt1

. (10)

The midpoint estimation only requires one extra eval-
uation of the model ϵθ. To validate the effectiveness of
the midpoint estimation, we provide a visualization in Fig-
ure 3, where we compare the recovered swapped face us-
ing vanilla estimation (VE) and midpoint estimation (ME).
We also provide the final swapped face (sampled during in-
ference for 200 steps) in the last column for reference. We
show that the vanilla estimation of z0 is inaccurate with few
sampling steps. On the other hand, the proposed midpoint
estimation can produce the swapped face that is much closer
to the final result than the vanilla estimation in only 2 steps.

Equipped with the midpoint sampling, we are able to ef-
fectively obtain a reasonably swapped face during training,
by simply modifying the condition C as

Cswap = {csrcid , ctgtlmk, c
src
region}, (11)

we can then compute the identity loss by

Lid = 1− CosSim(Eid(xsrc), Eid(D(ẑ0(ztgt
t ; Cswap)))).

(12)
The final objective can be written as:

L = LLDM + λLid, (13)

where λ = 0.1 is a hyper-parameter to balance the numeri-
cal scale of the two terms.

3D-Aware Masked Diffusion We now describe how to per-
form face swapping during inference in our framework.
Given the target image xtgt, we first use the encoder E to
embed it into the latent space as ztgt

0 . Secondly, we con-
struct a maskM to specify the area to perform face swap-
ping. We then perform the conditional inpainting through
masked diffusion:

ztgt
t ←

√
ᾱtz

tgt
0 +

√
1− ᾱtϵt

zt ←M⊙ zt + (1−M)⊙ ztgt
t

zt−1 ←
1
√
αt

(
zt −

1− αt√
1− ᾱt

ϵθ(zt, t; Cswap)

)
+ σtnt

zT , ϵt,nt ∼ N (0, I), t = T, T − 1, . . . , 1.

(14)

Note that we follow the reverse sampling method in [15] to
sample zt−1 from pθ(zt−1|zt; Cswap). Finally, we use the

Source Target Vanilla
(1 step)

Vanilla
(2 steps)

Midpoint
(2 steps)

Result
(200 steps)

Figure 3. Comparison between the vanilla estimation (VE) and
the midpoint estimation (ME). Given the source image and the
target image, we visualize the estimated swapped face using VE
(Equ. (7)) and ME (Equ. (10)) during training, as well as the final
swapped face during inference. We show that compared with the
VE, ME can generate plausible results that are more close to the
final swapped face with only 2 steps of sampling.

decoder to transform z0 back to the image space and the
D(z0) is the swapping result.

Our framework is by design highly controllable because
we can change both the mask M and the conditioning in-
puts Cswap during inference. Therefore, it is possible to per-
form careful designs onM or Cswap to produce more plau-
sible face swapping results. Apart from the identity feature
and the region features that come from the source face, we
aim to seek a better choice for the landmark feature clmk.
Conditioning on a better input landmark, our model has the
potential to solve the corner case where the shapes between
the source face and the target face largely differ. To ob-
tain a 3D-aware facial landmark that shares the pose and ex-
pressions with the target face and preserve the shape of the
source face, we adopt a 3D face reconstruction library [8]
to extract the 3D information of both the source face and
target face. The 3D face reconstruction results consist of
several parameters describing the shape, expression, pose,
texture, etc., thus we can simply replace the shape of the re-
constructed target face with that of the source face. We then
reconstruct a new face using the swapped parameters and
obtain the corresponding 2D facial landmark ℓswap, which
can be further fed into our model for face swapping. To deal
with the misalignment between the shape of the source face
and the target face, the maskMmust cover both the original
landmark of the target face ℓtgt and the 3D-aware landmark
ℓswap. In our implementation, we simply compute a con-
vex hull of the concatenation of the two sets of landmarks
[ℓtgt, ℓswap] to obtain the 3D-aware maskMswap.

Discussion. The idea of using inpainting to solve face
swapping is investigated in some previous works like
FaceInpainter [20]. However, our framework is distinct in
two aspects: 1) FaceInpainter computes the swapped face
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Source Target SimSwap HifiFace Ours

Figure 4. Qualitative comparisons on FFHQ [16]. Our method
can produce high-fidelity results that preserve both the identity and
the shape of the source face.

by directly combining the generated face and the original
mask using the facial parsing mask on the image space,
which might introduce artifacts and is prune to the pars-
ing result. Our method, however, is based on the masked
diffusion on the latent space which will smooth the mask-
ing boundary during the gradually denosing. 2) The mask
in FaceInpainter is fixed to be the face parsing result, while
our framework allows arbitrary input of the inpainting mask
and thus is more controllable.

4. Experiments

Datasets We train our model on the FFHQ [16] dataset.
FFHQ contains 70,000 high-quality face images that are
crawled from the web and is widely used in the train-
ing of generative models [16, 26]. The original resolution
of FFHQ is 1024 × 1024 and we use the resized images
of 256 × 256 and 512 × 512 in our experiments. Fol-
lowing common practice, we also evaluate our method on
FaceForensics++(FF++) dataset [27] which contains 1,000
videos, as well as the face swapping results of some previ-
ous methods.

Implementation Details. In all of our experiments, we use
a latent space with 3 × 64 × 64, which makes our diffu-
sion process computationally efficient. Following previous
works [15, 26], we use a U-Net architecture for the ϵθ net-
work, where the conditioning features are injected using
the cross-attention mechanism [33]. We train our diffusion

Source            Target           FaceSwap      DeepFakes     FaceShifter         Ours 

Figure 5. Qualitative comparisons on FF++ [27]. Our method
generalizes well to unseen data distribution and can also better
preserve both the identity and the face shape.

Table 1. Quantitative Comparisons on FF++ [27]. We report the
ID retrieval, pose error, expression error, and the Fréchet inception
distance and show that our method achieves very competitive re-
sults compared with existing methods.

Method ID Retrieval ↑ Pose ↓ Expression ↓ FID↓
Deepfakes [1] 86.43 3.96 8.98 4.07
FaceShiter [21] 90.04 2.19 6.77 3.50
SimSwap [6] 93.07 1.36 5.07 3.04
MegaFS [40] 89.12 3.69 10.12 4.62
InfoSwap [11] 95.82 2.54 6.99 4.74
StyleSwap [39] 97.87 1.51 5.27 2.58

DiffSwap (Ours) 98.54 2.45 5.35 2.16

model with a global batch size of 32 on 8 NVIDIA Tesla
A100 GPU for 100K iterations. We use the Adam [18] opti-
mizer with the base learning rate of 2e-6 and the linear scal-
ing rule [8]. For the training of the first stage autoencoder
E ,D, we adopt the VQ-regularization [26] and the global
batch size is set as 64 for 256 × 256 and 32 for 512 × 512
resolutions. During inference, we use the DDIM [31] sam-
pler with 200 steps following [26]. For more implementa-
tion details, please refer to the supplementary materials.

4.1. Comparisons with Existing Methods

In this section, we will evaluate the effectiveness of our
method both quantitatively and qualitatively on FF++ [27]
and FFHQ [16] datasets.
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Source Target Eyes Nose Mouth All

Figure 6. Region-controllable face swapping. By constructing
masks covering different regions, our method can control which
region to be swapped.

Quantitative Comparison. We conduct experiments on
FF++ [27] dataset and compare our result with previous
methods in Table 1. Following common practice, we sam-
ple 10 images from each video to perform face swapping
and compute the metrics including ID retrieval, pose error,
expression error, and the Fréchet inception distance(FID).
To compute ID Retrieval, we first extract the identity fea-
ture using a different face recognition model [35]. For
each swapped face, we compute the nearest face from all
the frames in FF++ using the cosine similarity and check
whether it is from the source video. The pose error is com-
puted by the L-2 distance between the results’ and the tar-
gets’ poses estimated by a pose estimator [28]. The ex-
pression error is the L-2 distance between the expression
embeddings extracted by [34] of the swapped face and the
target face. The results show that our method outperforms
previous methods in ID Retrieval and FID, indicating that
we can generate high-fidelity swapped faces and can better
preserve the source identity. Meanwhile, we also achieve
comparable results on pose and expression, demonstrating
that our method can also keep the target attributes.

Qualitative Comparisons. We perform qualitative com-
parisons on both FFHQ [16] and FF++ [27]. For FFHQ,
we compared our method with two open-source methods
SimSwap [6] and HifiFace [36] and the results are shown in
Figure 4. We demonstrate that our method can yield high-
fidelity face swapping results, especially on face shapes and
local characteristics (eyes, nose, mouth). Specifically, in the
third row of Figure 4, our model can successfully transfer
the face shape of the children benefiting from the 3D-aware
masked diffusion while other methods tend to keep the
shape of the target face. These results indicate that explic-
itly controlling the landmark of the swapped face is more
useful to preserving the source shape than implicitly inject-
ing a 3D-related feature like HifiFace [36]. We also perform

Source Target 50 steps 100 steps 150 steps 200 steps

Figure 7. Visualization of the diffusion process. Our model start
by generating a face aligned with the target face and gradually add
details to make it similar to the source face.

the qualitative evaluation on FF++ dataset, where we use the
swapping results contained in the FF++ dataset including
FaceSwap [2], DeepFakes [1] and FaceShifter [21]. From
the results in Figure 5, we show that our method can also
better preserve both the identity and the face shape of the
source image, indicating that our method generalizes well
to unseen data distribution.

4.2. Analysis

Region-Controllable Face Swapping. Unlike previous
methods that swap the whole identity information to the tar-
get face, our method is more controllable to allow specify-
ing which region to be swapped. This can be easily achieved
by changing the masks during inference. To demonstrate
the controllability of our framework, we construct three
masks that cover the eyes, nose, and mouth, respectively.
We then perform the masked diffusion inside those masks
to achieve region-controllable face swapping, as shown in
Figure 6. We also include the swapping results of the whole
face in the last column. For the region swapping, we use the
landmark of the target face as the condition instead of the
3D-aware landmark. We show that our method can swap
a specific region, leaving the unmasked part unchanged.
These results also demonstrate that our model can capture
the low-level attributes of the regions, which are crucial to
recognizing the identity of a person.

Visualization of Diffusion Process. To better understand
how our model performs face swapping, we provide a visu-
alization of the intermediate output of the diffusion steps in
Figure 7. Specifically, we use Equation (7) to predict the ẑ0
given the intermediate latent features zt, and decode it back
to image spaceD(ẑ0) for visualization. We find that at very
early steps (e.g. 50 steps), our model can already generate a
blurred face that shares the same pose with the target face.
Afterward, our model gradually refines the face to match
the given conditioning landmark and adds details to ensure
identity consistency with the source face. We also find that
our model can deduce the lighting from the background by
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Source Target SimSwap Ours

Figure 8. Qualitative comparisons on FFHQ [16] at 512× 512
resolution. Our method remains robust to different poses and
shapes between the source and target faces at higher resolution.

progressively performing conditional inpainting.

Face Swapping at 512 × 512. To further demonstrate
the scalability of our method, we perform experiments on
512×512 resolution. To achieve this, we train another VQ-
GAN that takes as input a 512× 512 image while the latent
space is still 64×64. The 512×512 VQGAN is constructed
by adding extra layers to the original 256 × 256 one, thus
we can use the pre-trained weights of the 256 × 256 VQ-
GAN for fast adaptation. We then fine-tune our diffusion
model on the new latent space for 10K iterations. Figure 8
compares the face swapping results of SimSwap [6] and our
method at 512 × 512 resolution. We show that our model
can still generate high-fidelity swapping results at a higher
resolution, and is robust to different poses and face shapes
between the source and target faces.

Pose Controlling via DiffSwap. Apart from the competi-
tive performance of our method in the face swapping prob-
lem which aims to integrate the identity into a target pose,
we now demonstrate another usage of our method, i.e., to
control the pose of a specific person. To achieve this, we
first extract the 3D parameters of the input face using the
3D face reconstruction library [13]. We then rotate the 3D
face to some specific poses and render the corresponding
landmarks in the 2D space. The images with various poses
can then be generated by using the 2D landmarks at differ-
ent poses and the identity feature as the conditioning inputs.
As is shown in Figure 9, we visualize the source face at 5

Source Various Poses

Figure 9. Pose controlling via DiffSwap. As another application,
DiffSwap can also control the pose of a specific person. We show
that the identity and the pose are well disentangled.

different poses. No mask is used due to the large variance of
poses. The results demonstrate that our model can disentan-
gle the identity and landmark features and can successfully
model the conditional data distribution.

Limitations. Despite the effectiveness of DiffSwap, we
find that there still exist some disadvantages of our method.
Firstly, since we formulate the face swapping as condi-
tional inpainting, some detailed attributes of the target face
can not be fully preserved. Secondly, our method is non-
deterministic due to the generative formulation and thus
sometimes suffers from instability. Thirdly, our method
cannot deal with occlusion. We will improve our method
from the above aspects in future work.

5. Conclusion

We have presented a new framework named DiffSwap
which leveraged the powerful diffusion model by reformu-
lating face swapping as conditional inpainting. Several ef-
forts have been taken to adapt the diffusion model to face
swapping, including the designs on conditioning inputs and
the midpoint estimation during training. We have developed
a 3D-aware masked diffusion to explicitly ensured the con-
sistency of face shape for the first time. Extensive experi-
ments demonstrate our framework can achieve favorable re-
sults compared to previous methods and enjoys better con-
trollability and scalability. We hope our attempt can inspire
future work to further explore the formulation and imple-
mentation of face-swapping to achieve better results.
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