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Abstract

In the field of binocular stereo matching, remarkable

progress has been made by iterative methods like RAFT-

Stereo and CREStereo. However, most of these methods

lose information during the iterative process, making it

difficult to generate more detailed difference maps that take

full advantage of high-frequency information. We propose

the Decouple module to alleviate the problem of data

coupling and allow features containing subtle details to

transfer across the iterations which proves to alleviate the

problem significantly in the ablations. To further capture

high-frequency details, we propose a Normalization Refine-

ment module that unifies the disparities as a proportion of

the disparities over the width of the image, which address

the problem of module failure in cross-domain scenarios.

Further, with the above improvements, the ResNet-like

feature extractor that has not been changed for years

becomes a bottleneck. Towards this end, we proposed a

multi-scale and multi-stage feature extractor that intro-

duces the channel-wise self-attention mechanism which

greatly addresses this bottleneck. Our method (DLNR)

ranks 1st on the Middlebury leaderboard, significantly

outperforming the next best method by 13.04%. Our

method also achieves SOTA performance on the KITTI-

2015 benchmark for D1-fg. Code and demos are available

at: https://github.com/David-Zhao-1997/

High-frequency-Stereo-Matching-Network.
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1. Introduction

Figure 1. Motivation. We aim to address the problem of blurry

edges, thin object missing, and textureless region mismatch.

Stereo depth estimation is becoming the infrastructure

for 3D applications. Accurate depth perception is vital for

autonomous driving, drones navigation, robotics and other

related fields. The main point of the task is to estimate a

pixel-wise displacement map also known as disparity that

can be used to determine the depth of the pixels in the scene.

Traditional stereo matching algorithms [7,11,12] are mainly

divided into two types: global methods [6, 16, 17, 26] and

local methods [1, 13]. Both methods solve the optimiza-

tion problem by minimizing the objective function contain-

ing the data and smoothing terms, while the former takes

into account the global information, the latter simply takes

into account the local information, hence both have their

own benefits in terms of accuracy and speed when solv-

ing the optimization problem. Traditional methods have ex-

cellent generalization performance and robustness in differ-

ent scenarios, but perform poorly on details such as weak
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textures and repetitive texture regions. With the develop-

ment of convolutional neural networks, learning-based ap-

proaches [20, 28, 37] have lately demonstrated promising

result in tackling the matching problem of challenging re-

gions. Take advantages of the strong regularization perfor-

mance of the 3D convolution and 4D cost volume, meth-

ods [2, 10, 15, 45] using 3D convolution performs well.

While their practical applicability is limited by the high

computational cost. Subsequent methods [37,43] attempt to

use multiple adaptive aggregated and guided aggregated 2D

convolutions instead of 3D convolution, reducing computa-

tional cost and achieving better performance. The recent ap-

pearance of RAFT-Stereo [20] has given rise to a fresh con-

cept for the research of stereo matching. Derived from the

optical estimation method RAFT [29], RAFT-Stereo uses

the iterative refinement method for a coarse-to-fine pipeline.

It first calculates the correlation between all pixel pairs to

construct a 3D correlation pyramid. Then an update oper-

ator with a convolutional GRU as the core unit is used to

retrieves features from the correlation pyramid and updates

the disparity map [20].

Despite great progress has been made in learning-based

approaches, two major problems remain. (1) Most current

approaches fall short when it comes to the finer features of

the estimated disparity map. Especially for the edge perfor-

mance of the objects. In bokeh and rendering applications,

the edge performance of the disparity map is critical to the

final result. For example, technologies that require pixel-

level rendering, such as VR and AR, have high requirements

for fitting between the scene model and the image mapping,

which means we need a tight fit between the edges in the

disparity map and the original RGB image. (2) The mis-

match of textureless regions and the missing of thin objects

are also important factors that significantly deteriorate the

disparity map. For example, the mismatch of weak texture

walls and the missing of thin electrical wires are fatal flaws

for obstacle avoidance applications.

To alleviate these problems, we propose DLNR (Stereo

Matching Network with Decouple LSTM and Normaliza-

tion Refinement), a new end-to-end data-driven method for

stereo matching.

We introduced several improvements based on the itera-

tive model:

Most of the current iterative methods usually apply the

original GRU structure as their iterative cell. While the

problem is that in the original GRU structure, the informa-

tion used to generate the update matrix of the disparity map

is coupled with the value of the hidden state transfer be-

tween iterations, making it hard to keep subtle details in the

hidden state. Therefore, we designed the Decouple LSTM

module to decouple the hidden state from the update ma-

trix of the disparity map. Experiments and visualizations

proved that the module retains more subtle details in the

hidden states.

Decouple LSTM keeps more high-frequency informa-

tion in the iterative stage through data decoupling, how-

ever, in order to balance performance and computational

speed, the resolution of the iterative stage is only 1/4 of

the original resolution at most. To produce disparity maps

with sharp edges and subtle details, a subsequent refine-

ment module is still needed. In our refinement module, we

aim to sufficiently exploit the information from the upsam-

pled disparity maps, the original left and right images con-

taining high-frequency information to enhance edges and

details. However, due to the large differences in disparity

ranges between different images and different datasets, the

Refinement module often has poor generalization perfor-

mance when encountering images with different disparity

ranges. In particular, when performing finetune, the mod-

ule may even fail when encountering disparity ranges that

differ greatly. To address this problem, we propose the Dis-

parity Normalization strategy. Experiments and visualiza-

tions proved that the module improves performance as well

as alleviates the problem of domain difference.

After the above two improvements, we found that the

feature extractor became the bottleneck of the performance.

In the field of stereo matching, feature extraction has not

been improved significantly for years, most learning-based

methods still use ResNet-like feature extractors which fall

short when providing information for well-designed post-

stage structures. To alleviate the problem, we propose the

Channel-Attention Transformer feature extractor aims to

capture long-range pixel dependencies and preserve high-

frequency information.

2. Related Works

2.1. Learning-based Approaches

In recent years, learning-based methods show great im-

provements in the field of stereo matching. PSMNet [2]

solves the regularization problem by using 3D convolutions

and proved to be effective, which milestone in the field of

stereo matching, and the later CFNet [24] has improved on

its basis with a cascade and fused cost volume. AANet [37]

uses an adaptive cost aggregation approach instead of the

3D convolution, which achieves high efficiency and allevi-

ates the edge-fattening issue of the previous method. In-

stead of constructing the cost volume explicitly, HITNet

[28] relies on a fast multi-resolution initialization step, dif-

ferentiable 2D geometric propagation, and warping mecha-

nisms to infer disparity assumptions. The recently emerged

RAFT-Stereo [20] exploit the idea of using iterative update

for regularization, leading to competitive results.
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Figure 2. Overall structure of our method. The rectified image pairs are passed in to the Channel-Attention Transformer feature extractor

which is capable of long-range pixel modeling and the features are processed by the subsequent Multiscale Decouple LSTM Network
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Figure 3. Channel-Attention Transformer extractor. We use a series of CTBs to form a U-shape structure, which output multi-scale and

multi-stage features. Pixel Unshuffle is used for downsampling without any losing high-frequency details. CWSA denotes the Channel-

wise self-attention and GDFN [42] denotes Gated-Dconv feed-forward network.

2.2. Iterative Approaches

Recently, iterative method gain its popularity in 3D tasks

such as optic flow, stereo, structure from motion and MVS,

etc. Most of them show notable advantages compared to

other approaches. Zachary Teed first proposed the itera-

tive model RAFT [29], which first constructs 4D cost vol-

umes by calculating the relationship between all pixel pairs,

and then retrieves the iterated features from the correlation

volume using the GRU-based update operator for updat-

ing the optical flow field. The core of both stereo match-

ing and optical flow estimation tasks is to find the offsets

between pixel pairs. Therefore Lahav Lipson migrates the

framework of RAFT to stereo matching [20] and proposes

a streamlined and reasonable 3D correlation volume based

on epipolar constraint. In addition, RAFT-Stereo [20] in-

corporates a multiscale information processing mechanism

for the update operator. Wang introduces the iterative struc-

ture into the Multi-View Stereo task [31], and uses the GRU

update operator as a probability estimator for each pixel at

each depth hypothesis plane. Although iterative structures

have made breakthroughs in related fields, the current it-

erative units are too simple, which limits the accuracy of

iterative updates.

3. Approach

To tackle the problem, we designed an end-to-end net-

work consisting of three sequentially arranged modules as

shown in Figure 2. The Channel-Attention Transformer ex-

tractor takes a pair of rectified images Il and Ir as input.

Through multi-scale and multi-stage process, features Fl,

Fm and Fh are pass into the correlation volume and the

proposed Decouple LSTM. By the combining use of sam-

pling from the correlation volume and the current state, the

Decouple LSTM overlays the disparity map iterative and

finally output a 1/4 resolution disparity map and an upsam-

pling mask. The Normalization Refinement module take
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the above output and finally generate the final disparity map

Drefined.

3.1. Channel-Attention Transformer extractor

In the field of binocular stereo matching, feature ex-

traction has not improved significantly for years, and most

learning-based methods still use ResNet-like feature extrac-

tors. These types of feature extractors have become bottle-

necks in the network when providing information for well-

designed post-stage structures.

In recent years, Transformer and self-attention have

proved to be effective in many vision tasks for its long-

range pixel dependencies modeling ability. While its com-

putational cost grows quadratically with the image resolu-

tion. Inspired by Restormer [42], we designed a multi-stage

and multi-scale Channel-Attention Transformer as the fea-

ture extractor. Detailed structure can be seen in Figure 3.

We aim to design a feature extractor that not only capture

long-range pixel dependencies by also preserve as much

high-frequency information as possible.

3.1.1 Preserving high-frequency information

To achieve the goal of sharp edges and better deal with

weak texture regions, maintaining high-frequency during

the pipeline is of vital importance. The most intuitive

way is to maintain high-resolution throughout the structure

while it lead to extremely high computational cost. While

downsampling by convolution with stride or using pooling

mechanism will inevitably result in information loss and

performance degradation. To alleviate the problem, Pixel

Unshuffle is applied to downsample the image to 1/4 the

original size and expand the channels without losing any

high-frequency information. Specifically, the shape of the

original image is [C,H ∗ r,W ∗ r], which is reshaped to

[C ∗ r2, H,W ] after Pixel Unshuffle.

3.1.2 Channel Attention Mechanism

Conventional self-attention manages an attention map of

HW×HW , which lead to quadratic complexity, making

it impractical for vision tasks that requires high resolution.

Therefore, we adopt the CWSA module that derived from

MDTA [42] module first proposed by Restromer [42] which

computes self-attention on the channel dimension with lin-

ear complexity.

3.2. Multiscale Decouple LSTM Regularization

Our methods perform regularization using iterative unit.

Through each iteration, the iterative unit predict a new up-

date matrix of the disparity map ∆Di combining the multi-

scale and multi-stage information Fl, Fm and Fh from the

feature extractors, the hidden state generate by the last it-

eration hi−1, Ci−1 and the previous disparity map Di−1.

The unit is designed with the intention of using feature in-

formation as efficiently as possible and transferring valid

information efficiently between iterations.

3.2.1 Multiscale Design

In the stereo matching task, it is difficult to find correspond-

ing pixels in texture-less regions due to their weak pattern.

Therefore, capturing the pattern of spatially adjacent pixels

becomes a critical part of the problem. We handle this prob-

lem by multiscale design of our iterative module. Specifi-

cally, the iterative module is composed of three submod-

ules of different scales, which is 1/4, 1/8 and 1/16 the size

of the image resolution. Each of which interact with its

neighboring resolutions. The low-resolution branch has a

larger equivalent perceptual field which better deals with the

texture-less regions while the high-resolution branch cap-

tures more high-frequency details which add more details

to the edges and corners of the disparity map.

3.2.2 Decouple Mechanism

In the original GRU [4] structure used by most iterative vi-

sion networks, the hidden state h is used to generate the

update matrix of disparities (output of the GRU Cell), while

the h is also the hidden state of the GRU network (which

transfer information to the next iteration). This coupling is-

sue is proved to have a significant impact on the network

performance in our ablation experiments.

We address this problem by introducing an extra hidden

state C. As shown in Figure 4, the above-mentioned hid-

den state h is used for generating update matrix through the

disparity head while the newly introduced hidden state C is

used only for transferring information across iterations. The

design decouples the update matrix and the hidden state,

which can retain more effective semantic information across

iterations. Ablation studies show the effectiveness of the

method. More details can be seen in Table 3 and Figure 8.

3.3. Disparity Normalization Refinement

Since our model perform regularization on downsampled

resolutions, high-frequency information can not be fully

preserved in the process. Towards this end, we design a

refinement module intended to capture more subtle details

at full resolution.

We have observed that in the relatively independent mod-

ules in finetuning, the output of the feature maps may be

all negative due to domain differences, and after the ReLU

activation function, the feature maps all get 0 values, thus

causing the network to be unable to finetune this part of

the parameters, and can only pass the feature information to

the subsequent modules through the skip connection. This

leads to the problem that after the network is pre-trained,

some modules cannot be finetune well and even encounter
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module failure when finetune is performed in other data

sets.

As shown in Figure 5, the 1/4 resolution disparity map

is first upsampled by learned upsampling. Then warping

function is used to convert the right image to the left and

calculate an error map.

Dfr = learnedUpsample(Dlr, upMask) (1)

I
′

l = warp(Ir, disp) (2)

El = I
′

l − Il (3)

where Dfr denotes the disparity map of the full resolution,

Dlr denotes the disparity map before upsampling.

The upsampled disparities are scaled between 0 and 1.

Note that the min(Dfr) typically equals 0. We use the

width of the left image as denominator which is the max

possible disparity value.

D
fr
Norm =

Dfr −min(Dfr)

width(Il)
(4)

Then the information in the normalized disparity map

D
fr
Norm, the error map El and the left image Il are com-

bined and process by the hourglass network and produce a

normalized refined disparity map Dfr′ .

Ierr = Conv3×3([El, Il]) (5)

Dfr′ = hourglass([Ierr, Conv3×3(D
fr
Norm)]) (6)

Finally, disparity unnormalization is performed to generate

the final disparity map.

Drefined = Dfr′ × width(Il) +min(Dfr′) (7)

Refined 

Disparity Map

Learned 

Upsample

Warp 

& 

Error

Disp-UnNormDisp-Norm

Disparity Map

Unsample Mask 

Figure 5. Disparity Normalization Refinement

3.4. Loss Function

We supervised our network by the following equations:

L =

n−1∑

i=1

γn−iL1 + Lrefine, where γ = 0.9. (8)

L1 = ||dgt − di||1 (9)

Lrefine = ||dgt − drefined||1 (10)

4. Experiments

We implement our DLNR in PyTorch and using AdamW

as optimizer. For pretrain and ablations, we trained our

model on the augmented Scene Flow training set (both

cleanpass and finalpass) for 200k iterations with a batch

size of 8. The learning rate uses a OneCycle scheduler with

warm up strategy. The learning rate grows to 2e−4 in the

first 2k iterations and gradually decreases to 0 thereafter.

Data augmentation is used including saturation change, im-
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age perturbance, and random scales. The pretraining pro-

cess takes roughly 2 days on our server equipped with 2

NVIDIA Tesla A100 GPUs.

We evaluate our model on the Scene Flow [21] dataset

and two public benchmarks: Middlebury V3 [23] and

KITTI-2015 [22].

4.1. Middlebury

DLNR ranks 1st on the Middlebury V3 leaderboard, out-

performing the next best method by 13.04%.

We pretrained our model on the Scene Flow dataset and

then finetune on the Middlebury V3 training set, 10 eval-

uation training sets and 13 additional datasets are also in-

cluded for training. We finetune our model for 4k itera-

tions with a batch size of 2 and a linear decay learning rate

decreasing from 2e-5 to 0. The image resolution is set as

384 × 1024 using random crop. Data augmentation meth-

ods are set as the same as pretraining without any additional

settings.

Our method distinguishes subtle details and sharp edges

of thin structures such as the leaves and branches of the

plants in the Living Room and the overlap regions of the

lines on the map and the long thin structures of the metal

craft. Our method is also robust on the weak texture re-

gions and occluded regions such as the staircase. Details

are shown in Table 1. Visual comparisons are shown in Fig-

ure 6.

4.2. KITTI-2015

DLNR achieves SOTA performance on the KITTI-2015

D1-fg metric among all published methods at the time of

writing this paper.

We pretrained our model on the Scene Flow datasets and

fine-tuned our model on the KITTI training set for 6k itera-

tions with a fixed learning rate of 0.00002 and a batch size

of 8. The image resolution is set as 320 × 1024 using ran-

dom crop. Data augmentation methods are set as the same

as pretraining. Evaluation details are shown in Table 2. Vi-

sual comparisons are shown in Figure 7.

4.3. Ablations

To verify and better understand the structure of our

model, extensive ablation experiments were conducted. For

Scene Flow dataset, all hyperparameters settings are iden-

tical to the pretraining. And for KITTI dataset, all of fine-

tune strategies are the same as the above mentioned KITTI

benchmark. Details are shown in Table 3.

4.3.1 Decouple LSTM

As shown in Table 3, the use of Decouple LSTM signifi-

cantly decreases the Scene Flow D1-error by 9.73% (from

5.96 to 5.38). To better understand the effect of the Decou-

Table 1. Results on the Middlebury stereo dataset V3 [23] leader-

board. The best results for each metric are bolded, second best are

underlined. For all metrics, lower is better.

bad 0.5

nonocc

(%)

bad 1.0

nonocc

(%)

bad 2.0

nonocc

(%)

bad 4.0

nonocc

(%)

avgerr

nonocc

(%)

LocalExp [27] 38.7 13.9 5.43 3.69 2.24

NOSS-ROB [14] 38.2 13.2 5.01 3.46 2.08

HITNet [28] 34.2 13.3 6.46 3.81 1.71

RAFT-Stereo [20] 27.2 9.37 4.74 2.75 1.27

CREStereo [19] 28.0 8.25 3.71 2.04 1.15

EAI-Stereo 25.1 7.81 3.68 2.14 1.09

DLNR (Ours) 23.9 6.82 3.20 1.89 1.06

Table 2. Results on the KITTI-2015 [22] leaderboard. The best

results for each metric are bolded, second best are underlined.

Method D1-all D1-fg D1-bg

AcfNet [45] 1.89 3.80 1.51

AMNet [5] 1.82 3.43 1.53

OptStereo [33] 1.82 3.43 1.50

GANet-deep [43] 1.81 3.46 1.48

RAFT-Stereo [20] 1.96 2.89 1.75

HITNet [28] 1.98 3.20 1.74

CFNet [24] 1.88 3.56 1.54

PCWNet [25] 1.67 3.16 1.37

ACVNet [36] 1.65 3.07 1.37

DLNR (Ours) 1.76 2.59 1.60

ple LSTM, we visualize the hidden state h and the newly

introduced C of the Decouple LSTM. Details are shown in

Figure 8. From the visualization, we can conclude that as

motioned in the approach section, the hidden state C retains

more features of the edges and more features of the thin ob-

jects, resulting in a better detail of the disparity map.

The Decouple LSTM also shows strong cross-domain

performance. We pretrain our model on the Scene Flow

dataset, and then finetune the model on the KITTI-2015

training set. After finetune, we test our model on the Scene

Flow validation set to evaluate the cross-domain perfor-

mance. Experiments show that the D1-error of model us-

ing GRU is 16.38, while the model using Decouple LSTM

is only 12.75, decreasing the error by 22.16%. Detailed re-

sults are shown in Table 3.

4.3.2 Normalization Refinement

As shown in Table 3, Disparity Refinement further improves

the accuracy. This model increases the generalization abil-

ity as well. For the Scene Flow epe using KITTI weights,

adding Normalization Refinement decreases the error by

11.22% (from 1.96 to 1.74). As shown in Figure 6, the

module introduces high-frequency information of the origi-

nal image, and produces disparity map with subtle details.
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Figure 6. Comparisons on the Middlebury dataset. Our method distinguishes subtle details and sharp edges of thin structures such as the

leaves and branches of the plants in the Living Room and the overlap regions of the lines on the map and the long thin structures of the

metal craft. Our method is also robust on the weak texture regions and occluded regions such as the staircase. 1px error of each image is

marked at the corner. Zoom in for a better view.

Table 3. Ablations on different structures of our proposed model.

Channel-Attention

Transformer Extractor

Disparity

Normalization

Refinement

Decouple

LSTM

Sceneflow

epe

Sceneflow

D1-error

KITTI

epe

KITTI

D1-error

Scene Flow

D1-error

(KITTI weights)

Scene Flow

epe

(KITTI weights)

- 6.54 0.491 1.290 27.70 2.37

✓ - 5.87 0.468 1.108 18.60 1.82

✓ ✓ - 5.74 0.401 0.854 17.99 1.87

✓ 0.520 5.91 0.354 0.637 14.48 1.97

✓ ✓ 0.534 5.96 0.344 0.626 16.38 1.95

✓ ✓ 0.481 5.51 0.356 0.655 14.31 1.96

✓ ✓ ✓ 0.477 5.38 0.335 0.561 12.75 1.74

4.3.3 Channel-Attention Transformer extractor

Channel-Attention Transformer extractor alleviates bottle-

necks and shows great improvements in the ablations. By

only applying the module on our baseline, the D1-error of

the Scene Flow dataset decreased by 9.63% and the D1 er-

ror of the KITTI dataset decreased by 50.6%. Compared to

the model using ResNet-like extractor, our final model de-

creased the error by significant 34.3% (from 0.854 to 0.561)

in D1-error on the KITTI dataset. Details are shown in Ta-

ble 3.

4.4. Performance and Inference Speed

In real-world applications, it is important to achieve a

balance between performance and inference speed. We

have conducted relevant experiments, the results of which

are shown in Table 4.

4.5. Evaluation on Multi-View Stereo

We migrate our core modules to Multi-View Stereo task,

and demonstrate that the Decouple LSTM and Normaliza-

tion Refinement can achieve an excellent balance between

the efficiency and reconstruct quality. we have achieved
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Left Image

HITNet

OptStereo

CFNet

DLNR

Figure 7. Comparisons on the KITTI dataset. Our method is ro-

bust on the weak texture regions and produces disparity maps with

sharp edges.

Figure 8. Visualization of the hidden state h and the newly in-

troduced hidden state C. Specifically, we use PCA to reduce the

number of channels from 128 to 1. The hidden state C retains

more features of the edges (see the red box) and more features of

the thin objects (see the blue and yellow boxes). Zoom in for bet-

ter view.

Table 4. Performance and inference speed with different iterations.

Iterations
KITTI

D1 error

KITTI

Time

(ms)

Scene Flow

epe

Scene Flow

D1 error

Scene Flow

Time

(ms)

5 0.637 91 0.593 6.91 99

7 0.582 110 0.538 6.24 112

10 0.561 131 0.502 5.77 135

16 0.554 171 0.483 5.49 180

22 0.557 214 0.478 5.44 224

32 0.561 285 0.477 5.38 297

promising results in both the challenging DTU and Tanks

& Temples benchmarks. The results are shown in Table 5

and Table 6 respectively. The depth map is compared in

Figure 9.

We use IterMVS [31] as our baseline, which is also an

iterative method. We integrate the Multi-scale design and

Decouple LSTM into our method, which is our light ver-

sion. In addition, we add Normalization Refinement to the

lightweight version as a full version.

Table 5. Quantitative results of reconstruction quality on the DTU

evaluation dataset (↓). A and B are the conventional methods and

high-accuracy learning-based methods, respectively. C and D are

high-efficiency learning-based methods.

Method Acc. Comp. overrall

A
Tola [30] 0.342 1.190 0.766

Gipuma [8] 0.283 0.873 0.578

CasMVSNet [9] 0.325 0.385 0.355

D2HC-RMVSNet [39] 0.395 0.378 0.386

B
CVP-MVSNet 0.296 0.406 0.351

AA-RMVSNet [34] 0.376 0.339 0.357

Vis-MVSNet [44] 0.369 0.361 0.365

C

Fast-MVSNet [41] 0.336 0.403 0.370

PatchMatchNet [32] 0.427 0.277 0.352

IterMVS [31] 0.373 0.354 0.363

D
IterMVS+MS+DL (ours) 0.372 0.345 0.358

IterMVS+MS+DL+NR (ours) 0.360 0.328 0.344

Table 6. Quantitative results of different methods on the Tanks &

Temples benchmark . ªMeanº refers to the mean F-score of all

scenes (↑).

F-score
Intermediate Dataset

Fam. Franc. Horse Light M60 Pan. Play. Train Mean

OpenMVS 71.69 51.12 42.76 58.98 54.72 56.17 59.77 45.69 55.11

CIDER [38] 56.79 32.39 29.89 54.67 53.46 53.51 50.48 42.85 46.76

CasMVSNet [9] 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51 56.84

UCS-Net [3] 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89 54.83

CVP-MVSNet [40] 76.50 47.74 36.34 55.12 57.28 54.28 57.43 47.54 54.03

D2HC-RMVSNet [39] 74.69 56.04 49.42 60.08 59.81 59.61 60.04 53.92 59.20

Fast-MVSNet [41] 65.18 39.59 34.98 47.81 49.16 46.20 53.27 42.91 47.39

PatchMatchNet [32] 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81 53.15

MVSTR [46] 76.92 59.82 50.16 56.73 56.53 51.22 56.58 47.48 56.93

PatchMatch-RL [18] 60.37 43.26 36.43 56.27 57.30 53.43 59.85 47.61 51.81

RayMVSNet [35] 78.56 61.96 45.48 57.58 61.01 59.76 59.20 52.32 59.49

IterMVS [31] 76.12 55.80 50.53 56.05 57.68 52.62 55.70 50.99 56.94

IterMVS+MS+DL (ours) 76.07 55.09 51.81 56.10 60.23 56.27 54.33 53.35 57.91

IterMVS+MS+DL+NR (ours) 77.85 59.69 54.73 57.69 58.62 56.40 56.19 54.88 59.51

IterMVS IterMVS+MS+DL IterMVS+MS+DL+NRReference Image

Figure 9. Depth estimation on the DTU dataset. Our method has

a clear advantage, Multiscale (MS) and Decouple LSTM (DL) en-

hance the depth level, Normalization Refinement (NR) refines the

edges. Zoom in for better view.

5. Conclusion

We have proposed DLNR, a new learning based method

for Stereo Matching task. Decouple LSTM and Normaliza-

tion Refinement are proposed to capture subtle details and

produce disparity maps with sharp edges. Our method ranks

first on the Middlebury leaderboard and achieves SOTA per-

formance in foreground prediction on KITTI-2015.
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