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Abstract

We introduce LAVILA, a new approach to learning

video-language representations by leveraging Large Lan-

guage Models (LLMs). We repurpose pre-trained LLMs to

be conditioned on visual input, and finetune them to create

automatic video narrators. Our auto-generated narrations

offer a number of advantages, including dense coverage

of long videos, better temporal synchronization of the vi-

sual information and text, and much higher diversity of text.

The video-language embedding learned contrastively with

these narrations outperforms the previous state-of-the-art

on multiple first-person and third-person video tasks, both

in zero-shot and finetuned setups. Most notably, LAVILA

obtains an absolute gain of 10.1% on EGTEA classifica-

tion and 5.9% Epic-Kitchens-100 multi-instance retrieval

benchmarks. Furthermore, LAVILA trained with only half

the narrations from the Ego4D dataset outperforms models

trained on the full set, and shows positive scaling behavior

on increasing pre-training data and model size.

1. Introduction

Learning visual representation using web-scale image-

text data is a powerful tool for computer vision. Vision-

language approaches [31, 49, 80] have pushed the state-of-

the-art across a variety of tasks, including zero-shot classi-

fication [49], novel object detection [87], and even image

generation [52]. Similar approaches for videos [4, 39, 46],

however, have been limited by the small size of paired

video-text corpora compared to the billion-scale image-text

datasets [31, 49, 84]—even though access to raw video data

has exploded in the past decade. In this work, we show it

is possible to automatically generate text pairing for such

videos by leveraging Large Language Models (LLMs), thus

taking full advantage of the massive video data. Learning

video-language models with these automatically generated

annotations leads to stronger representations, and as Fig-

ure 1 shows, sets a new state-of-the-art on six popular first
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Figure 1. LAVILA sets a new state-of-the-art across a number

of first and third-person video understanding tasks (cf . Table 1 for

details), by learning a video-language representation using super-

vision from large language models as narrators.

and third-person video benchmarks.

Our method, called LAVILA: Language-model

augmented Video-Language pre-training, leverages pre-

trained LLMs, e.g. GPT-2 [50], which encode within

their weights a treasure trove of factual knowledge and

conversational ability. As shown in Figure 2, we repurpose

these LLMs to be “visually-conditioned narrators”, and

finetune on all accessible paired video-text clips. Once

trained, we use the model to densely annotate thousands

of hours of videos by generating rich textual descriptions.

This pseudo-supervision can thus pervade the entire video,

in between and beyond the annotated snippets. Paired

with another LLM trained to rephrase existing narrations,

LAVILA is able to create a much larger and more diverse

set of text targets for video-text contrastive learning. In

addition to setting a new state-of-the-art as noted earlier,

the stronger representation learned by LAVILA even

outperforms prior work using only half the groundtruth

annotations (Figure 5).

LAVILA’s strong performance can be attributed to a

number of factors. First, LAVILA can provide temporally

dense supervision for long-form videos, where the associ-
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Figure 2. LAVILA leverages Large Language Models (LLMs)

to densely narrate long videos, and uses those narrations to train

strong dual-encoder models. While prior work uses sparsely la-

beled text by humans, or weakly aligned text transcribed from

speech, LAVILA is able to leverage dense, diverse, and well-

aligned text generated by a LLM.

ated captions are either too sparse, or the video-level “Alt-

Text” (in the case of web videos) does not describe all the

nuanced activities happening in it. Second, the generated

text is well-aligned with the visual input. Although prior

work has leveraged automatic speech transcription on How-

To videos [45] to automatically extract clips paired with

text from the speech, such datasets have relatively poor

alignment between the visual and textual content (≤ 50%,

cf . [25, 45]), limiting the quality of the learned represen-

tations. Third, LAVILA can significantly expand annota-

tions when only a little is available. For instance, videos of

mundane day-to-day activities, especially from an egocen-

tric viewpoint, could be very useful for assistive and aug-

mented reality applications. Such videos, however, are rare

on the internet, and hence do not readily exist with associ-

ated web text. Recent work [24] instead opted to manually

capture and narrate such video data. These narrations how-

ever required significant manual effort: 250K hours of an-

notator time spent in narrating 3.6K hours of video. In con-

trast, LAVILA is able to automatically narrate each video

multiple times and far more densely, and hence learns much

stronger representations.

We extensively evaluate LAVILA across multiple video-

text pre-training datasets and downstream tasks to validate

its effectiveness. Specifically, after being pre-trained on

Ego4D, the largest egocentric video datasets with narra-

tions, LAVILA can re-narrate the whole dataset 10× over.

The resulting model learned on these expanded narrations

sets a new state-of-the-art on a wide range of downstream

tasks across challenging datasets, including multi-instance

video retrieval on Epic-Kitchens-100 (5.9% absolute gain

on mAP), multiple-choice question answering on Ego4D

(5.9% absolute gain on intra-video accuracy), and action

recognition on EGTEA (10.1% absolute gain on mean ac-

curacy). It obtains gains both when evaluated for zero-shot

transfer to the new dataset, as well as after fine-tuning on

that dataset. Similar gains are shown in third-person video

data. When training LAVILA after densely re-narrating

HowTo100M, we outperform prior work on downstream ac-

tion classification on UCF-101 and HMDB-51. In a case

study of semi-supervised learning, we show that our model,

which only ever sees 50% of the human-labeled data, is ca-

pable of outperforming the baseline model trained with all

the narrations. Moreover, the gains progressively increase

as we go to larger data regimes and larger backbones, sug-

gesting the scalability of our method.

2. Related Work

Vision-language representation learning maps visual and

textual embeddings into a common space using metric-

learning techniques [21, 73]. Recently, different pretext

tasks are proposed to learn a finer-grained association be-

tween visual and textual modality, e.g. masked language

modeling (MLM) [10, 41, 62] and captioning [16, 80]. An-

other line of research focuses on scaling up both mod-

els and pre-training data. For instance, CLIP [49] is

pre-trained on 400M image-text pairs with a contrastive

loss (InfoNCE [48, 59]) while CoCa [80] unifies con-

trastive and generative approaches with a single founda-

tion model. Similar trends are also witnessed in the video-

text domain [36, 64, 88]. However, collecting high-quality

video-text data is more difficult than image-text. There-

fore, efforts are made to learn from uncurated videos with

machine-generated audio transcripts via contrastive learn-

ing [44, 77, 82] or unsupervised alignment [25] while other

works focus on either adapting well-performing image-text

models to videos [32, 40, 47, 78], or curriculum learning

from a single frame to multiple frames [4]. In contrast, our

approach leverages language models to generate temporally

dense textual supervision on long-form videos.

Generative Visual Language Models (VLM) were first

used for image/video captioning using recurrent net-

works [17, 68] and Transformer-based architectures [42,

56]. More recently, generative VLMs have unified multiple

vision tasks [11, 89] by training multi-modal Transformers

on visual-text pairs [30, 81]. Meanwhile, generative VLMs

also excel at multimodal tasks via zero-shot or few-shot

prompting [1, 65, 83] by leveraging multi-billion-parameter

LLMs pre-trained on massive text corpus [7, 28, 50]. In

our work, we demonstrate that generative VLMs can nar-

rate long videos and the resulting video-text data benefits

video-language representation learning.

Large-scale multimodal video datasets are crucial for

6587



video understanding tasks but are hard to collect. Conven-

tional video-text datasets [8, 53, 86] either have limited sce-

narios, e.g. cooking, or are not large enough to learn generic

video representation. Miech et al. [45] scrape over 100 mil-

lion video-text pairs via automatic audio transcription from

long-form How-To videos. However, ASR introduces tex-

tual noise and visual-text unalignment [25]. WebVid [4]

contains 10 million short videos with textual descriptions.

But it is still several orders of magnitude smaller than the

image counterparts [49, 54] and is harder to scale up since

it is sourced from stock footage sites. The recently released

Ego4D [24] dataset offers 3,600 hours of egocentric videos

in which written sentence narrations are manually annotated

every few seconds but requires significant manual effort. In

contrast, our method shows a promising alternative by au-

tomatically narrating videos using supervision from LLM.

Data augmentation techniques in NLP, including word-

level replacement based on synonyms [72, 85] or nearest-

neighbor retrieval [19, 70], improve text classification ac-

curacy. We refer readers to [20] for a comprehensive sur-

vey. In this paper, we show that sentence-level paraphras-

ing based on text-to-text models [51] is helpful for video-

language pre-training.

3. Preliminaries

A video V is a stream of moving images I . The num-

ber of frames |V | can be arbitrarily long while video mod-

els typically operate on shorter clips, which are often in the

range of a few seconds. Therefore, we skim through a long-

form video and represent it by a set of N short clips, i.e. X .

Each clip xi is defined by a specific start and end frame

xi = {Iti , · · · , Iei}, where 0 < ti < ei ≤ |V |, and is

typically associated with some annotation yi. This anno-

tation could be a class label or free-form textual descrip-

tion of the clip. We denote a video by the set of annotated

clips with their corresponding annotations, i.e. (X ,Y) =
{(x1, y1), · · · , (xN , yN )}. Note that the annotated clips of-

ten cannot densely cover the entire video due to the annota-

tion cost and visual redundancy, i.e.
⋃

i[ti, ei] ⊊ [0, |V |].
A typical video model F(X ,Y) learns from these clip-

level annotations using a standard training objective such
as a cross-entropy loss when the annotations are class la-
bels with a fixed vocabulary. However, more recently, dual-
encoder-based contrastive approaches like CLIP [49, 77]
have gained popularity. They work with free-form textual
annotations which are tokenized [55] into sequences of dis-

crete symbols, i.e. y = (s1, s2, · · · , sL) ∈ {1, 0}
|S|×L. The

model consists of a visual encoder fv : RT×3×H×W 7→
RDv plus a projection head hv : RDv 7→ Rd and a tex-

tual encoder ft : {1, 0}
|S|×L 7→ RDt plus a projection head

ht : RDt 7→ Rd in parallel to obtain the global visual and
textual embedding respectively:

v = hv(fv(x)), u = ht(ft(y)).

Narration C separates the yarn

NARRATOR

C stretches the thread 

with both hands.

REPHRASER
C divides the yarn 

by a few stitches.

C pulls out the yarn 

with her right hand.

Narration C lifts container.

NARRATOR

C wipes the countertop 

with a sponge.

REPHRASER C raises the container. C moves the container.

Figure 3. Generated samples by NARRATOR and REPHRASER.

NARRATOR generates new descriptions of the action taking

place, potentially focusing on other objects being interacted with.

REPHRASER not only changes the word order of the human narra-

tion but also diversifies it by using related verbs or nouns.

A contrastive loss, such as InfoNCE [48], learns global em-
beddings that associate corresponding video and text em-
beddings within a batch of samples B,

1

|B|
∑

(x,y)∈B

(InfoNCE(v,u) + InfoNCE(u,v)) . (1)

4. LAVILA

In LAVILA, we leverage large language models (LLMs)

as supervision to train the dual-encoder model, where the

LLMs serve as vision-conditioned narrators and automati-

cally generate textual descriptions from video clips. In par-

ticular, we exploit supervision from two LLMs: (1) NAR-

RATOR (§ 4.1) is a visually-conditioned LLM that pseudo-

labels existing and new clips with narrations, generating

new annotations (X ′,Y ′). (2) REPHRASER (§ 4.2) is a

standard LLM that paraphrases narrations in existing clips,

augmenting those annotations to (X ,Y ′′). As illustrated

in Figure 3, NARRATOR generates new descriptions of the

action taking place, potentially focusing on other objects

being interacted with. REPHRASER serves to augment the

text input, e.g., changes word order of the human narration

and additionally replaces common verbs or nouns, mak-

ing annotations more diverse. Finally, we train the dual-

encoders (§ 4.3) on all these annotations combined, i.e.

(X ,Y) ∪ (X ′,Y ′) ∪ (X ,Y ′′).

4.1. NARRATOR

Traditional LLMs, such as GPT-2 [50], are trained to
generate a sequence of text tokens (s1 · · ·sL) from scratch
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Figure 4. Language supervision from REPHRASER and NARRATOR. REPHRASER(left) takes the narration as input, passes it through a

text encoder and uses a text decoder to autoregressively generate the rephrased output. NARRATOR(right) takes video frames as input and

obtains the visual embeddings through a video encoder followed by attentional pooling. Equipped with a few additional cross-attention

modules, the text decoder autoregressively generates new narrations for those new frames.

by modeling the probability of the next token given all to-
kens seen so far: p(sl|s<l). NARRATOR repurposes existing
LLMs to be conditioned on the visual input and is trained
on the original annotations (X ,Y). The resulting model
produces dense new annotations (X ′,Y ′) on the full video.
Following the formulation of factorized probabilities in lan-
guage models [5], we model the visually conditioned text
likelihood as follows:

pNARRATOR(y
′|x′) =

L
∏

ℓ=1

p(s′ℓ|s′<ℓ, x
′). (2)

Architecture. We design NARRATOR to closely follow the

architecture of standard LLMs, with only a few additional

cross-attention modules added to provide visual condition-

ing, as illustrated in Figure 4 (right). This enables NAR-

RATOR to be initialized from pre-trained weights, which is

crucial for our task as the data we use to train NARRATOR

(narrations associated with video clips) are far smaller in

scale compared to the large text corpus typically used to

train LLMs. Moreover, video narrations are less diverse and

noisier because they are either collected by only a few an-

notators or automatically transcribed from speech. Similar

“frozen-LM” approaches have shown effectiveness in mul-

timodal few-shot adaptation in recent work [1, 65].

Specifically, we take a frozen pre-trained LLM and add

a cross-attention module before each Transformer decoder

layer so that the text input can attend to visual information.

The cross-attended output then sums with the input text fea-

ture via residual connection [26] and goes to the Trans-

former decoder layer. Each cross-attention module com-

prises a cross-attention layer, which takes textual tokens as

queries and visual embedding as keys and values, followed

by a feed-forward network (FFN). Layer Normalization [3]

is applied at the beginning of both cross-attention and FFN.

We add tanh-gating [27], with an initial value of zero, such

that the output of the new model is the same as that from the

original language model at the beginning.

While features from any video model are applicable for

conditioning, for convenience we adopt the video encoder

fromF in § 3, trained contrastively on the ground-truth data

(X ,Y). We use features before global pooling to allow the

LLM to leverage fine-grained spatial-temporal information.

Training. We train NARRATOR on all of, or a subset of, the
ground-truth annotations (X ,Y). For each pair (x, y), the
captioning loss is the sum of the negative log-likelihood of
the correct word at each step,

LNARRATOR(x, y) = −
L
∑

ℓ=1

log p(sℓ|s<ℓ, x). (3)

Inference. At inference time, we query NARRATOR by

feeding visual input x plus a special start-of-sentence to-

ken <s>. We sample from the distribution recursively, i.e.

s̃ℓ ∼ p(s|[<s>, · · · , s̃ℓ−1], x) until an end-of-sentence to-

ken </s> is reached. Following [29], at each step we sam-

ple from a subset of tokens that contain the vast majority of

the probability mass, which is known as nucleus sampling.

The effect of nucleus sampling is two-fold. On the one

hand, it generates more diverse, open-ended, and human-

like text than maximum-likelihood-based methods such as

beam search and its variants [67]. On the other hand, the

generated text may contain irrelevant or noisy information

due to sampling without post-processing based on sentence-

level likelihood. To address this, we repeat the sampling

process for K times on the same visual input. We later

demonstrate that the contrastive pre-training objective is ro-

bust to the noise caused by sampling, and the final perfor-

mance benefits from a more diverse set of narrations.

To sample video clips for captioning, we start by sim-

ply re-captioning the existing clips labeled in the dataset

X , resulting in expanded annotations. Furthermore, long-

form videos are typically sparsely narrated, meaning that

the temporal union of all labeled clips cannot cover the en-

tire video. Hence, we use NARRATOR to annotate the re-

mainder of the video to obtain additional annotations by

pseudo-captioning. With a simple assumption that video

is a stationary process, we uniformly sample clips from the

unlabeled intervals. The clip duration is equal to the av-

erage of all ground-truth clips, i.e. ∆ = 1
N

∑N
i=1(ei − ti)

while the sampling stride is computed likewise. Finally, by
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combining both re-captioned and pseudo-captioned narra-

tions, we refer to the final set of annotations generated by

NARRATOR as (X ′,Y ′).
Post-processing. Exhaustive pseudo-captioning may con-

tain some uninformative visual clips and generate text that

is not useful. Thus, we add a filtering process to elimi-

nate low-quality clips and their associated descriptions. We

use the baseline dual-encoder model F , which is trained

on the ground-truth paired clips, to compute the visual and

textual embedding of pseudo-labeled pairs and filter based

on the similarity score, i.e. Filter(fv(x
′
j)

⊤ · ft(y
′
j)), where

Filter(·) can be either top-k of all generated text or a thresh-

old filtering. In the experiments, we use a threshold of 0.5.

4.2. REPHRASER

The data generated by NARRATOR is several times larger
than the ground-truth pairs. To ensure that we do not overfit
the pseudo-labeled data, we increase the number of ground-
truth narrations by paraphrasing. In particular, we use a
text-to-text LLM which models conditional text likelihood:

pREPHRASER(y
′′|y) =

L
∏

ℓ=1

p(s′′ℓ |s′′<ℓ, y).

The text-to-text model is implemented by an encoder-

decoder architecture, e.g. T5 [51], to auto-regressively gen-

erate a new sentence given the original one. We observe

that REPHRASER is able to do basic manipulations such as

replacing synonyms or changing word order, which serves

as an efficient way of automatic data augmentation. The

resulting annotations are referred to as (X ,Y ′′).

4.3. Training the Dual­Encoders

We train the dual-encoders as described in Algorithm 1

in Appendix E. In each iteration, we first sample a batch B
of video clips. It comprises a subset of clips Bl with labeled

timestamps as well as narrations, and a subset Bu whose

clips are randomly sampled from videos without narrations.

For clip xi ∈ Bu, we obtain the pseudo-caption y′i by query-

ing the NARRATOR y′i ∼ pNARRATOR(y
′|x), resulting in a

set of clips with LLM-generated narrations B̃u. For clip

(xi, yi) ∈ Bl, the text supervision is obtained from either

the REPHRASER or the NARRATOR, with a probability of

0.5. Hence, the effective number of iterations per epoch for

LAVILA is the same as that for the baseline Dual-Encoder.

We denote the resulting set of pairs to be B̃l similarly. Fol-

lowing CLIP [49], we use the symmetric cross-entropy loss

over the similarity scores of samples in the batch B̃l ∪ B̃u.

In practice, we run REPHRASER and NARRATOR in

advance and cache the resulting video-narration pairs so

that there is no computational overhead during pre-training.

Therefore, training a dual-encoder in LAVILA is as fast as

training a standard dual-encoder contrastive model.

Datasets Task Ego? Metrics Eval. Prot.

EK-100 [14] MIR ✓ mAP, nDCG ZS, FT

EK-100 [14] CLS ✓ top-1 action acc. FT

Ego4D [24] MCQ ✓ inter-/intra-video acc. ZS

Ego4D [24] NLQ ✓ Recall@N FT

EGTEA [37] CLS ✓ top-1, mean acc. ZS, FT

CharadesEgo [58] CLS ✓ video-level mAP ZS, FT

UCF-101 [60] CLS ✗ mean acc. LP

HMDB-51 [35] CLS ✗ mean acc. LP

Table 1. Downstream datasets and metrics used for evaluation.

We evaluate LAVILA on a wide range of tasks including Multi-

Instance Retrieval (MIR), Multiple-Choice Question (MCQ), Nat-

ural Language Query (NLQ), and Action Recognition (CLS). The

evaluation protocols include zero-shot (ZS), fine-tuning (FT), and

linear-probing (LP). Please refer to Appendix C for more details.

5. Experiments

Dual-Encoder Architecture. The video-language model

follows a dual-encoder architecture as CLIP [49]. The Vi-

sual encoder is a TimeSformer (TSF) [6], whose spatial at-

tention modules are initialized from a ViT [18] which is

contrastively pre-trained on large-scale paired image-text

data as in CLIP [49]. We sample 4 frames per clip during

pre-training and 16 when finetuning on downstream tasks.

The text encoder is a 12-layer Transformer [50, 66]. We use

BPE tokenizer [55] to pre-process the full sentence corre-

sponding to the video clip and keep at most 77 tokens.

NARRATOR’s architecture is a visually conditioned auto-

regressive Language Model. The visual encoder is by de-

fault TimeSformer-L while the text decoder is a GPT-2

XL. During inference, we use nucleus sampling [29] with

p = 0.95 and return K = 10 candidate outputs.

REPHRASER. We use an open-source paraphraser [23]

based on T5-large [51]. It is pre-trained on C4 [51] and

then finetuned on a cleaned subset of ParaNMT [74]. Dur-

ing inference, we use Diverse Beam Search [67] with group

number the same as beam number (G = B = 20) and set

the diversity penalty to be 0.7. We keep 3 candidates per

sentence, remove punctuations, and do basic de-duplication.

Pre-training dataset. We train on the video-narration pairs

from Ego4D [13, 24], the largest egocentric video dataset

to date. We exclude videos that appear in the validation and

test sets of the Ego4D benchmark and determine each clip’s

interval using the same pairing strategy in [39]. This results

in around 4M video-text pairs with an average clip length of

1 second. We also experiment with third-person videos by

pre-training on HowTo100M [45] in § 5.2.

Evaluation protocols. We evaluate the learned video-text

encoders using three evaluation protocols. (1) Zero-Shot

(ZS), meaning that we apply the pre-trained video-text en-

coders directly on the downstream validation dataset to per-

form video↔text retrieval tasks, without any tuning on the

downstream dataset. Zero-shot classification is performed
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Method Backbone
mAP nDCG

V→T T→V Avg. V→T T→V Avg.

(ZERO-SHOT)

EgoVLP [39] TSF-B 19.4 13.9 16.6 24.1 22.0 23.1

EgoVLP∗ [39] TSF-B 26.0 20.6 23.3 28.8 27.0 27.9

LAVILA TSF-B 35.1 26.6 30.9 33.7 30.4 32.0

LAVILA TSF-L 40.0 32.2 36.1 36.1 33.2 34.6

(FINETUNED)

MME [75] TBN 43.0 34.0 38.5 50.1 46.9 48.5

JPoSE [75] TBN 49.9 38.1 44.0 55.5 51.6 53.5

EgoVLP [39] TSF-B 49.9 40.5 45.0 60.9 57.9 59.4

LAVILA TSF-B 55.2 45.7 50.5 66.5 63.4 65.0

LAVILA TSF-L 54.7 47.1 50.9 68.1 64.9 66.5

Table 2. EK-100 MIR. LAVILA outperforms prior work across all

settings, metrics and directions of retrieval, with larger gains when

switching to a larger model. Specifically, our best model achieves

over 10% absolute gain in the zero-shot setting and 5.9 ∼ 7.1%
gain in the finetuned setting. EgoVLP∗ refers to our improved

version of [39], details of which are given in Appendix F.

similarly, where we compute the similarity score between

the video clip and the textual description of all possible cat-

egories. (2) Finetuned (FT), where we take the pre-trained

video-text model and perform end-to-end fine-tuning on the

training split of the target downstream dataset. (3) Linear-

Probe (LP), where we compute the video features from a

frozen encoder and train a linear SVM on top of the train-

ing split of the downstream dataset.

Downstream benchmarks. We use multiple benchmarks

across four first-person (egocentric) and two third-person

datasets, as enumerated in Table 1. We summarize them

here and refer the reader to Appendix C for details on

datasets and metrics. (1) Two tasks on Epic-Kitchens-100:

Multi-Instance Retrieval (EK-100 MIR) and Action Recog-

nition (EK-100 CLS) [14]. EK-100 is a very popular and

challenging egocentric video recognition benchmark. The

MIR task requires retrieving the text given videos (V→T)

and videos given text (T→V). The CLS task requires clas-

sifying each video into one of 97 verbs and 300 nouns each,

resulting in a combination of 3,806 action categories. (2)

Two downstream tasks of Ego4D: Multiple-Choice Ques-

tions (EgoMCQ) and Natural Language Query (EgoNLQ).

EgoMCQ requires selecting the correct textual description

from five choices given a query video clip while EgoNLQ

asks the model to output the relevant temporal intervals of

video given a text query. We select these two benchmarks

because they require reasoning about both visual and textual

information. (3) Action Recognition on EGTEA [37]. It re-

quires classifying into 106 classes of fine-grained cooking

activities. (4) Action Recognition on CharadesEgo [58]. It

requires classification into 157 classes of daily indoor activ-

ities. Note that CharadesEgo is very different from EK-100,

Ego4D and EGTEA since its videos are captured by head-

mounted phone cameras in a crowd-sourcing way.

Method

EgoMCQ EgoNLQ

Accuracy (%) mIOU@0.3 mIOU@0.5

Inter-video Intra-video R@1 R@5 R@1 R@5

SlowFast [24] - - 5.45 10.74 3.12 6.63

EgoVLP [39] 90.6 57.2 10.84 18.84 6.81 13.45

LAVILA (B) 93.8 59.9 10.53 19.13 6.69 13.68

LAVILA (L) 94.5 63.1 12.05 22.38 7.43 15.44

Table 3. Ego4D EgoMCQ and EgoNLQ. LAVILA outperforms

prior work on both Multiple-Choice Questions and Natural Lan-

guage Questions on Ego4D, with nearly 6% absolute gain on the

challenging intra-video MCQ task that requires reasoning over

multiple clips from the same video to answer a question.

In all tables, we bold and underline the best and second-

best performing methods with comparable backbones archi-

tectures. We highlight the overall best performing method,

which typically uses a larger backbone, if applicable.

5.1. Main Results

EK-100. We compare LAVILA with prior works on EK-

100 MIR in Table 2. In the zero-shot setup, LAVILA re-

markably surpasses an improved version of EgoVLP [39]

under similar model complexity: we use TSF-Base+GPT-2

as the dual-encoder architecture while EgoVLP uses TSF-

Base+Distil-BERT. With a stronger video encoder, i.e. TSF-

Large, the performance improves further. In the fine-

tuned setting, LAVILA significantly outperforms all pre-

vious supervised approaches including MME, JPOSE [75]

and EgoVLP [39]. We also compare LAVILA on EK-100

CLS in Appendix E, and establish a new state-of-the-art.

Ego4D. We evaluate the pre-trained LAVILA model on

EgoMCQ and EgoNLQ tasks and compare the results in Ta-

ble 3. On EgoMCQ, our method achieves 93.8% inter-video

accuracy and 59.9% intra-video accuracy, outperforming

EgoVLP by a noticeable margin. Note that EgoVLP’s per-

formance reported in Table 3 is obtained by using EgoNCE

loss [39], a variant of InfoNCE specialized for Ego4D while

ours uses a standard InfoNCE loss. EgoVLP with InfoNCE

has lower performance (89.4% inter-video and 51.5% intra-

video accuracy). On EgoNLQ, LAVILA achieves compara-

ble results with EgoVLP with similar model complexity.

EGTEA. We evaluate the learned video representation by

finetuning the video encoder for action classification in Ta-

ble 4 on another popular egocentric dataset, EGTEA [37].

Our method surpasses the previous state-of-the-art which

takes multiple modalities including visual, auditory and tex-

tual inputs [33] by a more than 10% absolute margin on the

mean accuracy metric. Since previous methods are based

on different backbones, we experiment with a TSF-Base

(“Visual only”) model pre-trained on Kinetics [9] as a fair

baseline for LAVILA. We observe that its accuracy is com-

parable to previous methods but much lower than LAVILA,

implying the effectiveness of learning visual representation
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Method Backbone Pretrain Top-1 Acc. Mean Acc.

Li et al. [37] I3D K400 - 53.30

LSTA [63] ConvLSTM IN-1k 61.86 53.00

IPL [71] I3D K400 - 60.15

MTCN [33] SlowFast (V+A+T) K400+VGG-Sound 73.59 65.87

Visual only TSF-B IN-21k+K400 65.58 59.32

LAVILA TSF-B WIT+Ego4D 77.45 70.12

LAVILA TSF-L WIT+Ego4D 81.75 76.00

Table 4. EGTEA Classification. LAVILA obtains significant

gains on this task, outperforming prior work with over 10% mean

accuracy. Since the backbones used are not all comparable, we

also report a comparable baseline with TSF-B (“Visual only”).

Method Backbone mAP (ZS) mAP (FT)

ActorObserverNet [57] ResNet-152 - 20.0

SSDA [12] I3D - 25.8

Ego-Exo [38] SlowFast-R101 - 30.1

EgoVLP [39] TSF-B 25.0 32.1

LAVILA TSF-B 26.8 33.7

LAVILA TSF-L 28.9 36.1

Table 5. CharadesEgo Action Recognition. LAVILA sets new

state-of-the-art in both zero-shot (ZS) and finetuned (FT) settings.

Note that CharadesEgo videos are visually different compared to

Ego4D videos, on which LAVILA is pretrained.

on large-scale egocentric videos and using LLM as textual

supervision during pre-training.

CharadesEgo. Next, we compare LAVILA’s represen-

tation on the CharadesEgo action classification task. As

shown in Table 5, LAVILA’s representation excels on this

task as well, which is notable as CharadesEgo videos are

significantly different compared to Ego4D, being captured

by crowdsourced workers using mobile cameras.

5.2. Application to Third­Person Video Pre­training

We apply LAVILA to third-person videos by experiment-

ing with the HowTo100M [45] dataset. Specifically, we use

the temporally aligned subset provided by [25], which con-

tains 3.3M sentences from 247k videos. We evaluate the

video representation on two third-person video datasets, i.e.

Method Vis. Enc. UCF-101 HMDB-51

MIL-NCE [44] S3D 82.7 54.3

TAN [25] S3D 83.2 56.7

Baseline (w/o LLM) TSF-B 86.5 59.4

LAVILA TSF-B 87.4 57.2

LAVILA TSF-L 88.1 61.5

Table 6. LAVILA on third-person videos. We measure

the linear-probing action classification performance of the video

model after pre-training on HowTo100M [45].

UCF-101 [60] and HMDB-51 [35] for action classification

using the linear probing protocol. For more details, please

refer to Appendix D. From Table 6, we see that LAVILA

outperforms previous methods such as MIL-NCE [44] and

TAN [25] by a large margin. Since we use a different back-

bone, we report a baseline without LLM and show that

LAVILA indeed benefits from the language supervision.

5.3. Application to Semi­supervised Learning

While LAVILA is very effective at leveraging existing

narrations to augment them, we now show that it is also

applicable when only a limited number of narrations are

available to begin with. We first divide each long video

from Ego4D into 15-second chunks and assume only the

annotated clips within every N chunks is available during

pre-training, leading to approximately 100
N % of the full set,

where N ∈ {2, 5, 10}. This can be considered a practi-

cal scenario when we want to annotate as many videos as

possible for diversity when the annotation budget is lim-

ited. In the remainder (1 − 100
N %) part that is skipped, we

uniformly sample the same number of the clips per chunk

with the same clip length as that in the seen chunks. Both

the dual-encoder model and NARRATOR are trained on the
100
N % available annotations.

We plot the zero-shot performance curve of pre-training

with different proportions in Figure 5. We can see that LAV-

ILA consistently outperforms the ground-truth-only base-

line at all points (10, 20, 50, and 100%). The improvement

LAVILA Baseline SOTA [39]

0% 20% 50% 100%

21

23

25

27

29

(a) EK-100 MIR mAP.

0% 20% 50% 100%

27

28

29

30

31

(b) EK-100 MIR nDCG.

0% 20% 50% 100%

22

24

26

28

30

(c) EGTEA mean accuracy.

0% 20% 50% 100%

50

52

54

56

58

(d) EgoMCQ Intra-video accuracy.

Figure 5. LAVILA is effective in a semi-supervised setting where only a limited amout of narrations are given. Comparing zero-shot

performance of pre-training, LAVILA consistently outperforms the groundtruth-only baseline when 10, 20, 50, 100% data is used. We also

achieve comparable result with state-of-the-art with only 50% of the annotated data.
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Text Dec.

arch.

Text

Dec. init.

Freeze

LM M
ETEO

R

RO
U

G
E-L

C
ID

Er
Avg.

mAP

(baseline) - - - 26.0

GPT-2 random ✗ 0.284 0.524 0.882 24.3

GPT-2 WebText ✓ 0.270 0.505 0.804 24.0

GPT-2 XL WebText ✓ 0.289 0.530 0.940 26.2

(a) Generation Quality. Using a sufficiently large language model as

the text decoder is crucial for good text generation quality and down-

stream performance.

Sampling

method

# of

sentences

Avg.

mAP

N/A (baseline) - 26.0

Beam search 1 27.9

Nucleus 1 29.6

Nucleus 10 29.7

(b) Sampling. LAVILA benefits more

from narrations produced by nucleus

sampling than beam search.

Default TSF-B TSF-L TSF-L@HR
24

26

28

30

32

34

36

26.0 26.2

28.1

29.729.8 29.6

31.0

35.0

NARRATOR’s architecture

A
v
g
.

m
A

P

Dual-Encoder’s Video Architecture
TSF-B
TSF-L

(c) Scaling effect of LAVILA. Gains increase on scaling

the video encoder in NARRATOR. Default refers to only

using the original narrations.

Table 7. Ablations of NARRATOR. We report zero-shot average mAP on EK-100 MIR for comparing downstream performance. We study

NARRATOR from the perspective of generation quality (left), sampling techniques (middle), and scaling effect (right).

Rephr. Recap.
Pseudo EK-100 MIR EgoMCQ EGTEA

cap. Avg. mAP Avg. nDCG inter-video Intra-video Mean Top-1

26.0 28.8 93.6 54.3 27.3 30.1

✓ 28.0 30.1 93.5 56.9 29.8 30.8

✓ 27.1 29.9 93.2 59.2 26.8 31.2

✓ ✓ 29.7 31.5 93.6 58.3 29.4 36.6

✓ ✓ ✓ 29.9 31.4 93.6 59.1 31.1 36.0

Table 8. Contributions of different Language Supervision. We

can see that (1) using REPHRASER (“Rephr.”) and NARRATOR

(“Recap.”) improve downstream zero-shot performance comple-

mentarily, (2) dense pseudo-captioning further improves perfor-

mance on 3 out of 6 metrics.

tends to be larger when more data is available, indicating

the method’s scalability as more videos are narrated in the

future. Furthermore, we observe our method can achieve a

similar level of performance with the baseline often using

less than 50% data. We also achieve a comparable result

with the state-of-the-art using much fewer data.

5.4. Ablation Studies

Contributions of Different Language Supervisions. We

ablate different language supervisions in Table 8 on EK-

100 MIR (zero-shot), EgoMCQ and EGTEA. Using the

text-only REPHRASER (“rephr.”) or visually conditioned

NARRATOR (“recap.”) separately improves the ground-

truth baseline noticeably. Combining both REPHRASER and

NARRATOR gives an improvement of 3.5% average mAP

on EK-100 MIR. We see that dense captioning on the entire

video (“pseudo-cap.”) is also helpful. Though the gain on

EK-100 MIR is not as significant, it shows nontrivial im-

provements on EgoMCQ intra-video accuracy and EGTEA

mean accuracy. Our conjecture for this marginal gain is that

informative clips are mostly covered in Ego4D because all

videos are inspected by two annotators.

Generation Quality of NARRATOR. We study how the

NARRATOR’s configurations affect the quality of generated

text and the downstream performance. The generation qual-

ity is measured by standard unsupervised automatic metrics

including METEOR, ROUGE, and CIDEr [43]. We use a

NARRATOR with a smaller GPT-2 as the text decoder and

consider two scenarios in Table 7a: (1) LM is randomly

initialized but jointly trained with the gated cross-attention

modules, and (2) LM is initialized from the original GPT-2.

The generation quality decreases compared to GPT-2 XL in

both cases and the zero-shot retrieval result on EK-100 MIR

is worse. This indicates that the language model should be

sufficiently large and pre-trained on web text data.

Sampling. In Table 7b, we investigate different sampling

methods for text generation from NARRATOR. We see

that nucleus sampling works much better than beam search

while repetitive sampling shows marginal improvement.

Scaling effect. In Table 7c, we compare the zero-shot re-

trieval result by progressively increasing the size of NAR-

RATOR’s video encoder from TSF-B to TSF-L and TSF-

L@HR, which increases the input resolution to be narrated

from 224 to 336 while fixing the dual-encoder architec-

ture. The retrieval performance steadily increases while

NARRATOR becomes stronger. We conduct this experiment

by varying the dual-encoder architecture, namely TSF-Base

and TSF-Large, and show similar trends. Both phenomena

suggest that LAVILA can scale to larger models.

6. Conclusion and Future Work

In this paper, we proposed LAVILA, a new approach

to video-language representation learning by automatically

narrating long videos with LLMs. We achieve strong im-

provements over baselines trained with the same amount

of human-narrated videos and set new state-of-the-art on

six popular benchmark tasks across first- and third-person

video understanding benchmarks. LAVILA also shows pos-

itive scaling behavior when adding more training narrations,

using larger visual backbones, and using stronger LLMs, all

of which are promising areas for future work.
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