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Abstract

Fusing infrared and visible images can provide more tex-
ture details for subsequent object detection task. Converse-
ly, detection task furnishes object semantic information to
improve the infrared and visible image fusion. Thus, a joint
fusion and detection learning to use their mutual promotion
is attracting more attention. However, the feature gap be-
tween these two different-level tasks hinders the progress.
Addressing this issue, this paper proposes an infrared and
visible image fusion via meta-feature embedding from ob-
ject detection. The core idea is that meta-feature embedding
model is designed to generate object semantic features ac-
cording to fusion network ability, and thus the semantic fea-
tures are naturally compatible with fusion features. It is op-
timized by simulating a meta learning. Moreover, we further
implement a mutual promotion learning between fusion and
detection tasks to improve their performances. Comprehen-
sive experiments on three public datasets demonstrate the
effectiveness of our method. Code and model are available
at: https://github.com/wdzhao123/MetaFusion.

1. Introduction

Multi-modality sensor technology has promoted the ap-
plication of multi-modality images in different areas. A-
mong them, infrared images and visible images have been
utilized commonly, as the information contained in these
two modalities is complementary. Specifically, infrared im-
ages can supply object thermal structures without being af-
fected by illumination. But they are short of texture de-
tails. On the contrary, visible images can catch the texture
information for the scene. But they are severely affected by
light. Thus, many methods [15,25,35,43–45,47] focus on s-

∗Corresponding author

(a)  Separate optimization method

(b) Cascaded optimization method

(c) Meta-feature embedding method

IVIF 
Network

OD 
Network

min ( ( , ; ))
f

f fL x y


 min ( ( ; ))
d

d dL z




IVIF 
Network

OD 
Network

min ( ( , ; )) ( ( ; ))
f

f f d dL x y L z


   

( , ; )fz x y  

IVIF 
Network

OD 
Network

( , ; )fz x y  

Meta-feature 
Embedding

min ( ( , ; )) ( , ( , ; ))
f

f f d
f f g i i i mL x y L F F F


   

min ( ( , ; ))
m

f fL x y











Data flow

Gradient flow

( , ; )fz x y  

Figure 1. Different joint learning methods of infrared and visible
image fusion (IVIF) and object detection (OD). (a) Separate opti-
mization method: IVIF network Ψ is firstly optimized by fusion
loss Lf . Then, fusion result z is generated by Ψ from the input
infrared and visible image pair x, y. Finally, OD network Φ is op-
timized by detection loss Ld using z. (b) Cascaded optimization
method: OD network Φ is treated as a constraint to optimize IVIF
network Ψ by the loss Lf and Ld. (c) Meta-feature embedding
method: Meta-feature embedding Γ is optimized to learn how to
guide Ψ to have a low Lf . Then, Γ generates meta feature from
detection feature F d

i and fusion feature F d
i . Finally, the meta fea-

ture is used to guide Ψ by the loss Ld.

tudying pixel-level infrared and visible image fusion (IVIF),
thereby helping high-level tasks improve performance, e.g.,
object detection (OD) [20, 34].

IVIF and OD can greatly benefit form each other. IVIF
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generates the fused image that contains more information
than any single modality image to improve OD. Howev-
er, IVIF mainly focuses on the pixel relationship between
an image pair, and there is little consideration for object
semantic. In contrast, OD can provide rich object seman-
tic information to IVIF, as its aim is locating the objects.
Therefore, this paper studies a joint learning framework be-
tween IVIF and OD to improve their performances.

Existing joint learning methods of IVIF and OD can
be divided into two categories: separate optimization and
cascaded optimization. Separate optimization firstly train-
s IVIF network, and then trains OD network using IVIF
results, as shown in Figure 1(a). Thus, most methods fo-
cus on improving the fusion effect, e.g., designing network-
s [13, 23, 35, 36] and introducing constraints [10, 26, 45].
Obviously, separate optimization neglects the help of OD.
Cascaded optimization adopts OD network as a constraint
to train IVIF network, and thus forces the IVIF network to
generate fusion images with easily detected objects [20], as
shown in Figure 1(b). However, directly utilizing the high-
level OD constraint to guide the pixel-level IVIF will result
in limited effect. Therefore, we leverage OD feature maps
that guide IVIF feature maps to obtain more semantic infor-
mation. Unfortunately, OD features are mismatched with
IVIF features due to their task-level difference. Addressing
this issue, we propose a meta-feature embedding network
(MFE), as shown in Figure 1(c). The idea is that if MFE
generates OD features according to the IVIF network abil-
ity, the OD features are naturally compatible with the IVIF
network, and the optimization can be achieved by simulat-
ing a meta learning.

Specifically, an infrared and visible image fusion via
meta-feature embedding from object detection is proposed,
which is named as MetaFusion. MetaFusion includes IVIF
network (F ), OD network (D), and MFE. In particular,
MFE is expected to generate meta features to bridge the
gap between F and D, which is optimized by two alter-
nate steps: inner update and outer update. In the inner up-
date process, we firstly optimize F using meta training set
Smtr to obtain its updated network F ′. Then, F ′ calculates
the fusion loss on meta testing set Smts to optimize MFE.
The motivation is that if MFE successfully generates meta
features which are compatible with F , F ′ will produce bet-
ter fused images, i.e., the fusion loss should be lower. In
the outer update process, F is optimized with the guide of
the meta features generated by the fixed MFE on Smtr
and Smts. In this way, F can learn how to extract seman-
tic information to improve fusion quality. In the above two
alternate steps, D is fixed to offer detection semantic infor-
mation. Thus, we further implement a mutual promotion
learning, where we use the improved F to generate fusion
results to finetune D, and then the improved D offers better
semantic information to optimize F .

In summary, our contributions are as follows. (1) We ex-
plore the joint learning framework of IVIF and OD, and pro-
pose MetaFuison to obtain superior performance on these
two tasks. (2) Meta-feature embedding network is designed
to generate meta features that bridge the gap between F and
D. (3) Sequentially, mutual promotion learning between F
and D is introduced to improve their performances. (4) Ex-
tensive experiments on image fusion and object detection
validate the effectiveness of the proposed method.

2. Related Work
Image Fusion. Traditional image fusion methods use

hand-crafted features, such as sparse representation [22],
spectral variation [53] and low-rank representation [14],
which can not handle the complex scenes well. Nowadays,
deep learning-based image fusion methods [16, 24, 27, 39,
49, 50, 54, 56] are proposed. Ma et al. [23] propose a swin
transformer based image fusion method with cross-domain
long-range learning. Xu et al. [44] use feature extraction
and measurement to estimate the degree of information p-
reservation in image fusion. Zhao et al. [51] design a self-
supervised feature extraction model. Besides, feature diver-
sity enhancement and fusion is received attention [52, 55].
However, most of them neglect the help of high-level tasks.
Recently, Liu et al. [20] propose a joint learning of IVIF
and OD. They treat OD network as an additional constraint
to help IVIF network generate fusion result with more clear
objects.

However, directly using the high-level OD network to
guide pixel-level IVIF may not obtain an effective con-
straint. Moreover, they use the fusion results as the connec-
tion between IVIF network and OD network, ignoring the
pixel-level semantic information in OD features. In con-
trast, we adopt semantic information in OD features to help
IVIF, and conduct a meta-feature embedding to generate
meta features from OD features. Then, those meta features
are used to guide IVIF network to learn pixel-level semantic
information.

Object Detection. Deep learning-based object detection
methods have made great progress, e.g., network structure-
designed methods [2, 8, 30, 31] and loss constraint meth-
ods [18, 32, 42]. Carion et al. [3] introduce a transformer
encoder-decoder architecture for object detection. Xu et al.
[42] rank positive and negative sample pairs and improve
the ranking effect by a clustering algorithm to built object
detection loss. On the other hand, many weakly supervised
methods [40, 46, 48] are proposed. Wu et al. [40] design
a model to suppress the background activation and obtain
object region, where image-level labels are used. Zhang
et al. [48] use instance proposal grouping to learn object
detection from a single point annotation.

Most of those object detection methods leverage single
modality image, e.g., visible images. However, the visible
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Figure 2. Framework illustration of the proposed MetaFusion. MetaFusion includes three parts: infrared and visible image fusion
(IVIF), object detection (OD), and meta-feature embedding (MFE). IFIV network includes four blocks: three feature fusion blocks
FFB1, FFB2, FFB3 used to extract and fuse features and one image reconstruction module IRM used to reconstruct fusion result.
MFE contains three meta-feature generators MFG1,MFG2,MFG3 conducted to generate muti-level meta features from OD features
Fej , and three feature transform networks FT1, FT2, FT3 used to transfer the meta features to fusion features. OD network is divided as
three feature extraction blocks DFB1, DFB2, DFB3 and one OD detection head DH .

.

images are affected by light conditions, thereby influencing
the performance of object detection. On the contrary, we
leverage IVIF results to provide infrared information with-
out be influenced by illumination, therefore can offer more
stable detection performance.

Meta Learning. Meta learning aims to use the learned
knowledge to quickly adapt to new tasks, which has been
used to many fields: model pre-training [5, 11, 29], im-
age classification [17, 19], few-shot learning [1, 4, 6, 41],
etc. For example, Raghu et al. [29] propose an implicit
differentiation and backpropagation meta-learning method
and improve the efficiency of learning pre-training hyper-
parameters. Xu et al. [41] design a dynamic alignment in
meta learning, which can emphasize information in query
according to the support. Li et al. [12] use the meta learn-
ing to handle different input resolutions, thereby generating
fusion results with arbitrary resolutions.

Inspired by the above meta learning methods, we design
a meta-feature embedding network to generate the meta fea-
tures from object detection features, thereby helping IVIF
network fuse more object semantic information.

3. Proposed Method
Our MetaFusion framework is shown in Figure 2, which

includes three subnetworks: IVIF network (F ) generates fu-
sion results, OD network (D) offers semantic features, and
meta-feature embedding network (MFE) uses OD features
to guide IVIF to fuse more object semantic information.
The challenge is that OD features can hardly be directly
used to guide IVIF due to their task gap. Thus, our focus
is to design MFE and optimize it. Details are as follows.
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Figure 3. Illustration of the meta-feature embedding learning.
There are two stages in the meta-feature embedding: (a) inner up-
date and (b) outer update. In the inner update, MFG and FT
are trained according to current F ′ semantic extracting ability to
generate meta features. In the outer update, F is trained which
is guided by the meta features, thereby learning to extract object
semantic. The two stages alternate every N epoches.

3.1. Meta-feature Embedding

Meta-feature embedding includes meta-feature genera-
tor (MFG) and feature transform (FT ). MFG gener-
ates meta feature Fmj according to IVIF feature Fuj from
OD feature Fej , i.e., Fmj = MFG(Fuj , Fej), where j
is the feature level index. FT transfers the meta feature
Fmj to fusion feature Fuj by producing feature bridge Ftj .
Specifically, meta-feature embedding learning is divided t-
wo stages: inner update stage and outer update stage, as
shown in Figure 3.

In the inner update stage, we optimize MFG, FT and
F (see Figure 3(a)). Given meta training set Smtr and meta
testing set Smts, we firstly update the parameter θF of F on

13957



Smtr through meta feature guidance:

θF ′ =θF−βF ′∇θFLg(Fmj,Ftj)=θF−βF ′
∂Lg(Fmj,Ftj)

∂θF
,

(1)
where the guide loss Lg is L2 distance, βF ′ is the learning
rate of F ′, θF ′ is the parameter of F ′ that is updated from F .
Then, we use F ′ with parameter θF ′ to calculate the fusion
loss Lf on meta testing set Smts. Here, Lf can measure the
effect of using the meta features to guide F , i.e., when Lf is
lower, the semantic extracting ability of F will be improved.
Therefore, we use Lf to update parameter θMFG of MFG
and parameter θFT of FT by

θMFG = θMFG − βMFG∇θMFG
Lf (I

mts
f , Imtsi , Imtsv ), (2)

θFT = θFT − βFT∇θFT
Lf (I

mts
f , Imtsi , Imtsv ), (3)

where the fusion loss Lf is SSIM loss [38], Imtsi and
Imtsv are infrared and visible images from Smts, Imtsf =

F ′(Imtsi ,Imtsv ) is the meta testing fusion result, and βMFG
and βFT are the learning rate of MFG and FT . ∇θMFG

Lf
can be calculated by

∇θMFG
Lf (F

′(Imtsi , Imtsv ), Imtsi , Imtsv )

=
∂Lf (F

′(Imtsi ,Imtsv ),Imtsi , Imtsv )

∂θF ′
∗(−∂

2Lg(Fmj , Ftj)

∂θF∂θMFG
).

(4)
Similarly,∇θFT

Lf can be calculated by

∇θFT
Lf (F

′(Imtsi , Imtsv ), Imtsi , Imtsv )

=
∂Lf (F

′(Imtsi ,Imtsv ),Imtsi , Imtsv )

∂θF ′
∗(−∂

2Lg(Fmj , Ftj)

∂θF∂θFT
).

(5)
Thus, MFG can learn how to generate meta features ac-
cording to current F ′ semantic extracting ability, i.e., makes
meta features be compatible with F .

In the outer update stage, F is trained with the initial
parameter θF , as shown in Figure 3(b). Given the training
data S = {Smtr, Smts}, F is optimized using the fusion
loss Lf and guide loss Lg by

θF = θF − βF∇θF (Lf (If , Ii, Iv) + λg

3∑
j=1

Lg(Fmj , Ftj))

= θF − βF (
∂Lf (If , Ii, Iv)

∂θF
+ λg

3∑
j=1

∂Lg(Fmj , Ftj)

∂θF
),

(6)
where Ii and Iv are infrared and visible images from S, λg
is a hyper-parameter to balance Lf and Lg , and βF is the
learning rate of F .

Finally, the inner update stage and outer update stage are
carried out alternately for every N epochs, which improves
the optimization of MFG and F .
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Figure 4. Illustration of the mutual promotion learning between
F and D. Firstly, F is used to generate fusion results to optimize
D. Thus, a fine-tuned D with higher semantic extracting ability
is obtained. Then, D is adopted to optimize F . This process is
alternated.

3.2. Mutual Promotion Learning

In Sec. 3.1, we fix the object detection network D to of-
fer stable object semantic features. In this way, MFG does
not need to handle variable object semantic features, there-
by reducing the difficulty of training MFG. However, the
fixedD will restrict the object semantic extracting ability of
F . Addressing this problem, we propose the mutual promo-
tion learning that promotes not only F but alsoD, as shown
in Figure 4. Specifically, we firstly train F individually, and
then use the fusion results to trainD. Sequentially, D offer-
s object semantic features to the meta-feature embedding,
thereby improving F . After that, the improved fusion re-
sults generated by F are used to fine-tune D. In this way,
both F and D are improved.

3.3. Architecture

IVIF network F aims to generate fusion results accord-
ing to the input infrared and visible images, which is flexi-
ble. Here, we adopt the similar structure with [50]. F con-
sists of three feature fusion blocks (FFBj , j = 1, 2, 3) and
one image reconstruction module (IRM ), as shown in Fig-
ure 2. FFBj is used to extract and fuse features from input
infrared image Ii and visible image Iv . It is designed based
on the idea of [50] that if FFBj can well fuse the features
of Ii and Iv , then the two kinds of features can be recovered
from the fused feature. Thus, FFBj is described as

FFBj=

{
C2T1

⊎
C2T1, j = 1

C2Tj−1
⊎
C2Tj−1, j > 1

(7)
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where j is the block index, Ck represents the number of
“Convolution with 3×3 kernel+ReLU” layers is k, Fu(j−1)
is the output feature of the j − 1th block, T1 = C2(Ii, Iv)
and Tj−1 = C2(Fu(j−1)) represent feature integration op-
erations, and

⊎
means feature concatenation. IRM recon-

structs the fusion result, which contains six “Convolution
with 3× 3 kernel +ReLU” layers.

Object detection network D offers object semantic fea-
tures. In our framework, we choose yolov5s1 as our
D. According to the size of the feature maps, the back-
bone of D is divided into three feature extraction blocks
({DFBi, i = 1, 2, 3}). In addition, we represent the neck
and detection head in yolov5s into one block (DH) to sim-
plify the expression.

Meta-feature embedding network MFE includes meta-
feature generator MFGj and feature transform network
FTj . Since OD feature Fej generated by DFBj offers ob-
ject semantic information and Fuj provides scene details,
they are fed into the MFGj . Then, MFGj is built as

MFGj = C6(C4(Fuj)
⊎
C2(Up(Fej))), (8)

where Up() is the feature up-sampling. FTj transfers the
meta feature to fusion feature, which includes three “Con-
volution with 3× 3 kernel +ReLU” layers.

3.4. Training

The training details of our framework is shown in Al-
gorithm 1, which contains four steps. Generally, we firstly
pretrain F , and then use the fusion results to finetuneD. Se-
quentially, we train FT and MFG, where MFG and FT
are updated n = 200 times everyN = 8 epochs. Lastly, the
mutual promotion between F and D is trained for R = 2
rounds, thereby improving their performances.

4. Experiments
4.1. Setup

Dataset. We conduct experiment on three widely-used
datasets: M3FD [20], RoadScene [44] and TNO [37].
M3FD is divided as training set (2940 image pairs) and test-
ing set (1260 image pairs). RoadScene with 221 image pairs
and TNO with 40 image pairs are only used for testing. Be-
sides, M3FD is adopted to evaluate OD performance.

Implementation. Our framework is implemented with
PyTorch on a NVIDIA GeForce RTX 3090 GPU. F and
MFE are trained using optimizer Adam with the learning
rate βF , βF ′ , βFT and βMFG of 1×10−3, respectively. D is
trained followed by yolov5s that adopts the optimizer SGD
using the learning rate of 1×10−2 with decaying rate of 0.1
every round. We firstly train F for 100 epochs and D for
150 epochs. Then, we conduct MFE for 50 epochs. After

1https://github.com/ultralytics/YOLOv5

Algorithm 1 MetaFusion Training Algorithm

Input: Training dataset S = {Smtr, Smts}, IVIF mod-
el F (θF ), meta-feature generator MFG(θF ), feature
transform network FT (θFT ), OD network D(θD)

Output: IVIF model F (θ∗F )
1: Initialize F (θF ), MFG(θF ), FT (θFT ), D(θD)
2: /* Pretrain F */
3: while not converged do
4: Sample image pair (Ii, Iv) from S
5: Forward pass on F to generate fusion result If
6: Optimize F using fusion loss Lf
7: end while
8: /* Pretrain D */
9: while not converged do

10: Sample image If from the fused images generated
by F

11: Forward pass on D to get detection result
12: Optimize D using detection loss Ld
13: end while
14: /* Meta-feature embedding outer update */
15: while not converged do
16: Sample a batch image pair (Ii, Iv) from S
17: Forward pass on F to generate fusion result If
18: Forward pass on MFG to generate meta feature
19: Optimize F using fusion loss Lf and guide loss Lg

by Eq. 6
20: /* Meta-feature embedding inner update */
21: if epoch%N==0 then
22: for t=1 to n do
23: Sample an image pair (Imtri , Imtrv ) from Smtr
24: Compute θF ′ by Eq. 1
25: Sample an image pair (Imtsi , Imtsv ) from Smts
26: Calculate Lf using θF ′

27: Update θMFG and θFT using the gradient of Lf
by Eqs. 2 and 3

28: end for
29: end if
30: end while
31: /* Mutual promotion*/
32: if Number of round ≤ R then
33: Go back to line 9
34: end if

that, D is finetuned for 150 epochs. Following the same
strategy, the mutual promotion is carried out R rounds. The
images are resized to 512 × 384 with batchsize of 1. The
hyperparameter λg is set to 0.1.

Metric. Three metrics are used for IVIF evaluation: en-
tropy (EN) [33], mutual information (MI) [28] and visual
information fidelity (VIF) [7]. EN evaluates the information
richness in an image, and the higher EN means more infor-
mation. MI evaluates the information similarity between
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(a) Visible-infrared images (b) SoFusion and feature map (c) CoFusion and feature map (d) MetaFusion and feature map

Figure 5. Visual comparison of different optimization methods.

Table 1. Effect study of meta-feature embedding by comparing
with different optimization methods on M3FD. The best result is
in red.

Method
Metric

MI EN VIF

SoFusion 14.164 7.078 1.190

CoFusion 14.187 7.089 1.345

MetaFusion 14.511 7.249 1.515

the input images and fused image. The higher MI illus-
trates more information of the input images is fused. VIF
measures the ability to extract visible information from the
input image, and a larger VIF represents less visible distor-
tion in the fused result. Here, we use the V channel in HSV
space of the fusion results to calculate these metrics. More-
over, we use mAP50→95 [9] to comprehensively evaluate
OD performance, where the average of mAPs sampling ev-
ery 5 from AP50 to AP95 is calculated. A higher mAP50→95

means better OD effect.

4.2. Ablation Study

Effect of meta-feature embedding. In Sec. 3.1, we in-
troduce the meta-feature embedding that generates the meta
features from object detection features to help IVIF network
learn more object semantic information. To verify its effect,
separate optimization method (SoFusion) and cascaded op-
timization method (CoFusion) are compared, as shown in
Figure 1(a)-(b). Specifically, SoFusion firstly optimizes F
and then uses the generated fusion results to optimize D.
CoFusion treats D as a constraint to optimize F with the
loss Lf and Ld. The results are shown in Table 1. Our
MetaFusion achieves the best results on IVIF. The reason
is that SoFusion neglects the help of D, and directly uti-
lizing the high-level D to guide the pixel-level F has fea-
ture mismatch in CoFusion. In contrast, we implement the
meta-feature embedding that generates meta features from
D according to the ability of F . Thus, the meta features
are naturally compatible with F , thereby providing effective
object semantic features to F . Visual comparison is shown
in Figure 5. MetaFusion highlights the object feature and
generates the clearest result.

Influence of mutual promotion learning. As described

Table 2. Influence study of mutual promotion learning by evaluat-
ing the performances of round R on M3FD. The best result is in
red.

Method
Metric

MI EN VIF mAP50→95 (%)

R = 0 14.164 7.078 1.190 55.6

R = 1 14.464 7.226 1.474 55.8

R = 2 14.511 7.249 1.515 56.5

Table 3. Study of multi-level meta-feature embedding by compar-
ing different configurations on M3FD. The best result is in red.

Method
Metric

MI EN VIF

MetaFusion-L1 14.450 7.220 1.259

MetaFusion-L2 14.452 7.220 1.377

MetaFusion-L3 14.464 7.226 1.474

in Sec. 3.2, we propose the mutual promotion learning pro-
mote F and D alternately. Here, we study the influence of
mutual promotion learning by evaluating roundR = 0, 1, 2.
In particular, R = 0 represents F and D are trained respec-
tively. As shown in Table 2, the results of F are better with
the R increases. Comprehensively considering training ef-
ficiency and performance, we take R = 2.

Study of multi-level meta-feature embedding. We
implement multi-level meta-feature embedding to build
MetaFusion framework, as introduced in Sec. 3.3. Here, we
study the number of meta-feature embedding levels with
the following configurations. One-level meta-feature em-
bedding (MetaFusion-L1) with MFE = {MFG1, FT1},
F = {FFB1, IRM} and D = {DFB1, DH}.
Two-level meta-feature embedding (MetaFusion-L2)
with MFE = {MFG1,MFG2, FT1, FT2}, F =
{FFB1, FFB2, IRM} and D = {DFB1, DFB2, DH}.
Three-level meta-feature embedding (MetaFusion-L3) with
MFE = {MFG1,MFG2,MFG3, FT1, FT2, FT3},
F = {FFB1, FFB2, FFB3, IRM} and D =
{DFB1, DFB2, DFB3, DH}. The results are shown
in Table 3. With the number of multi-level meta-feature
embedding increases, F achieves higher image fusion
quality. Since meta-feature embedding provide multi-level
object semantic features to F .

4.3. Comparison with State-of-the-art Methods

We compare the proposed MetaFusion with eight SOTA
fusion methods to verify the superiority: FusionGAN [25],
GANMcC [26], MFEIF [21], YDTR [36], PIAFusion [35],
SwinFusion [23], Tardal [20], and U2Fusion [44]. Their
available codes and recommended parameter settings are
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Infrared-visible image FusionGAN GANMcC MFEIF U2Fusion

YDTR PIAFusion SwinFusion Tardal MetaFusion

GANMcC

Infrared-visible image FusionGAN GANMcC MFEIF U2Fusion
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Infrared-visible image FusionGAN GANMcC MFEIF U2Fusion

YDTR PIAFusion SwinFusion Tardal MetaFusion

Figure 6. Qualitative results of different fusion methods on M3FD (first group), RoadScene (second group) and TNO (third group).

adopted to generate fusion results for the fair comparison.

Qualitative results of different fusion methods are shown
in Figure 6. All the fusion methods can fuse the main
features of the infrared and visible images to some extent.
However, FusionGAN, GANMcC, MFEIF and YDTR pro-
duce blurred edge details, and U2Fusion, PIAFusion, Swin-
Fusion and Tardal generate low contrast objects, as shown
in the red rectangular boxes. In contrast, the images gener-

ated by the proposed MetaFusion contain clear edge details
and high contrast objects.

Sequentially, we provide quantitative results of differ-
ent fusion methods in Table 4. Our MetaFusion generally
achieves the largest or the second-largest metric values. In
detail, the high EN and MI illustrate the fusion images by
our MetaFusion contain high contrast object and clear edge
details. The large VIF shows our fusion results have high-
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Table 4. Quantitative results of different fusion methods on TNO, RoadScene and M3FD datasets. The model inference time is counted on
a NVIDIA GeForce RTX 2080 Ti. The best result is in red and the second best one is in violet.

Method
M3FD RoadScene TNO40

Time (s)
MI Ent VIF MI Ent VIF MI Ent VIF

FusionGAN [25] 13.445 6.722 0.303 14.203 7.101 0.251 13.068 6.534 0.252 0.040

GANMcC [26] 13.731 6.865 0.453 14.017 7.008 0.422 13.485 6.742 0.424 0.081

MFEIF [21] 12.957 6.478 0.401 13.489 6.742 0.260 13.360 6.680 0.395 0.029

U2Fusion [44] 13.816 6.908 0.545 13.888 6.944 0.456 13.889 6.944 0.636 0.043

YDTR [36] 12.694 6.347 0.361 13.166 6.583 0.236 12.862 6.431 0.280 0.086

PIAFusion [35] 13.326 6.663 0.437 13.262 6.533 0.205 13.931 6.960 0.506 0.055

SwinFusion [23] 13.051 6.525 0.460 13.267 6.633 0.313 13.879 6.933 0.479 1.081

Tardal [20] 13.636 6.818 0.650 15.009 7.504 0.483 13.030 6.515 0.910 0.030

MetaFusion 14.511 7.249 1.515 14.218 7.022 0.969 14.657 7.323 1.462 0.015

FusionGAN

U2Fusion

GANMcC

MFEIF PIAFusionYDTR

Infrared image Visible image

Ground truthMetaFusionSwinFusion Tardal

Figure 7. Visual results of object detection based on different fu-
sion methods on M3FD.

quality visual effect and small distortion compared with the
source images. Moreover, our method achieves the fastest
inference time that only needs 0.015s to generate one fusion
result.

4.4. Evaluation on Infrared-visible Object Detec-
tion

A better fusion image can provide more information to
improve object detection. Here, we verify the effectiveness
of our method by evaluating object detection accuracy with
the infrared and visible fusion images. To make a fair com-
parison, we firstly generate fusion results using our method
and SOTA methods, and then use the results to retrain the
object detection baseline YOLOv5s, respectively.

Figure 7 shows the object detection results. In gener-
al, the SOTA methods improve the performance of objec-
t detection. In contrast, our MetaFusion achieves a better
performance, e.g., the person is accurately detected (see the
blue ellipse). Table 5 shows the quantitative results. Our
fusion results help the detection network achieve the high-
est object detection accuracy. This further proves that our

Table 5. Quantitative results of object detection based on different
fusion methods on M3FD dataset. The best result is in red and the
second best one is in violet.

Method mAP50→95 (%)

FusionGAN [25] 54.2

GANMcC [26] 55.2

MFEIF [21] 55.4

U2Fusion [44] 55.7

YDTR [36] 55.4

PIAFusion [35] 55.6

SwinFusion [23] 55.4

Tardal [20] 54.4

MetaFusion 56.5

method can generate high-quality fusion results especially
for the objects.

5. Conclusion

This paper presents a joint fusion and detection learn-
ing framework through introducing the meta-feature em-
bedding model. Based on the meta learning idea, the meta-
feature embedding model can generate object semantic fea-
tures according to the fusion network ability, thereby bridg-
ing the feature gap between these two different-level tasks.
Moreover, a mutual promotion learning between fusion and
detection tasks is further implemented to improve their per-
formances. Both quantitative and qualitative results demon-
strate the superior performance of our method compared
with the state-of-the-art methods.
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