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Figure 1. OmniAL is a unified framework for unsupervised anomaly localization. As shown in (c), OmniAL not only simplifies
existing learning paradigm from (a) Separate: N models for N classes to (b) Unified: one model for N classes but also produces high
quality anomaly localization results. Results in (a) and (b) are from separate and unified models of JNLD [38] on MVTecAD [1] dataset.

Abstract

Unsupervised anomaly localization and detection is cru-
cial for industrial manufacturing processes due to the lack
of anomalous samples. Recent unsupervised advances on
industrial anomaly detection achieve high performance by
training separate models for many different categories. The
model storage and training time cost of this paradigm is
high. Moreover, the setting of one-model-N-classes leads
to fearful degradation of existing methods. In this pa-
per, we propose a unified CNN framework for unsuper-
vised anomaly localization, named OmniAL. This method
conquers aforementioned problems by improving anomaly
synthesis, reconstruction and localization. To prevent the
model learning identical reconstruction, it trains the model
with proposed panel-guided synthetic anomaly data rather
than directly using normal data. It increases anomaly re-
construction error for multi-class distribution by using a
network that is equipped with proposed Dilated Channel
and Spatial Attention (DCSA) blocks. To better localize
the anomaly regions, it employs proposed DiffNeck between
reconstruction and localization sub-networks to explore
multi-level differences. Experiments on 15-class MVTecAD
and 12-class VisA datasets verify the advantage of proposed
OmniAL that surpasses the state-of-the-art of unified mod-
els. On 15-class-MVTecAD/12-class-VisA, its single unified

model achieves 97.2/87.8 image-AUROC, 98.3/96.6 pixel-
AUROC and 73.4/41.7 pixel-AP for anomaly detection and
localization respectively. Besides that, we make the first at-
tempt to conduct a comprehensive study on the robustness
of unsupervised anomaly localization and detection meth-
ods against different level adversarial attacks. Experiential
results show OmniAL has good application prospects for its
superior performance.

1. Introduction

In real industrial scenarios, the location of anomaly
[22, 26] reveals important information, such as defective
types and degrees. It is essential not only to inspect whether
a sample is defective but also to know where the specific
anomaly regions are. Since anomaly appearance is inex-
haustible, it is almost impossible and infeasible to collect
and manually annotate all kinds of abnormal data. Thus,
only normal samples are available for training a detector
that is robust enough to find out unseen anomalies during in-
ference phase. Considering the diversity of classes and var-
ious types of one class, the conventional training paradigm
of N models for N classes, as shown in Fig.1a, may not
be the best solution. The model storage and training time
cost increase with the number of classes. As shown in
Fig.1b, existing method severely degrades anomaly local-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3924



Figure 2. Problem analysis. The final failure may caused by reconstruction and localization.

ization performance if the training paradigm changes to one
model for N classes. Therefore, a robust unified framework
for unsupervised anomaly localization is highly demanded
for intelligent industrial.

With the limitation of available training data, many ap-
pealing unsupervised approaches [14, 18, 35, 38] using syn-
thesized anomaly data are proposed. These approaches gen-
erate anomalous instances to inspire the anomaly detector to
learn discriminative features. Their experiments show that
the realisticness of generated anomalous instances had a
strong impact on the quality of anomaly localization. How-
ever, none of these methods consider the training paradigm
of one model for N classes. When switching to the unified
training paradigm, they are more prone to learn an identical
short-cut and fail to discriminate the anomaly.

With the normal and synthesized anomalous sam-
ples, recent unsupervised learning methods train a deep
anomaly detector by either a distance-based [6, 14, 19–21,
27] or reconstruction-based [2, 9, 35, 36, 38] way. The
reconstruction-based architectures [35, 38] are supposed to
reconstruct normal images more accurately than the un-
seen anomalous. The anomaly localization is then cal-
culated from the reconstruction error between the original
and reconstructed versions of the input image, as shown in
Fig.2a. The prediction of anomaly location is not only based
on the reconstruction quality but also the ability of spot-
ting the reconstruction error. The typical reconstruction-
based method JNLD [38] learns a joint representation of
an anomalous image and its anomaly-free reconstruction,
while simultaneously learning a decision boundary between
normal and simulated anomalous examples. As shown in
Fig.2b and Fig.2c, under the unified setting, JNLD [38] fails
to produce correct results either because of the reconstruc-
tion failure or the localization failure.

To conquer aforementioned problems, we propose a
novel unified framework OmniAL for effectively localiz-

ing anomaly pixels of different classes only by using a sin-
gle model. OmniAL uses a panel-guided anomaly synthe-
sis method that controls the portion of normal and anomaly
regions for each training sample. By doing this, OmniAL
blocks the chance of learning identical shortcut from the
source. To increase the anomaly reconstruction error for
multi-class distribution, OmniAL constructs a reconstruc-
tion and a localization sub-networks that are equipped with
proposed Dilated Channel and Spatial Attention (DCSA)
blocks. To better localize the anomaly regions, OmniAL
employs a DiffNeck module between the reconstruction and
localization sub-networks to explore multi-level reconstruc-
tion errors. As shown in Fig.1 and Fig.2, OmniAL learns
a single unified model for multiple classes that produces
high quality reconstruction and precise anomaly localiza-
tion. Furthermore, we conduct an exhaustive evaluation
of reconstruction and localization performance against to
multi-level adversarial attacks.

In summary, we make following main contributions:

• We construct a unified CNN framework OmniAL for
unsupervised anomaly localization that is equipped
with proposed panel-guided anomaly synthesis, DCSA
block, and DiffNeck module. OmniAL achieves supe-
rior performance for anomaly localization on challeng-
ing MVTecAD [1] and VisA [39] datasets compared to
the state-of-the-art.

• By preventing model from learning identical re-
construction, our proposed panel-guided anomaly
synthesis method also brings substantial improve-
ment for existing methods under the unified setting.
It boosts the image-AUROC/pixel-AUROC/pixel-AP
from 88.7/87.1/49.4 to 92.5/94.5/57.4 for Draem [35].

• We make a comprehensive study on the robustness of
separate/unified anomaly localization methods against
different level adversarial attacks. Our synthesized
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Figure 3. Framework of OmniAL. It consists of panel-guided anomaly synthesis, reconstruction and localization. Anomaly synthesis is
based on anomaly panel and three variants of the Just Noticeable Distortion (JND) map. The synthetic anomaly is reconstructed into normal
image and corresponding JND map by the Dilated Channel Spatial Attention (DCSA) modules equipped reconstruction sub-network. The
localization sub-network with a DiffNeck module localizes the anomaly regions by exploring the difference between reconstructed and
original data.

adversarial datasets exhibit strong attack capability
against anomaly detection, reconstruction and local-
ization, also helping to analyse the risks of existing
methods.

2. Related Work

Anomaly synthesis. Due to the lack of anomaly sam-
ples, unsupervised learning methods are commonly used in
industrial quality inspection. These methods are typically
trained with normal data and synthesized anomalous that
highly effect the performance. Therefore, how to synthe-
size the anomalous [7, 8, 14, 35, 37, 38] also draws exten-
sive attention. CutPaste [14] learns representations by clas-
sifying normal data from the Cut-and-Paste augmentation.
SPD [39] uses a smoothed version of CutPaste [14] aug-
mentation. Instead of using simple regular shaped anoma-
lous, Draem [35] simulates just-out-of-distribution anoma-
lies having random shape and texture. To simulate photo-
realistic anomaly samples, JNLD [38] proposes a multi-
scale noticeable anomalous generation method based on
just noticeable distortion [31]. The open-set supervised
anomaly detection method DRA [7] adapts the popular Cut-
Mix [34] and the outlier exposure method [10] to generate
pseudo anomalies from normal images for training. DSR
[37] generates the anomalies at the feature level by sam-
pling the learned quantized feature space, which allows a
controlled generation of near-in-distribution anomalies. For
the unified paradigm, we propose a panel-guided anomaly
synthesis method that controls the portion of normal and
anomaly regions for each training sample.

Anomaly localization. Anomaly detection [22,26], also
known as outlier detection or one-class classification, refers
to the task of distinguishing defective image at the image-
level from the majority of anomaly-free images. Anomaly
localization (segmentation), on the other hand, aims to seg-

ment out the pixel-level anomaly regions. For industrial vi-
sual inspection, many recent methods [5,6,19] achieve high
performance in anomaly detection but anomaly localization.
SPADE [5] detects anomaly based on alignment between an
anomalous image and a constant number of the similar nor-
mal images. It relies on K nearest neighbors of pixel-level
feature pyramids extracted by pre-trained deep features.
PSVDD [32] extends deep Support Vector Data Description
(SVDD) to a patch-wise detection method. PaDim [6] also
relies on ImageNet pretrained feature extractor with multi-
scale pyramid pooling. Instead of using time-costly cluster-
ing, it uses a well-known Mahalanobis distance metric [17]
as an anomaly score. CutPaste [14] uses GradCAM [24]
to get the defect localization. MKD [23] proposes to use
multi-level features alignment to increase the discriminating
capability of the Teacher-Student model on various types
of abnormalities. PatchCore [19] combines patch-level em-
beddings from ImageNet models with an outlier detection
model. However, PatchCore is inherently not suitable for
unified setting (larger normal dataset) since it needs to build
the coreset with all normal data. Draem [35] and JNLD [38]
use segmentation sub-network to predict the defective re-
gions. This paper differs from these previous works by fo-
cusing on the paradigm of only using a single unified model
for N classes.

Unified anomaly localization. Recently, how to use a
unified model to localize anomaly for different objects has
already become researchers’ concern. RegAD [11] trains
a single generalizable model for few-shot anomaly detec-
tion, where a limited number of normal images are provided
for each category at training. It employs SimSiam [3] with
three spatial transformer network [13] blocks to solve the
category-agnostic feature registration proxy task. It identi-
fies anomalies by comparing the registered features of the
test image and the corresponding normal images. UniAD
[33] constructs a transformer with a layer-wise query de-
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coder and a neighbor masked attention module to model
the multi-class distribution. It uses the layer-wise query de-
coder to intensify the use of query embedding. To avoid the
information leak, it employs a neighbor masked attention
module, where a feature point relates to neither itself nor its
neighbors. In this paper, we propose a unified CNN frame-
work for unsupervised anomaly localization. It manifests
the problem-solving ability of fully convolutional networks.

3. Method

In this work, we construct a unified CNN framework
OmniAL for unsupervised anomaly localization under the
practical setting of only using one model for N classes.
Fig.3 shows the overview of proposed OmniAL. To train
only with normal data, we firstly synthesize photo-realistic
anomalous in the regions that are selected based 5 pre-
defined panels. The synthesized anomaly samples are
then used to train the OmniAL network that consists of
an anomaly-free reconstruction and an anomaly localiza-
tion sub-networks. The reconstruction and localization
sub-networks are composed of alternative basic blocks and
DCSA blocks. The reconstruction sub-network learns to
recover the synthesized anomalous back to normal. The lo-
calization sub-network with a DiffNeck module localizes
the anomaly regions by exploring the difference between
reconstructed and original data.

3.1. Panel-guided anomaly synthesis

Reconstruction-based anomaly localization methods rely
on the hypothesis that the reconstruction errors in unseen
anomalous regions are larger than the normal regions. The
reconstruction models are trained with alternative normal
and synthetic anomaly samples. For normal sample, the
supervision ground truth is the direct copy of the input.
Thus, directly using normal samples for training increases
the chance of information leak and leads to identical recon-
struction for any input. To prevent the learning of identi-
cal short-cut, the intuitive idea is that only using synthetic
anomaly rather than normal data. However, without us-
ing normal samples for training leads to more false alarm.
Then, the problem is transformed into how to better synthe-
sis anomaly for unified model training.

To solve the problem, we propose a panel-guided
anomaly synthesis method that takes into account both nor-
mal and anomaly for training. As shown in Fig.4, we build
5 types of panels (’left’,’right’,’top’,’bottom’,’all’) to con-
trol the portion of normal and anomaly regions. That is, we
only generate the anomaly in one of the panel region for
each sample in each iteration. Except the type of ’all’, the
area of panel region is also randomly adjusted in range of
[0.5, 0.8]*ImageWidth and [0.5, 0.8]*ImageHeight. Given
a panel, we synthesize anomaly in the selected region ac-

Figure 4. Visualization of our panel-guided anomaly synthetic
data. The anomaly source is selected either from augmented nor-
mal images (row1,2) or DTD [4] dataset (row3).

cording to following equation.

A =

3∑
i=1

(WiT + (1−Wi)I) (1)

WhereA is the synthesized anomaly image,Wi is the pixel-
wise fusion weight map, i indicates one of the 3 defect lev-
els (easy, medium and hard), I is the anomaly-free image,
T is the anomaly source image. To synthesize natural and
diversity anomalies, T is generated by applying a set of ran-
dom augmentation (resize, crop, flip, color-jitter) to I or
image from the Describable Textures Dataset(DTD) [4].

To get the 3-level defects, we first need to find out the
baseline anomaly fusion weight map. Following JNLD
[38], we use the JND [31] to guide the anomaly synthesis.
JND [31] refers to the minimum visibility threshold of the
Human Visual System, is useful in perceptual image/video
processing systems. It reveals a perceptual threshold of in-
tensity change in an image that can be noticed by the human
vision system. We use a nonlinear additivity JND model to
define the anomaly weight map J as [25] that proposes a
novel hybrid exposure weight measurement using the JND.
Each level anomaly fusion weight map Wi is defined as:

Wi = αi ∗ (J + βi) (2)

Where J indicates the JND map, βi is a bias term for dif-
ferent level of noticeable, αi is a smooth kernel applied
to the mask and produces soft boundary between anomaly
and normal regions. For the easier level anomaly, we use
a smaller smooth kernel. Due to using random seeds, dif-
ferent level anomaly regions may overlap each other. Thus,
directly using the masks as the ground truth for anomaly
segmentation task may bring label inconsistency. There-
fore, we refine and quantify the segmentation mask into 3
defect levels based on the structure similarity index measure
(SSIM) [29] between the anomaly-free image I and synthe-
sized anomaly image A.

3.2. Anomaly reconstruction

As shown in Fig.3, our anomaly reconstruction sub-
network receives an input image and outputs reconstructed
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normal image and corresponding JND map. The recon-
struction sub-network consists of an encoder and a decoder.
Both of them are composed of alternating basic and DCSA
blocks. The basic block extracts different levels of fea-
tures with two consecutive 3x3 convolution layer followed
by normalization and ReLU activation layers. Considering
the unified training paradigm, instance normalization [28]
is more suitable than the broadly used batch normalization
[12] in anomaly reconstruction. The reason is that batch
normalization [12] normalizes using the information from
the whole batch, while instance normalization [28] normal-
izes each feature map on its own. Under unified setting,
each batch of training data consists of different classes that
complicates the reconstruction problem. Instance normal-
ization discards instance-specific contrast information and
reduces undesirable instance-level variation. Batch normal-
ization, meanwhile, lacks the ability to address the class in-
consistency. Therefore, we use instance normalization in
each basic block rather than batch normalization. Experi-
mental results in Table 3 show that the performance is im-
proved by swapping batch normalization with instance nor-
malization.

The feature maps extracted by the basic block are fur-
ther integrated by the DCSA block that is inspired by the
popular CBAM [30]. As shown in orange dash block of
Fig.3, the DCSA block consists of channel and spatial at-
tention sequential sub-modules. With average pooling and
two consecutive 1x1 convolutions, the channel attention ex-
plores the correlations among feature channels. The corre-
lations are add back to original feature maps to emphasize
the important feature channels. The spatial attention further
investigates the spatial correlation. It first aggregates spatial
information by concatenating both average and maximum
pooling of afore refined feature maps. Then, it spots the
spatial importance of the aggregated features with a stan-
dard and a dilated 3x3 convolution-norm-relu paths. It bal-
ances the portion of dilated path by a factor that is set as
0.1. The spatial attention map is obtained by summing up
two paths of features. By adding the spatial attention map,
the important regions in feature maps are highlighted. As
shown in Table 3, the performance is further improved by
using DCSA blocks.

3.3. Anomaly localization

After reconstructing the normal and corresponding JND
maps, we use a localization sub-network to highlight the
anomaly regions. Instead of directly concatenating the re-
constructed maps with input image, we firstly use a Diff-
Neck module to fully explore the difference between them.
The pink dash block of Fig.3 illustrates the detailed struc-
ture of DiffNeck. Overall, DiffNeck extracts reconstruction
difference among reconstructed normal map (Rec), recon-
structed JND map (JND) and input image (Inp) in both sep-

arate and unified ways. That is, DiffNeck uses basic blocks
to extract the concatenated features of (Rec, Inp), (JND,
Inp) and (Rec, JND, Inp) respectively. Then, all levels of
differences are summed up and form a final descriptor that
is fed to the localization sub-network. DiffNeck also bal-
ances the portion of the separate path by a factor that is set
as 0.1.

Similar with reconstruction sub-network, the localiza-
tion sub-network also follows the encoder-decoder struc-
ture but with 6 scales (e1-e5 in Fig.3) and skip connections
for corresponding scales. Scale-1 and scale-2 use standard
convolution in all blocks. To use larger resolution feature
maps and receptive field, the basic and DCSA blocks of
the encoder contain dilated convolution layer from scale-3
to scale-6 with 2, 4, 8, 16 dilation rates respectively. Dif-
ferent with reconstruction sub-network, we use batch nor-
malization in all blocks. Since we synthesize more realistic
anomalies by considering easy, medium and hard level de-
fects, localization sub-network predicts 3 levels of anoma-
lous locations. To get the final pixel-level anomaly local-
ization map, we combine them together by a sequence pro-
cessing of SoftMax, smoothness and summing up. By doing
this, the false alarm noise can be suppressed, and the weak
true decision can be strengthened.

The total target for training OmniAL is defined as
L =L2(J, Jr) + Lssim(J, Jr)

+ L2(I, Ir) + Lssim(I, Ir) + Lfl(S, Ss)
(3)

Where J is the ground truth JND map calculated from
the anomaly-free image I , Jr and Ir are reconstructed
JND map and normal image, S is the anomaly localiza-
tion ground truth. Unlike JNLD [38], for both JND and
normal reconstruction, we not only use MSE loss to super-
vise the pixel-to-pixel recovering but also the SSIM loss to
yield plausible local consistency. To handle the unbalance
of different types, we use focal loss [15] to supervise the
predicted anomaly localization Ss.

4. Experimental results
4.1. Datasets and metrics

To demonstrate the effectiveness of proposed Om-
niAL, we conduct extensive experiments on the challenging
MVTecAD [1] and VisA [39] datasets.

MVTecAD [1] dataset contains 10 object and 5 texture
industrial products, such as bottle and leather. It consists of
3,629 normal images for training and 1,725 images for test-
ing. There are 1,258 anomaly images of the testing set with
pixel-level labelled various types of defects and the rest are
normal images. Each class contains 60 to 320 color images
with the resolution ranges from 700x700 to 1024x1024 pix-
els. In the testing set, defective appearance varies in differ-
ent sizes, shapes and types, and most cases only contain a
small fraction of anomalous pixels.
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Table 1. Image AUROC comparison of our method OmniAL with the state-of-the-art on MVTecAD [1].

Category Padim [6] CutPaste [14] MKD [23] Draem [35] JNLD [38] UniAD [33] OmniAL
Unified / Separate

bottle 97.9 / 99.9 67.9 / 98.2 98.7 / 99.4 94.6 / 99.1 99.1 / 96.3 99.7 / 100 100 / 99.4
cable 70.9 / 92.7 69.2 / 81.2 78.2 / 89.2 61.8 / 94.7 90.6 / 98.8 95.2 / 97.6 98.2 / 97.6

capsule 73.4 / 91.3 63.0 / 98.2 68.3 / 80.5 70.2 / 98.5 74.4 / 85.0 86.9 / 85.3 95.2 / 92.4
carpet 93.8 / 99.8 93.6 / 93.9 69.8 / 79.3 95.9 / 95.5 77.1 / 97.8 99.8 / 99.9 98.7 / 99.6
grid 73.9 / 96.7 93.2 / 100 83.8 / 98.0 98.1 / 99.9 98.6 / 100 98.2 / 98.5 99.9 / 100

hazelnut 85.5 / 92.0 80.9 / 98.3 97.1 / 98.4 95.1 / 100 90.8 / 100 99.8 / 99.9 95.6 / 98.0
leather 99.9 / 100 93.4 / 100 93.6 / 95.1 99.9 / 100 97.0 / 100 100 / 100 99.0 / 97.6

metal nut 88.0 / 98.7 60.0 / 99.9 64.9 / 73.6 88.9 / 98.7 93.3 / 99.6 99.2 / 99.0 99.2 / 99.9
pill 68.8 / 93.3 71.4 / 94.9 79.7 / 82.7 69.0 / 98.9 82.7 / 94.6 93.7 / 88.3 97.2 / 97.7

screw 56.9 / 85.8 85.2 / 88.7 75.6 / 83.3 93.3 / 93.9 81.8 / 95.8 87.5 / 91.9 88.0 / 81.0
tile 93.3 / 98.1 88.6 / 94.6 89.5 / 91.6 98.3 / 99.6 99.2 / 100 99.3 / 99.0 99.6 / 100

toothbrush 95.3 / 96.1 63.9 / 99.4 75.3 / 92.2 82.8 / 100 100 / 100 94.2 / 95.0 100 / 100
transistor 86.6 / 97.4 57.9 / 96.1 73.4 / 85.6 83.9 / 93.1 90.3 / 93.0 99.8 / 100 93.8 / 93.8

wood 72.1 / 96.5 80.4 / 99.1 93.4 / 94.3 99.8 / 99.1 91.9 / 99.6 98.6 / 97.9 93.2 / 98.7
zipper 79.7 / 90.3 93.5 / 99.9 87.4 / 93.2 99.1 / 100 99.8 / 99.8 95.8 / 96.7 100 / 100

average 84.2 / 95.5 77.5 / 96.1 81.9 / 87.8 88.7 / 98.0 91.3 / 97.4 96.5 / 96.6 97.2 / 97.0

Table 2. Pixel AUROC comparison of our method OmniAL with the state-of-the-art on MVTecAD [1].

Category Padim [6] PSVDD [32] MKD [23] Draem [35] JNLD [38] UniAD [33] OmniAL
Unified / Separate

bottle 96.1 / 98.2 86.7 / 98.1 91.8 / 96.3 87.4 / 99.1 94.8 / 99.0 98.1 / 98.1 99.2 / 99.0
cable 81.0 / 96.7 62.2 / 96.8 89.3 / 82.4 70.4 / 94.7 76.4 / 97.7 97.3 / 96.8 97.3 / 97.1

capsule 96.9 / 98.6 83.1 / 95.8 88.3 / 95.9 49.2 / 94.3 57.0 / 92.7 98.5 / 97.9 96.9 / 92.2
carpet 97.6 / 99.0 78.6 / 92.6 95.5 / 95.6 95.2 / 95.5 93.7 / 99.0 98.5 / 98.0 99.4 / 99.6
grid 71.0 / 97.1 70.8 / 96.2 82.3 / 91.8 99.0 / 99.7 96.9 / 99.7 98.2 / 98.5 99.4 / 99.6

hazelnut 96.3 / 98.1 97.4 / 97.5 91.2 / 94.6 96.0 / 99.7 85.9 / 99.4 96.5 / 94.6 98.4 / 98.6
leather 84.8 / 99.0 93.5 / 97.4 96.7 / 98.1 98.6 / 98.6 87.0 / 99.5 98.8 / 98.3 99.3 / 99.7

metal nut 84.8 / 97.3 96.0 / 98.0 64.2 / 86.4 72.6 / 99.5 97.4 / 99.5 94.8 / 95.7 99.1 / 99.1
pill 87.7 / 95.7 96.5 / 95.1 69.7 / 89.6 90.0 / 97.6 91.2 / 96.6 95.0 / 95.1 98.9 / 98.6

screw 94.1 / 98.4 74.3 / 95.7 92.1 / 96.0 89.3 / 97.6 87.0 / 99.7 98.3 / 97.4 98.0 / 97.2
tile 80.5 / 94.1 92.1 / 91.4 85.3 / 82.8 98.1 / 99.2 94.7 / 99.6 91.8 / 91.8 99.0 / 99.4

toothbrush 95.6 / 98.8 98.0 / 98.1 88.9 / 96.1 94.4 / 98.1 98.6 / 98.8 98.4 / 97.8 99.4 / 99.2
transistor 92.3 / 97.6 78.5 / 97.0 71.7 / 76.5 73.1 / 90.9 83.6 / 92.1 97.9 / 98.7 93.3 / 91.7

wood 89.1 / 94.1 80.7 / 90.8 80.5 / 84.8 96.2 / 96.4 88.7 / 96.3 93.2 / 93.4 97.4 / 96.9
zipper 94.8 / 98.4 95.1 / 95.1 86.1 / 93.9 96.9 / 98.8 95.3 / 99.4 96.8 / 96.0 99.5 / 99.7

average 89.5 / 97.4 85.6 / 95.7 84.9 / 97.0 87.1 / 97.3 88.6 / 97.9 96.8 / 96.6 98.3 / 97.8

Table 3. Ablation study on MVTecAD [1]. PA: Panel-guided
anomaly synthesis, Rec: Reconstruction sub-network, Seg: Seg-
mentation sub-network, BB: Basic Block, BN: Batch Norm, IN:
Instance Norm, DC: Dilated Convolution, CA: Channel Attention,
DSA: Dilated Spatial Attention, I: Image-level classification, P:
Pixel-level localization.

PA Rec-BB DCSA Seg-BB DiffNeck I-AUROC P-AUROC P-AP
- BN IN DC CA DSA BN DC - Unified/Separate
-

√
- -

√
-

√
- - 86.7/98.8 86.4/98.4 44.2/75.0√ √

- -
√

-
√

- - 94.1/— 95.9/— 68.3/—√
-

√
-

√
-

√
- - 95.8/— 97.0/— 69.1/—√

-
√ √ √

-
√ √

- 96.9/97.3 97.6/97.7 72.8/72.9√
-

√ √ √ √ √ √
- 94.7/96.5 96.9/97.8 69.8/74.9√

-
√ √ √

-
√ √ √

96.8/96.3 98.2/98.0 72.7/74.1√
-

√ √ √ √ √ √ √
97.2/97.0 98.3/97.8 73.4/73.5

Table 4. Ablation study on With/Without panel-guided anomaly
synthesis for unified training on MVTecAD [1].

Draem [35] JNLD [38] OmniAL
I-AUROC 92.5/88.7 92.9/91.3 97.2/86.6
P-AUROC 94.5/87.1 95.6/88.6 98.3/93.7
Pixel-AP 57.4/49.4 63.1/46.6 73.4/54.4

VisA [39] dataset consists of 10,821 high-resolution
color images (9,621 normal and 1,200 anomalous samples)
covering 12 objects in 3 domains, including complex struc-

ture, multiple instances and single instances. The anoma-
lous images contain various flaws, including surface defects
such as scratches, dents, color spots or crack, and structural
defects like misplacement or missing parts. There are 5-20
images per defect type and an image may contain multi-
ple defects. All images were acquired using a 4,000x6,000
high-resolution RGB sensor. Example of each category and
our corresponding anomaly reconstruction and localization
results are shown in Fig.5a(MVTecAD) and Fig.5b(VisA).

Metrics For anomaly detection evaluation, the most
common used metrics are Area Under the Receiver Oper-
ating Characteristic curve (AUROC) in both image-level
and pixel-level. However, the pixel-AUROC is biased in
favour of large anomalous regions and does not well reflect
the pixel-level anomalous localization performance. There-
fore, we additionally introduce the average precision (AP)
to evaluate pixel-level anomaly localization performance.
For reconstruction quality evaluation, we use peak signal to
noise ratio (PSNR) and SSIM [29] that are commonly used
for evaluating signal fidelity.
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Table 5. Performance comparison of our method OmniAL with the state-of-the-art on VisA [39]. (Separate/Unified)

Category Padim+SPD [39] Draem [35] JNLD [38] OmniAL
I-AUC P-AUC I-AUC P-AUC P-AP I-AUC P-AUC P-AP I-AUC P-AUC P-AP

Complex structure

PCB1 92.7 97.7 71.3/83.9 98.6/94.0 60.4/38.5 82.0/82.9 96.4/98.0 72.8/77.8 96.6/77.7 98.7/97.6 63.5/76.9
PCB2 87.9 97.2 89.7/81.7 92.5/94.1 3.5/13.3 96.3/79.1 91.9/95.0 31.2/37.7 99.4/81.0 83.2/93.9 2.8/31.6
PCB3 85.4 96.7 73.1/87.7 93.8/94.1 18.7/17.9 96.9/90.1 95.3/98.5 43.4/46.8 96.9/88.1 98.4/94.7 56.9/41.4
PCB4 99.1 89.2 91.3/87.1 95.8/72.3 32.7/13.1 94.8/96.2 96.1/97.5 37.4/29.7 97.4/95.3 98.5/97.1 38.4/33.2

Multiple instances

Macaroni1 85.7 98.8 70.3/68.6 95.8/89.8 8.2/8.0 94.3/90.5 98.8/93.3 25.9/14.2 96.9/92.6 98.9/98.6 7.6/7.1
Macaroni2 70.8 96.0 71.3/60.3 94.1/83.2 25.4/19.7 86.5/71.3 92.9/92.1 17.2/6.1 89.9/75.2 99.1/97.9 11.4/9.2
Capsules 68.1 86.3 77.3/89.6 93.7/96.6 20.2/30.1 89.1/91.4 98.9/99.6 38.6/55.6 87.9/90.6 98.6/99.4 62.9/52.4
Candles 89.1 97.3 82.3/70.2 87.0/82.6 27.9/12.6 89.1/85.4 94.8/94.5 25.9/27.4 85.1/86.8 90.5/95.8 29.2/24.6

Single instance

Cashew 90.5 86.1 94.2/67.3 94.7/68.5 41.2/7.0 96.0/82.5 96.3/94.1 43.7/39.4 97.1/88.6 98.9/95.0 77.3/47.4
Chewing gum 99.3 96.9 93.4/90.0 97.5/92.7 40.9/59.0 98.5/96.0 99.4/98.9 74.7/81.6 94.9/96.4 98.7/99.0 82.9/79.5

Fryum 89.8 88.0 100/86.2 97.5/83.2 40.9/26.4 93.2/91.9 95.8/90.0 42.9/30.4 97.0/94.6 89.3/92.1 28.3/34.4
Pipe fryum 95.6 95.4 94.1/87.1 81.8/72.3 23.7/13.1 96.0/87.5 97.0/92.5 44.1/31.8 91.4/86.1 99.1/98.2 69.1/62.6

Mean 87.8 93.8 84.1/80.5 88.8/87.0 25.4/20.8 93.0/87.1 96.1/95.2 41.5/39.9 94.2/87.8 96.0/96.6 44.2/41.7

Figure 5. Qualitative illustration of our anomaly detection results. From top to bottom, the test images overlap with ground truth contours,
the reconstructions and the anomaly localization map overlays are shown in rows.

4.2. Implementation

To compare with existing methods, we train OmniAL
both in unified and separate paradigm with a batch size
of 20/12 images having size of 256x256/256x320 for
MVTec/VisA and pixel value range of [0, 1] . A single
model is trained with batches that contain all-class samples
for unified paradigm. On the contrary, the separate models
are trained with corresponding class samples respectively.
The Adam optimizer has an initial learning rate of 1e-4. To
alleviate over-fitting, during training, the anomaly texture is
alternatively selected either from augmented normal images
or from the DTD [4] dataset.

4.3. Comparison and performance

Performance on MVTecAD. We compare our proposed
method with state-of-the-art methods recently reported on
MVTecAD for both unified and separate models in anomaly
detection and localization. Table 1 and 2 show our quanti-
tative comparison with the state-of-the-art methods on the
task of anomaly detection and localization. UniAD [33] is
designed for the unified training paradigm while the others

are for the separate training scheme. The results of uni-
fied model of Draem [35] and JNLD [38] are got by re-
training their models under the paradigm of one model for
N classes. The others are reported from UniAD [33]. As
shown in Table 1 and 2, for both image-level and pixel-
level anomaly detection, most of the existing methods’ per-
formance drop drastically when the paradigm switch from
training N separate models to a unified model. Comparing
with the transformer-based method UniAD [33], our CNN-
based method achieves 0.7% and 1.5% higher performance
on image-AUROC and pixel-AUROC. Moreover, as shown
in Table 4, OmniAL(73.4) surpasses SOTA reconstruction-
based methods Draem(49.4) [35] and JNLD(46.6) [38] in
pixel-AP with more than 24%.

Performance on VisA. Comparing with MVTecAD,
VisA is more difficult since it considers more complex
structure and multiple misaligned instances scenes. Table
5 shows the superior performance of OmniAL comparing
with the baseline separate method SPD [39] that proposes
the VisA dataset and two reconstruction-based methods un-
der the unified setting. The results of both separate and uni-
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Figure 6. Robustness comparison of our method OmniAL with the
state-of-the-art against adversarial attack.

fied model of Draem [35] and JNLD [38] are got by re-
training on VisA. For separate training, OmniAL surpasses
the best of them with 1.2% image-AUROC, 2.7% pixel-AP
and similar pixel-AUROC. For unified training, OmniAL
also surpasses the best of them with 0.7% image-AUROC,
1.4% pixel-AUROC and 1.8% pixel-AP.

As shown in Fig.5, our reconstruction and localization
achieve good performance in most categories. Even in the
multi-instance scene, OmniAL still successfully recovers
the anomaly region back to normal. The reconstructed im-
ages have the high-fidelity appearance with the inputs in
normal regions and recover the anomalies as close as the
expectation. The quantity evaluation of reconstruction is
reported in Fig.6a. The bigger circles indicate the recon-
struction performance on the clean normal MVTecAD [1].
Our OmniAL surpasses the Draem [35] and JNLD [38] with
big gaps in both PSNR and SSIM scores under the unified
setting.

Adversarial robustness. Adversarial attacks are eas-
ily performed under the disguise of anomaly with additive
noises and hardly arouse suspicion. Our anomaly synthe-
sis method can be expediently expanded to generate ad-
versarial anomaly samples with PGD [16] perturbations for
robustness evaluation. To further evaluate the robustness
of separate and unified models, we build up 3 adversarial
datasets with PGD [16] perturbations ε = {4/255, 8/255}
and ε = 8/255 with targeted attack based on the anomaly-
free training set from clean MVTecAD [1]. For realistic ad-

versarial samples, the synthesized anomalies only appear in
foreground of the object categories and the anomaly texture
is cropped from the normal images. The generated adver-
sarial datasets consist of 80% synthesized anomaly and 20%
normal samples. Fig.6 illustrates the performance compar-
ison in (a) reconstruction and (b) localization respectively.
The names with ’ sp’ suffix indicate separate models while
the others are unified models. OmniAL(green) achieves the
best performance against all adversarial levels and has less
degradation. All category adversarial samples and perfor-
mance comparison are shown in supplementary material.

4.4. Ablation study

Table 3 demonstrates the effectiveness of proposed
panel-guided anomaly synthesis, DCSA block and Diff-
Neck module for both unified and separate training
paradigm. We build a baseline by only using channel at-
tention in DCSA blocks and achieve the best performance
in separate setting but the worse performance in unified set-
ting. By using panel-guided anomaly synthesis, we achieve
about 10% image-level and 24% pixel-level performance
improvement comparing with the baseline. The overall per-
formance is further improved by using instance normaliza-
tion rather than batch normalization in the reconstruction
basic blocks. With the help of dilated convolution layer
in basic blocks, we can preserve high resolution feature
maps and get further improvement. By further using dilated
spatial attention, the separate models performance gain 2%
but the unified model decreases 3% in pixel-AP. Alterna-
tively, the model using DiffNeck module gains 1.2% for
separate setting and 0.6% for unified setting. Finally, by
combining dilated spatial attention and DiffNeck together,
we achieve the balanced performance in separate and uni-
fied settings and get the OmniAL. As shown in Table 4, pro-
posed panel-guided anomaly synthesis also boosts existing
reconstruction-based methods with a large margin. More
ablation studies are shown in supplementary material.

5. Conclusion
Considering the practical usages, we propose a unified

CNN framework to localize anomalous for multiple classes
with a single model. Extensive experiments on MVTecAD
and VisA datasets verify the effectiveness of our proposed
panel-guided anomaly synthesis, dilated channel and spatial
attention (DCSA) block, and DiffNeck module. Especially,
OmniAL produces more precisely anomaly reconstruction
and localization results. The panel-guided anomaly synthe-
sis can be easily used in existing methods and brings per-
formance improvement under the unified training paradigm.
Moreover, we make the first attempt to conduct a compre-
hensive study on the robustness of existing methods against
different levels of adversarial for both separate and unified
training paradigm.

3931



References
[1] Paul Bergmann, Michael Fauser, David Sattlegger, and

Carsten Steger. Mvtec AD - A comprehensive real-world
dataset for unsupervised anomaly detection. In CVPR, pages
9592–9600, 2019. Computer Vision Foundation / IEEE. 1,
2, 5, 6, 8

[2] Paul Bergmann, Michael Fauser, David Sattlegger, and
Carsten Steger. Uninformed students: Student-teacher
anomaly detection with discriminative latent embeddings. In
CVPR, pages 4182–4191, 2020. Computer Vision Founda-
tion / IEEE. 2

[3] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2021, virtual, June 19-
25, 2021, pages 15750–15758. Computer Vision Foundation
/ IEEE, 2021. 3

[4] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy
Mohamed, and Andrea Vedaldi. Describing textures in the
wild. In CVPR, pages 3606–3613, 2014. IEEE Computer
Society. 4, 7

[5] Niv Cohen and Yedid Hoshen. Sub-image anomaly
detection with deep pyramid correspondences. CoRR,
abs/2005.02357. 3

[6] Thomas Defard, Aleksandr Setkov, Angelique Loesch, and
Romaric Audigier. Padim: A patch distribution model-
ing framework for anomaly detection and localization. In
Alberto Del Bimbo, Rita Cucchiara, Stan Sclaroff, Gio-
vanni Maria Farinella, Tao Mei, Marco Bertini, Hugo Jair Es-
calante, and Roberto Vezzani, editors, ICPR, volume 12664
of Lecture Notes in Computer Science, pages 475–489, 2020.
Springer. 2, 3, 6

[7] Choubo Ding, Guansong Pang, and Chunhua Shen. Catching
both gray and black swans: Open-set supervised anomaly
detection. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2022, New Orleans, LA, USA,
June 18-24, 2022, pages 7378–7388. IEEE, 2022. 3

[8] Mariana-Iuliana Georgescu, Radu Tudor Ionescu, Fa-
had Shahbaz Khan, Marius Popescu, and Mubarak Shah. A
background-agnostic framework with adversarial training for
abnormal event detection in video. IEEE Trans. Pattern Anal.
Mach. Intell., 44(9):4505–4523, 2022. 3

[9] Denis A. Gudovskiy, Shun Ishizaka, and Kazuki Kozuka.
CFLOW-AD: real-time unsupervised anomaly detection
with localization via conditional normalizing flows. In
WACV, pages 1819–1828, 2022. IEEE. 2

[10] Dan Hendrycks, Mantas Mazeika, and Thomas G. Dietterich.
Deep anomaly detection with outlier exposure. In 7th In-
ternational Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net, 2019. 3

[11] Chaoqin Huang, Haoyan Guan, Aofan Jiang, Ya Zhang,
Michael W. Spratling, and Yan-Feng Wang. Registration
based few-shot anomaly detection. CoRR, abs/2207.07361,
2022. 3

[12] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In Francis R. Bach and David M. Blei, editors,

Proceedings of the 32nd International Conference on Ma-
chine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings,
pages 448–456. JMLR.org, 2015. 5

[13] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
Koray Kavukcuoglu. Spatial transformer networks. In
Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi
Sugiyama, and Roman Garnett, editors, Advances in Neu-
ral Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pages 2017–2025,
2015. 3

[14] Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas
Pfister. Cutpaste: Self-supervised learning for anomaly de-
tection and localization. In CVPR, pages 9664–9674, 2021.
Computer Vision Foundation / IEEE. 2, 3, 6

[15] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He,
and Piotr Dollár. Focal loss for dense object detection. In
CVPR, pages 2999–3007, 2017. IEEE Computer Society. 5

[16] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In ICLR, 2018.
OpenReview.net. 8

[17] Prasanta Chandra Mahalanobis. On the generalized distance
in statistics. National Institute of Science of India, 1936. 3

[18] Masoud PourReza, Bahram Mohammadi, Mostafa Khaki,
Samir Bouindour, Hichem Snoussi, and Mohammad
Sabokrou. G2D: generate to detect anomaly. In WACV, pages
2002–2011, 2021. IEEE. 2

[19] Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard
Schölkopf, Thomas Brox, and Peter Gehler. Towards to-
tal recall in industrial anomaly detection. In CVPR, pages
14318–14328, 2022. 2, 3

[20] Marco Rudolph, Bastian Wandt, and Bodo Rosenhahn. Same
same but differnet: Semi-supervised defect detection with
normalizing flows. In WACV, pages 1906–1915, 2021. IEEE.
2

[21] Marco Rudolph, Tom Wehrbein, Bodo Rosenhahn, and Bas-
tian Wandt. Fully convolutional cross-scale-flows for image-
based defect detection. In WACV, pages 1829–1838, 2022.
IEEE. 2

[22] Mohammadreza Salehi, Hossein Mirzaei, Dan Hendrycks,
Yixuan Li, Mohammad Hossein Rohban, and Mohammad
Sabokrou. A unified survey on anomaly, novelty, open-set,
and out-of-distribution detection: Solutions and future chal-
lenges. CoRR, abs/2110.14051. 1, 3

[23] Mohammadreza Salehi, Niousha Sadjadi, Soroosh
Baselizadeh, Mohammad H. Rohban, and Hamid R.
Rabiee. Multiresolution knowledge distillation for anomaly
detection. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021,
pages 14902–14912. Computer Vision Foundation / IEEE,
2021. 3, 6

[24] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-
tra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. Int. J. Comput. Vis., 128(2):336–
359, 2020. 3

3932



[25] Jianbing Shen, Ying Zhao, Shuicheng Yan, and Xuelong Li.
Exposure fusion using boosting laplacian pyramid. IEEE
Trans. Cybern., 44(9):1579–1590, 2014. 4

[26] Xian Tao, Xinyi Gong, Xin Zhang, Shaohua Yan, and Chan-
dranath Adak. Deep learning for unsupervised anomaly
localization in industrial images: A survey. CoRR,
abs/2207.10298. 1, 3

[27] Chin-Chia Tsai, Tsung-Hsuan Wu, and Shang-Hong Lai.
Multi-scale patch-based representation learning for image
anomaly detection and segmentation. In WACV, pages 3065–
3073, 2022. IEEE. 2

[28] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky.
Instance normalization: The missing ingredient for fast styl-
ization. CoRR, abs/1607.08022, 2016. 5

[29] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.
Simoncelli. Image quality assessment: from error visibil-
ity to structural similarity. IEEE Trans. Image Process.,
13(4):600–612, 2004. 4, 6

[30] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. CBAM: convolutional block attention module. In
Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and
Yair Weiss, editors, Computer Vision - ECCV 2018 - 15th
European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part VII, volume 11211 of Lecture Notes
in Computer Science, pages 3–19. Springer, 2018. 5

[31] Jinjian Wu, Guangming Shi, Weisi Lin, Anmin Liu, and Fei
Qi. Just noticeable difference estimation for images with
free-energy principle. IEEE Trans. Multim., 15(7):1705–
1710, 2013. 3, 4

[32] Jihun Yi and Sungroh Yoon. Patch SVDD: patch-level
SVDD for anomaly detection and segmentation. In Hiroshi
Ishikawa, Cheng-Lin Liu, Tomás Pajdla, and Jianbo Shi, ed-
itors, Computer Vision - ACCV 2020 - 15th Asian Confer-
ence on Computer Vision, Kyoto, Japan, November 30 - De-
cember 4, 2020, Revised Selected Papers, Part VI, volume
12627 of Lecture Notes in Computer Science, pages 375–
390. Springer, 2020. 3, 6

[33] Zhiyuan You, Lei Cui, Yujun Shen, Kai Yang, Xin Lu,
Yu Zheng, and Xinyi Le. A unified model for multi-class
anomaly detection. CoRR, abs/2206.03687, 2022. 3, 6, 7

[34] Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon
Oh, Youngjoon Yoo, and Junsuk Choe. Cutmix: Regulariza-
tion strategy to train strong classifiers with localizable fea-
tures. In 2019 IEEE/CVF International Conference on Com-
puter Vision, ICCV 2019, Seoul, Korea (South), October 27
- November 2, 2019, pages 6022–6031. IEEE, 2019. 3

[35] Vitjan Zavrtanik, Matej Kristan, and Danijel Skocaj. Dræm -
A discriminatively trained reconstruction embedding for sur-
face anomaly detection. In ICCV, pages 8310–8319, 2021.
IEEE. 2, 3, 6, 7, 8

[36] Vitjan Zavrtanik, Matej Kristan, and Danijel Skocaj. Recon-
struction by inpainting for visual anomaly detection. Pattern
Recognit., 112:107706, 2021. 2

[37] Vitjan Zavrtanik, Matej Kristan, and Danijel Skocaj. DSR -
A dual subspace re-projection network for surface anomaly
detection. In Shai Avidan, Gabriel J. Brostow, Moustapha
Cissé, Giovanni Maria Farinella, and Tal Hassner, editors,

Computer Vision - ECCV 2022 - 17th European Conference,
Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part
XXXI, volume 13691 of Lecture Notes in Computer Science,
pages 539–554. Springer, 2022. 3

[38] Ying Zhao. Just noticeable learning for unsupervised
anomaly localization and detection. In ICME, pages In Press,
2022. 1, 2, 3, 4, 5, 6, 7, 8

[39] Yang Zou, Jongheon Jeong, Latha Pemula, Dongqing Zhang,
and Onkar Dabeer. Spot-the-difference self-supervised pre-
training for anomaly detection and segmentation. CoRR,
abs/2207.14315, 2022. 2, 3, 5, 6, 7

3933


