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Abstract

Existing methods for open set action recognition focus
on novelty detection that assumes video clips show a single
action, which is unrealistic in the real world. We propose a
new method for open set action recognition and novelty de-
tection via MUlti-Label Evidential learning (MULE), that
goes beyond previous novel action detection methods by
addressing the more general problems of single or multi-
ple actors in the same scene, with simultaneous action(s)
by any actor. Our Beta Evidential Neural Network esti-
mates multi-action uncertainty with Beta densities based
on actor-context-object relation representations. An evi-
dence debiasing constraint is added to the objective func-
tion for optimization to reduce the static bias of video rep-
resentations, which can incorrectly correlate predictions
and static cues. We develop a primal-dual average scheme
update-based learning algorithm to optimize the proposed
problem and provide corresponding theoretical analysis.
Besides, uncertainty and belief-based novelty estimation
mechanisms are formulated to detect novel actions. Exten-
sive experiments on two real-world video datasets show that
our proposed approach achieves promising performance in
single/multi-actor, single/multi-action settings. Our code
and models are released at https://github.com/
charliezhaoyinpeng/mule.

1. Introduction
Open set human action recognition has been studied in

recent years due to its great potential in real-world appli-
cations, such as security surveillance [1], autonomous driv-
ing [34], and face recognition [26]. It differs from closed
set problems that aim to classify human actions into a prede-
fined set of known classes, since open set methods can iden-
tify samples with unseen classes with high accuracy [14].

To this end, several recent methods [4, 6, 10] are pro-
posed for open set human action recognition. As shown
in the bottom-left of Figure 1, they focus on single-actor,
single-action based recognition, assuming that each video
contains only one single action. Compared with softmax
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Figure 1. Novelty detection examples of single/multiple actor(s)
with single/multiple action(s) in video [16, 38], where an actor is
identified as novel (yellow) rather than being from a known cat-
egory (cyan) in inference. Existing works [4, 6] on open set ac-
tion recognition focus on single actor associated with single action
(bottom-left), while our method can handle different situations.

thresholding [13, 22, 25] for closed set recognition, eviden-
tial neural networks (ENNs) [4, 36] can provide a princi-
pled way to jointly formulate the multi-class classification
and uncertainty modeling to measure novelty of an instance
more accurately. It assumes that class probability follows a
prior Dirichlet distribution. However, in more realistic situ-
ation with multiple actions of actor(s) (see the upper part of
Figure 1), the Dirichlet distribution does not hold because
the predicted likelihood of each action follows a binomial
distribution (i.e., identifying either known or novel action).

In this paper, we introduce a general but understudied
problem, namely novelty detection of actor(s) with multi-
ple actions. Given real-world use cases [14, 39], the goal
is to accurately detect if actor(s) perform novel/unknown
action(s) or not. Following [43], an actor is considered un-
known if it does not contain any known action(s). Inspired
by the belief theory [17, 45], we propose a new framework
named MUlti-Label Evidential learning (MULE), which is
composed of three modules: Actor-Context-Object Rela-
tion modeling (ACO-R), Beta Evidential Neural Network
(Beta-ENN), and Multi-label Evidence Debiasing Con-
straint (M-EDC). First, we build ACO-R representation to
exploit the actors’ interactions with the surrounding objects
and the context. Then, we use Beta-ENN to estimate the
evidence of known actions, and quantify the predictive un-
certainty of actions so that unknown actions would incur
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high uncertainty, i.e., lack of confidence for known predic-
tions. Here, the evidence indicates actions closest to the
predicted one in the feature space and are used to support
the decision-making [36]. Instead of relying on Dirichlet
distribution [4], the evidence in Beta-ENN is regarded as
parameters of a Beta distribution which is a conjugate prior
of the Binomial likelihood.

Additionally, in open set recognition, static bias [21]
may bring a false correlation between the prediction and
static cues, such as scenes, resulting in inferior generaliza-
tion capability of a model. Therefore, the M-EDC is added
to the objective function of our framework to reduce the
static bias for video actions. We propose a duality-based
learning algorithm to optimize the network. Specifically,
we apply an averaging scheme to proximate primal opti-
mal solutions. The primal and dual parameters are updated
interactively, where the primal parameters regard model ac-
curacy and dual parameters adjust model debiasing. The
theoretical analysis shows the convergence of the primal so-
lution sequence and gives bounds for both the loss function
and the violation of the debiasing constraint in MULE. Ac-
cording to the proposed uncertainty and belief based novelty
estimation mechanisms, our model outperforms the state-
of-the-art on two action recognition datasets (i.e., AVA [16]
and Charades [38]) in terms of novelty detection. The main
contributions of this work are summarized:
• A new framework MULE is proposed for open set action

recognition in videos that contains either a single or mul-
tiple actors associated with one or more actions. To the
best of our knowledge, this is the first study to detect ac-
tors with multiple unknown actions.

• To optimize the Beta-ENN, we develop a primal-dual av-
erage scheme update algorithm, with theoretical guaran-
tees on the convergence of the primal solution sequence
and bounds for both the loss function and the violation of
the debiasing constraint.

• We introduce four novelty estimation mechanisms to cal-
culate novelty score and achieve better performance on
novel action detection compared with existing methods.

2. Related Work

Open set action recognition. Despite a great many ex-
plorations on video action recognition [11, 12, 47], most
existing methods are developed under the assumption that
all actions are known a priori (closed set), and limited at-
tention is given to the open set problems. OpenMax [6]
is initially proposed for open set recognition, in which it
leverages Extreme Value Theory [35] to expand the K-class
softmax classifier. Roitberg et al. [33] develops the voting-
based scheme to leverage the estimated uncertainty of ac-
tion predictions to measure the novelty of the test sample.
DEAR [4] formulates the open set action recognition prob-

lem by estimating the uncertainty of single labeled actions
to distinguish between the known and unknown samples.
However, such methods focus on simple scenarios where
each actor has only one action in a video.
Uncertainty estimation. To distinguish unknown samples
from known ones, how deep networks identify samples be-
longing to an unrelated data distribution becomes crucial.
To this end, a stream of research on Bayesian Neural Nets
(BNNs) [20] is proposed to estimate prediction uncertainty
by approximating the moments of the posterior predictive
distribution. However, BNNs face several limitations, in-
cluding the intractability of directly inferring the posterior
distribution of the weights given data, the computational ex-
pense of sampling during inference, and the question of how
to choose a weight prior [2]. Recently, Evidential Neural
Networks (ENNs) [36] estimate evidential uncertainty for
multi-class classification problems. But they are designed
for single-label multi-classification issues by assuming that
class probability follows a prior Dirichlet distribution.
Debiasing. Static bias is another challenging issue limit-
ing the generalization capability of a model in an open-set
setting [4]. The manifestation of static bias can often be
as fraught as the spurious correlation between the predic-
tion and sensitive features like unrelated objects and back-
ground [4, 7, 21]. It empirically shows that debiasing the
model by input data or learned representation can improve
the accuracy. RESOUND [21] indicates that static bias
may help to achieve better results in a closed-set setting if
an action can overfit it. Choi et al. [7] introduce scene-
adversarial and human mask confusion losses to mitigate
scene bias. For an open-set setting, DEAR [4] introduces
the contrastive evidence debiasing by temporally shuffled
feature input and 2D convolution. However, it still pushes
the sensitive feature to be independent of the non-sensitive
one only, in which the dependency of the sensitive feature
on model predictions is ignored. In contrast, we propose
a new Beta distribution based network with multi-label ev-
idential learning, where static bias is reduced in terms of
both indirect and direct dependencies.

3. Method
Given an input video, we aim to determine the predic-

tive uncertainty of the detected actors with unknown ac-
tions. For inference, actions with high and low uncertainty
can be regarded as unknown and known, respectively. As
illustrated in Figure 2, our method extracts Actor-Context-
Object Relation (ACO-R) to train the Beta Evidential Neu-
ral Network (Beta-ENN) with the Multi-label Evidence De-
biasing Constraint (M-EDC).

3.1. Actor-Context-Object Relation Modeling

Previous works usually exploit pairwise relations be-
tween actors and objects [31] or actor parts [37]. In this
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Figure 2. Our MULE framework is composed of three modules. (1) Actor relational features are extracted through the ACO-R module,
where they encode information based on interactions between actor/object instances with the context. (2) Positive and negative evidence
are estimated through Beta-ENN to quantify the predictive uncertainty of various human actions. (3) M-EDC is a debiasing constraint
added to the loss function Lbeta in Equation (5), which aims to mitigate static bias.

work, similar to [29, 40], we extract higher-order relations
to predict actions in complex scenes. Specifically, each
video is split into overlapping clips with the same frame
length, where the center frame is regarded as a keyframe.
N actors and M objects are detected for each input video
clip. To reduce complexity, we duplicate the detections in
the keyframe to the remaining frames of the clip as naive
temporal linking. Then, actor features {Ai}Ni=1 ∈ RC and
object features {Oi}Mi=1 ∈ RC are produced by the off-
the-shelf detector [32], each of which describes the spatio-
temporal appearance and motion of one Region of Inter-
est (RoI). We can also obtain the context feature X ∈
RC×H×W based on the action backbone network, where
C,H,W represent channel, height, and width.

To model actor-context-object relations, we first con-
catenate all actor features to the context feature followed
by object features to form a series of concatenated fea-
ture maps {F i}N×M

i=1 ∈ R3C×H×W . Following a stack of
transformer blocks [29], we can obtain actor relational fea-
tures {Hi}N×M

i=1 by calculating the higher-order relations
between pairs of {F i}N×M

i=1 at the same spatial location,
where two actors can be associated via the same spatial con-
text and different objects.

3.2. The Beta Evidential Neural Network

As discussed in Section 1, existing models [13, 22, 25]
typically rely on a softmax layer to perform multi-class clas-
sification. Since the softmax score is essentially a point es-
timation of a predictive distribution [4, 13, 36], the mod-
els cannot estimate the predictive uncertainty of out-of-
distribution. To tackle this limitation, evidential neural net-
works (ENNs) [36] are developed to jointly formulate the
multi-class classification and uncertainty modeling. Specif-
ically, ENNs [2,4] 1) interpret the standard output of a clas-

sification network as the parameter set of a categorical dis-
tribution and 2) assume that class probability follows a prior
Dirichlet distribution and replaces this parameter set with
the parameters of a Dirichlet density for novelty detection.

However, in our setting, the assumption of using Dirich-
let distribution is not a good fit for an actor with multiple
actions. It is because the predicted likelihood for each ac-
tion class follows a binomial distribution whose conjugate
prior is a Beta distribution rather than Dirichlet distribution.
To this end, we design the Beta-ENN to classify known and
novel actions based on Beta distributions.
Beta distribution-based subjective opinions. According
to the belief theory [45], it is more reasonable to predict sub-
jective opinions rather than class probabilities in an open-
set setting. We hence use the principles of evidential theory
to quantify belief masses and uncertainty in the proposed
Beta-ENN through Subjective Logic (SL) [17].

In multi-label action recognition, since each action fol-
lows a given binomial opinion towards the proposition,
the subjective opinion ωi = (bi, di, ui, ai) for an action
i ∈ {1, · · ·K} of an actor is expressed by two belief masses,
i.e., belief bi ∈ [0, 1] and disbelief di ∈ [0, 1], and one un-
certainty mass ui ∈ [0, 1], where bi + di + ui = 1. The
expected belief probability pi is defined as pi = bi+ai ·ui,
where ai refers to a base rate representing prior knowledge
without commitment, such as neither agree nor disagree.

According to [36], a binomial opinion ωi of action
follows a Beta probability density function (pdf) denoted
Beta(pi|αi, βi), where pi ∈ [0, 1] represents the action as-
signment probabilities. The Beta pdf is characterized by pa-
rameters αi and βi, where αi and βi are viewed as positive
and negative evidence of the observed action i, respectively.
The evidence indicates actions closest to the predicted ones
in the feature space and is used to support the decision-
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making. Action labels are the same for positive evidence,
but different for negative evidence. Specifically, for each
action, the opinion ωi is obtained based on its correspond-
ing αi and βi using the rule in SL:

bi =
αi − aiw
αi + βi

, di =
βi − aiw
αi + βi

, ui =
w

αi + βi
, (1)

where we set the non-informative prior weight w = 2
and base rate ai = 1 for each binary action classifica-
tion (known/unknown) empirically. Therefore, a collection
of evidence pairs {(αi, βi)}Ki=1 of an actor is estimated to
quantify the predictive uncertainty. An actor with multiple
unknown actions would incur high uncertainty u with low
belief b (see Section 4.2).
Learning opinions through Beta loss. As stated in [36],
predictors of an evidence-based learner are presented as
a distribution over possible softmax outputs. Therefore,
we use fully connected and rectified activation layers (e.g.,
ELU [8]) as the evidence function s(·) to replace the last
softmax layer and keep positive and negative evidences
αj ,βj ≽ 1. For an actor j, we have αj = s(h(xj ;θ)) + 1

and βj = s(h(xj ;θ)) + 1, where αj = [α1j , · · · , αKj ]
T

and βj = [β1j , · · · , βKj ]
T . xj denotes the input video,

h(xj ;θ) represents the evidence vector predicted by the
network for the classification and, θ represents parameters
for ACO-R modeling.

To learn the above opinions, we define the Beta loss
function by computing its Bayes risk for the action predic-
tor. For the binary cross-entropy loss for each action i over
a batch of actors, the proposed Beta loss takes

LBeta(θ) =
∑N

j=1
Lj(θ), (2)

where j ∈ {1, · · · , N} denotes the index of an actor.

Lj(θ) =
∑K

i=1

∫
BCE(yij , pij)Beta(pij ;αij , βij)dpij

=
∑K

i=1

[
yij

(
ψ(αij + βij)− ψ(αij)

)
+ (1− yij)

(
ψ(αij + βij)− ψ(βij)

)]
, (3)

where K is the number of actions, and BCE(·) is the binary
cross-entropy loss, and ψ(·) is the digamma function. The
log expectation of Beta distribution derives the last equal-
ity. yj = [y1j , · · · , yKj ] ∈ {0, 1}K is the K-dimensional
ground-truth action(s) label for xj . Thus positive and neg-
ative evidences α, β can be optimized via the above equa-
tions during training.

3.3. Multi-Label Evidence Debiasing Constraint

For open set action recognition, static bias [21] results
in a vulnerable model that falsely recognizes an action con-
taining similar static features. For example, the action of
“walking” is easily recognized with “road” in the back-
ground, but it would be unable to recognize the same ac-

tion with the “treadmill” scene. From the perspective of
fairness-aware learning [48–50], as indicated in Figure 2,
this is due to the spurious dependency of the prediction Z
(e.g., actions) onto sensitive features X (e.g., background
scene), and strong dependency indicates strong effects.

To mitigate static bias, we introduce the evidence de-
biasing constraint in multi-label evidential learning. A
fair prediction indicates no direct (X → Z) or indirect
(X → H → Z) dependency of Z on the reduced X . These
types of dependencies are supported by frameworks applied
to large bodies of cases throughout statistical disparity [5].
Consequently, debiasing through both the direct and indi-
rect effects enforces procedural fairness in decision-making
by statistically mitigating the dependency of the sensitive
feature X on the prediction Z. It therefore guarantees out-
come fairness among sensitive groups [46].

In particular, similar to [3, 4], the Hilbert-Schmidt In-
dependence Criterion (HSIC) function measures the de-
gree of independence between two continuous random
variables. With radial basis function kernel k1 and k2,
HSICk1,k2(Z, σ(X)) = 0 if and only if Z ⊥⊥ σ(X), where
σ(·) is 2D average pooling operation. As shown in Fig-
ure 2, Z ≡ h(x;θ) represents the evidence vector predicted
by the network, and X indicates the context feature from
the backbone. The debiasing constraint takes the form

g(θ) ≡ HSIC
(
h(x;θ), σ(X)

)
, (4)

which aims to reduce both direct and indirect dependency
of predictive outcomes onto background context.

4. Optimization and Inference

In summary, we combine the aforementioned Equa-
tions (2) and (4) to formulate the optimization problem as

min
θ∈Θ

LBeta(θ) subject to g(θ) ≤ γ, (5)

where γ > 0 is the independence criterion relaxation. Pre-
vious methods, such as regularization or projection, can
handle the constraint in Equation (5) with near-optimal so-
lutions but do not directly provide primal solutions. It may
even fail to produce any useful information for static bias.

To better solve the problem, we develop the primal-dual
average scheme update method. Specifically, we apply an
averaging scheme to the primal sequence {θ(m)}∞m=1 to ap-
proximate primal optimal solutions, wherem represents the

index of an iteration. In particular, the sequence {θ̃
(m)
}∞m=1

is defined as the averages of the previous vectors through
θ(0) to θ(m−1), i.e.,

θ̃
(m)

=
1

m

∑m−1

i=1
θ(i), ∀m ≥ 1. (6)

The primal feasible iterate θ(m) is given in Equation (7). To
simplify, we abuse the notation LBeta(θ) with L(θ) in the
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rest of the paper.

θ(m) ← argmin
θ∈Θ

{
L(θ(m−1)) + λ(m−1)

(
g(θ(m−1))− γ

)
− δ

2

(
λ(m−1)

)2}
, (7)

where δ > 0 is a constant determined by analysis. Accord-
ingly, the parameter λ in dual solutions is updated as

λ(m) ← max
{[

λ(m−1) + η2
(
g(θ̃

(m)
)− γ − δλ(m−1)

)]
, 0
}
,

(8)
where η2 > 0 is a constant learning rate of the dual step. By
updating the dual parameter, λ, our optimization efficiently
approaches the optimal model θ∗ arbitrarily close within a
small finite number of steps m. For better understanding,
the above algorithm is summarized in Algorithm 1.

4.1. Theoretical Analysis

To derive the bound on the feasibility violation and the
primal cost of the running averages, we analyze the statisti-
cal guarantees of the solutions in Equations (7) and (8). We
first make the following assumption.
Assumption 1. (Regularity and Feasibility). The con-
vex set Θ is compact (i.e., closed and bounded). For any
θ ∈ Θ, L(θ) and g(θ) are convex real-valued and bounded
functions, where infθ∈Θ g(θ) = 0 and, for any θ /∈ Θ,
dom(g(θ)) = ∅.

Recall that in the proposed Algorithm 1 used to approx-
imate pairs of primal-dual parameters at each iteration m,

for the averaged primal sequence {θ̃
(m)
}, we show that it

always converges when Θ is compact.
Proposition 1. (Convergence of Averaged Primal Se-
quence) Under Assumption 1, when the convex set Θ is

compact, let the approximate primal sequence {θ̃
(m)
}∞m=1

be the running averages of the primal iterates in Equa-

tion (6). Then {θ̃
(m)
}∞m=1 can converge to its limit θ̃

∗
.

Next we provide bounds on the feasibility violation

g(θ̃
(m)

) and the primal cost of the running averages

L(θ̃
(m)

), where the bounds are given per iteration m.

Proposition 2. (Bounds for L(θ̃
(m)

) and the violation of

g(θ̃
(m)

) [28]) Let the dual sequence {λ(m)}∞m=1 be gener-

ated through Equation (8) and {θ̃
(m)
}∞m=1 be the averages

in Equation (6). Under Assumption 1, we have
1. An upper bound on the amount of constraint violation of

θ̃
(m)

that
∥∥[g(θ̃(m)

)
]
+

∥∥ ≤ λ(m)

mη2
.

2. An upper bound on L(θ̃
(m)

) that L(θ̃
(m)

) ≤ f∗ +
(λ(0))2

2mη2
+ η2L

2

2 , where
∥∥g(θ̃(m)

)
∥∥ < L and L > 0.

3. A lower bound L(θ̃
(m)

) ≥ f∗ − λ∗ ·
∥∥[g(θ̃(m)

)
]
+

∥∥.
where [u]+ denotes the projection of [u] on the nonnegative
orthant. f∗ is the optimal solution of Equation (5) and λ∗

Algorithm 1 Primal-Dual Average Scheme Update
Input: θ(0) ∈ Θ, λ(0) ∈ R+: primal and dual parameters
Require: η1, η2 > 0: learning rates

1: Initialize an empty buffer B = [ ] to store θ(m)

2: for m = 1, 2, ... do
3: L(θ, λ) := L(θ) + λ(g(θ)− γ)− δ

2
λ2

4: Primal Update:
θ(m) ← Adam

{
L
(
θ(m−1), λ(m−1)

)
, η1,θ

(m−1)
}

5: Add θ(m) in B
6: Average Scheme: θ̃

(m)
= 1

|B|
∑|B|−1

i=1 θ(i)

7: Update θ(m) ← θ̃
(m)

8: L′(θ, λ) := λ+ η2
(
g(θ)− γ − δλ

)
9: Dual Update:

λ(m) ← max
{
L′
(
θ̃
(m)

, λ(m−1)
)
, 0
}

10: end for

denotes the optimal value of the dual variable.
Propositions 1 and 2 demonstrate the convergence of the

primal solution sequence and give bounds for both the loss
function and debiasing constraint in MULE. The detailed
proof is given in the Appendix.

4.2. Novelty Score Estimation

During inference, we aim to detect novel actor(s) with
single or multiple unknown action(s). According to Equa-
tion (1), we develop four novelty quantification scores based
on either uncertainty or belief of an actor. To this end, we in-
corporate the actor’s estimated subjective opinions {ωi}Ki=1

for its actions, where ωi = (bi, di, ui, ai).
Uncertainty-based novelty. As described in Section 3.2,
the positive and negative evidence pair {(αi, βi)}Ki=1 are
used to estimate uncertainty u of an actor with K actions.
A value of u close to 1 indicates novelty. Three uncertainty-
based novelty score estimation mechanisms are introduced
by using positive (PE) or negative (NE) evidence only and
aggregating them (PNE), i.e., PE: u = 2

1+exp(
∑K

i αi−K)
;

NE: u = 2
1+exp(K−

∑K
i βi)

− 1; PNE: u = 2K∑K
i (αi+βi)

.
Belief-based novelty. Another novelty detection scheme
is to estimate its belief value b using the binomial co-
multiplication operator (denoted as ∗) [18] for all actions,
i.e., b = b1∗· · ·∗bK , where bi∗bj := bi+bj−bi ·bj ,∀i, j ∈
{1, · · ·K}, i ̸= j. bi ∈ [0, 1] is a class-wise belief estimated
using its corresponding αi and βi in Equation (1). A belief
value b close to 0 indicates novelty.

4.3. Relation with Existing Evidential Learning

Although our method shares the basic concept of eviden-
tial learning with DEAR [4], it has a significant difference
in three aspects.
• The Beta distribution in Equation (2) is generalized from

the Dirichlet distribution in ENNs. In other words, to
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detect an actor with multiple novel actions, we improve
original ENNs [4, 36] by using K Beta distributions. If
K = 1, our loss function is reduced to the counterpart in
DEAR [4] (see the proof in the Appendix).

• The M-EDC in Equation (4) simultaneously mitigates di-
rect and indirect bias. In contrast, DEAR [4] only consid-
ers dependencies of prediction Z on the sensitive feature
X through the causal path X → H . This is viewed as
a sub-path of the indirect dependency X → H → Z,
resulting in inferior performance.

• Our optimization method in Algorithm 1 provides optimal
hyper-parameter search for robust learning. DEAR [4]
views the debiasing constraint as a regularization term
with the empirically set Lagrange multiplier; while an op-
timal multiplier λ∗ is automatically found as a dual vari-
able by Algorithm 1. Iterative update between the primal
and dual variable guarantees the achievement of a small
duality gap.
In summary, previous ENNs focus on detecting actors

with a single action, and assume action probability follows
a prior Dirichlet distribution. In contrast, in our MULE,
Beta distributions are more general to adapt to different ap-
plicable scenarios where a video contains either a single
(N = 1) or multiple (N > 1) actor(s) associated with a
single (K = 1) or multiple (K > 1) action(s).

5. Experiments
Our method is implemented based on PyTorch [30]. All

models are trained on 4 NVIDIA Quadro RTX 8000 GPUs.

Datasets. AVA [16] is a video dataset for spatio-temporal
localizing atomic visual actions. It contains 430 videos,
each with 15 minutes annotated in 1-second intervals. We
use version 2.2 of the AVA dataset by default. Charades [38]
contains 9, 848 videos that average 30s in length. This
dataset includes 157 multi-label, daily indoor activities.
Implementation details. Similar to [29], we em-
ploy COCO [24] pre-trained Faster R-CNN [32] with a
ResNeXt-101-FPN [23] backbone to extract actor and ob-
ject detections. To extract context features, Kinetics [19]
pre-trained1 SlowFast networks [12] are used as the back-
bone. For AVA [16], the inputs are 64-frame clips, where
we sample T = 8 frames with a temporal stride τ = 8 for
the slow pathway, and ζT frames, where ζ = 4, for the fast
pathway. For Charades [38], the temporal sampling for the
slow pathway is changed to 8×4, and the fast pathway takes
as an input 32 continuous frames. We train all models end-
to-end using SGD with a batch size of 32. The learning rates
in the optimization are set as η1 = 0.008, η2 = 0.001 em-
pirically. We used both ground-truth boxes and predicted

1The pretraining dataset contains slight overlap with the unseen ac-
tions. However, for a fair comparison with previous works, we use the
same Kinetics-based backbone.

human boxes from [44] for training, and scale the shorter
side of input frames to 256 pixels. The number of actors
and objects N,M is determined by the boxes with scores
greater than 0.85 for action detection.

5.1. Open- and Closed-Set Settings

Since the above datasets are used for traditional action
recognition, we re-split them to adapt to our problem in this
work. For open-set settings, videos are evenly divided into
three disjoint sets Z1,Z2, and Z3. We only include actions
falling inZ1∪Z2 for training and actions inZ2∪Z3 for test-
ing. Thus Z2 and Z3 are a set of known actions and novel
actions in inference, respectively. In practice, each sub-
set in AVA [16] contains 20 actions, while actions in Cha-
rades [38] are evenly divided into three subsets (52/52/53).
An actor is considered as novelty (unknown) if it does not
contain any action in the training data. To detect actors with
novel actions, in the testing stage, we ensure that each ac-
tor contains ground-truth actions in either Z2 or Z3 exclu-
sively [43]. We hence assign each actor in testing videos
with a binary novelty label {0, 1}, where 0 indicates an ac-
tor with all known actions in Z2 and correspondingly, 1 in-
dicates an actor with all unknown actions in Z3.

Closed set action recognition refers to classifying actions
into pre-defined categories. Following [29], the closed set
studies on AVA [16] use 235 videos to train and test on
131 videos with known actions. For Charades [38], fol-
lowing [47], we use the officially provided train-test split
(7, 985/1, 863) to evaluate the network where all actions are
known. As this work focuses on open set action recognition,
closed set accuracy is for reference only.
Evaluation metrics. Similar to [22, 25], we adopt the fol-
lowing four metrics to evaluate the performance on novel
action detection, i.e., estimate if the action of an actor is
novel or not. 1) Detection Error [22] measures the mis-
classification probability when True Positive Rate (TPR)
is 95%. The definition of an error Pe is given by Pe =
0.5 ·(1−TPR)+0.5 ·FPR, where FPR stands for False Pos-
itive Rate. 2) AUROC [9] is the Area Under the Receiver
Operating Characteristic curve, which depicts the relation
between TPR and FPR. A perfect detector corresponds to
an AUROC score of 1. 3) AUPR [27] is the Area under
the Precision-Recall curve. The PR curve is a graph show-
ing the precision and recall against each other. 4) FPR at
95% TPR [22] can be interpreted as the probability that a
novel example is misclassified as known when TPR is 95%.
Additionally, we report the Mean Average Precision (mAP)
for K-class classification in closed set.

5.2. Ablation Study

To further explore our method, we conduct a detailed ab-
lation study on AVA [16]. In the following tables, evalua-
tion metrics with “↑” indicate the larger the better, and “↓”
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PE / NE / PNE / Belief hours
m Error↓ AUROC↑ AUPR↑ FPR at 95% TPR↓ per epoch

0 31.25 / 35.89 / 25.17 / 40.82 75.23 / 70.01 / 75.04 / 69.45 86.10 / 83.65 / 87.33 / 90.87 7.32 / 9.21 / 8.98 / 8.81 4
1 11.21 / 41.20 / 11.16 / 33.33 86.42 / 61.26 / 85.72 / 73.34 94.23 / 96.47 / 99.43 / 97.07 4.32 / 5.01 / 5.46 / 9.09 5
2 11.22 / 40.14 / 12.18 / 27.91 86.92 / 63.54 / 85.25 / 83.41 96.18 / 89.90 / 93.46 / 90.90 4.98 / 5.09 / 4.51 / 9.15 9
3 11.01 / 45.05 / 11.17 / 27.86 86.81 / 58.23 / 85.25 / 85.18 98.48 / 95.65 / 99.41 / 90.44 4.58 / 5.00 / 3.98 / 9.09 13
4 11.28 / 47.12 / 11.17 / 27.52 86.56 / 59.01 / 85.13 / 84.72 99.43 / 88.98 / 99.40 / 90.42 4.64 / 5.02 / 3.21 / 9.09 18
5 10.22 / 44.32 / 11.15 / 27.49 86.86 / 58.87 / 85.30 / 84.66 99.52 / 96.35 / 99.41 / 90.41 4.32 / 5.00 / 3.09 / 9.09 23

Table 1. Exploration of number of average primal-dual updating step m on AVA [16].

PE / NE / PNE / Belief Closed SetMethod Error↓ AUROC↑ AUPR↑ FPR at 95% TPR↓ mAP↑

MULE, R-50 11.22 / 40.14 / 12.18 / 27.91 86.92 / 63.54 / 85.25 / 83.41 96.18 / 89.90 / 93.46 / 90.90 4.98 / 5.09 / 4.51 / 9.15 27.80

w/o ACO-R 50.12 / 50.04 / 12.45 / 39.84 51.23 / 51.12 / 84.88 / 82.41 86.11 / 86.36 / 88.13 / 92.35 15.23 / 15.56 / 34.44 / 9.57 25.12
w/o Beta-ENN 35.12 / 35.31 / 35.12 / 34.78 57.10 / 57.59 / 57.88 / 57.01 85.71 / 85.65 / 85.66 / 85.66 12.03 / 13.00 / 14.98 / 15.32 28.81
w/o M-EDC 13.16 / 46.32 / 12.16 / 38.23 86.00 / 50.13 / 85.12 / 83.05 95.12 / 90.67 / 92.45 / 89.19 6.31 / 5.05 / 5.01 / 9.59 27.16

Table 2. Exploration of different component in MULE with m = 2 on AVA [16].

Methods Pre-train Error↓ AUROC↑ AUPR↑ FPR at↓ Closed Set
95% TPR mAP↑

Slowfast, R-101 [12] K600 60.12 50.15 70.15 20.17 29.00
ACAR, R-50 [29] K400 35.16 52.89 79.15 14.16 28.84
ACAR, R-101 [29] K700 32.26 55.18 82.15 10.16 33.30
AFAC, R-101 [47] K600 53.14 79.69 90.79 7.15 30.20
AIA, R-101 [41] K700 35.14 54.17 78.49 10.15 32.30
DEAR, R-50 [4] K400 23.22 82.12 83.15 8.45 18.51

MULE (Ours), R-50 K400 11.22 86.92 96.18 4.98 27.80
MULE (Ours), R-101 K700 10.12 88.75 98.18 4.17 29.87

Table 3. Comparison with state-of-the-art on AVA [16].

indicate the smaller the better.
Effectiveness of optimization algorithm. We investigate
the effectiveness of applying an averaging scheme to the
primal sequence in Algorithm 1. According to Table 1, the
larger the primal-dual updating step m, the better perfor-
mance and the lower efficiency. If m = 0, it indicates that
we do not use the proposed optimization method. The dual
parameter λ in Equation (7) is then viewed as a Lagrangian
multiplier and set empirically. The results demonstrate the
effectiveness of our algorithm in reducing static bias. Con-
sidering the trade-off between performance and efficiency,
we use m = 2 in the following experiments.
Contribution of important components. In Table 2, we
discuss the contribution of each component of MULE on
both open- and closed-set settings as follows.
• ACO-R. Without ACO-R representation, we only rely on

the video backbone (i.e., SlowFast [12]) and a single layer
action classifier to predict actions in the video. The results
show a significant performance drop in both closed set
mAP (25.12% vs. 27.80%) and open set metrics, demon-
strating the importance of ACO-R representation.

• Beta-ENN. If we use Beta loss in Equation (2) in the net-
work, the open set recognition performance is improved
with a slight sacrifice of the closed set mAP (28.81% vs.
27.80%). This is because each class follows a binomial
opinion whose conjugate prior is a Beta distribution to
benefit open set recognition, rather than a Dirichlet dis-

tribution aiming to optimize multi-class classification in a
closed-set setting. Although using the Beta loss does not
outperform using cross-entropy in a closed-set setting, its
performance is still competitive.

• M-EDC. If we remove the evidence debiasing constraint
in network training, our method will suffer from static
bias, as explained in Section 3.3. The results show that
using our M-EDC module in training brings slight im-
provement on all four novelty scores, showing the effec-
tiveness to model static bias. This is because the cases
with the same action (e.g., “ride”) and different contexts
(“bike” or “horse”) cases are only 1% of the dataset. Em-
pirically, we set γ = 0.001 in Equation (5).

Comparison with novelty estimation mechanisms. As
presented in Tables 1 and 2, we compare four novelty esti-
mation mechanisms in Section 4.2. It can be concluded that
uncertainty-based scores perform better than belief based
one. According to Equation (1), a belief based score is cal-
culated based on negative evidence. We speculate that it is
more intuitive and accurate to estimate if an actor performs
the same action rather than different actions. In summary,
positive evidence is more reliable than negative evidence. In
the following, we only report Positive Evidence (PE) scores
to detect novel actions for clarity.

5.3. Results Analysis

For a fair comparison with previous single-actor/single-
action methods, we enhance them to work within the new
multi-actor/multi-action paradigm. Specifically, we calcu-
late positive evidence by the evidence function s()̇ in Sec-
tion 3.2, based on the last layer outputs h(x;θ). We apply
single-actor based DEAR [4] to a bounding volume around
each detected actor for a multi-actor setting.

According to Table 3, our method is compared with ex-
isting methods on AVA [16]. The baseline SlowFast [12]
achieves a reasonable closed set mAP score but fails in
open set recognition. Other methods including ACAR [29],
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Figure 3. Visual comparison with our method and state-of-the-art on AVA [16] and Charades [38]. Cyan and (yellow) boxes denote the
predictions of actors with known and novel actions, respectively. ✓ marks and ✗ marks indicate correct and false predictions, respectively.

Methods Pre-train Error↓ AUROC↑ AUPR↑ FPR at↓ Closed Set
95% TPR mAP↑

Slowfast, R-101 [12] K600 25.15 79.12 79.15 50.15 45.20
X3D-XL [11] K600 8.45 82.15 86.49 39.98 47.20
AFAC, R-101 [47] K600 7.00 82.20 90.15 35.19 48.10
AFAC, CSN-152 [47] IG-65M 6.18 80.12 90.79 30.15 50.30
CSN, CSN-152 [42] IG-65M 6.89 80.15 92.61 35.16 46.40
DEAR, R-50 [4] K400 12.15 86.15 92.35 29.96 38.12

MULE (Ours), R-50 K400 6.15 85.49 90.78 25.98 45.33
MULE (Ours), R-101 K700 6.23 88.49 91.15 25.15 47.21

Table 4. Comparison with state-of-the-art on Charades [38].

AFAC [47], and AIA [41] obtain better accuracy in the
closed set but are still unsatisfying to detect novel ac-
tions. Compared with DEAR [4] using ENNs, our method
achieves much better performance in both closed set and
open set metrics. This is because our network can handle
the situation that each actor may contain more than one ac-
tion better than simple bounding volume strategy. It indi-
cates the effectiveness of the proposed Beta-ENN for multi-
label open set action recognition.

We also observe a similar trend on Charades [38]. From
Table 4, our MULE achieves comparable closed set mAP
and much better open set performance compared with the
state-of-the-art. Note that AFAC [47] and CSN [42] achieve
the best closed set accuracy by using powerful CSN-152
backbone [47] and IG-65M pre-trained dataset [15]. How-
ever, our method using ResNet backbone still obtains a con-
siderable gain in terms of AUROC and FPR at 95% TPR. It
is a good fit for the situation that requires lower probability
of misclassifying a novel instance as known.

In Figure 3, the visual examples show that other methods
like DEAR [4], AFAC [47] and SlowFast [12] output sev-
eral false predictions of known and novel actions in a multi-
actor/multi-action setting. In contrast, our method can han-
dle novelty detection in different situations more accurately.

Results on different splits. Furthermore, we report the
results of exchanging the training and testing sets in the
dataset split. In Table 5, slightly worse performance indi-
cates that the testing set is more challenging in this split.
However, the results are similar to the original split and our

Methods Pre-train Error↓ AUROC↑ AUPR↑ FPR at↓ Closed Set
95% TPR mAP↑

DEAR, R-50 [4] K400 30.30 79.98 78.59 8.77 17.32
MULE (Ours), R-50 K400 14.92 84.34 90.91 6.02 23.65

Table 5. Comparison with state-of-the-art on AVA [16] on a dif-
ferent split.

method still outperforms the best competitor, DEAR [4]. It
indicates that our method is robust on different splits.

6. Conclusion

In this paper, we address the general problem of de-
tecting the novelty of each actor’s action(s) in video for
the first time. To this end, we develop a new open set
action recognition framework using Multi-Label Eviden-
tial Learning (MULE). Based on actor-context-object re-
lation representation, the proposed Beta Evidential Neural
Network can formulate Beta distributions for single/multi-
actor, single/multi-action settings. To optimize the network,
we add the multi-label evidence debiasing constraint and
propose the primal-dual average scheme update learning
method with theoretical analysis. Thus both direct and in-
direct dependencies of action predictions are reduced for
more robust results. The experiments show that Beta dis-
tribution more accurately classifies novel action(s) than the
previous Dirichlet distribution.
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