
The Resource Problem of Using Linear Layer Leakage Attack in Federated
Learning

Joshua C. Zhao1, Ahmed Roushdy Elkordy2, Atul Sharma1, Yahya H. Ezzeldin2

Salman Avestimehr2, Saurabh Bagchi1
1Purdue University

2University of Southern California
{zhao1207,sharm438,sbagchi}@purdue.edu, {aelkordy,yessa,avestime}@usc.edu

Abstract

Secure aggregation promises a heightened level of pri-
vacy in federated learning, maintaining that a server only
has access to a decrypted aggregate update. Within this
setting, linear layer leakage methods are the only data re-
construction attacks able to scale and achieve a high leak-
age rate regardless of the number of clients or batch size.
This is done through increasing the size of an injected fully-
connected (FC) layer. However, this results in a resource
overhead which grows larger with an increasing number of
clients. We show that this resource overhead is caused by
an incorrect perspective in all prior work that treats an at-
tack on an aggregate update in the same way as an individ-
ual update with a larger batch size. Instead, by attacking
the update from the perspective that aggregation is combin-
ing multiple individual updates, this allows the application
of sparsity to alleviate resource overhead. We show that
the use of sparsity can decrease the model size overhead by
over 327× and the computation time by 3.34× compared to
SOTA while maintaining equivalent total leakage rate, 77%
even with 1000 clients in aggregation.

1. Introduction
Federated learning (FL) [17] has been hailed as a

privacy-preserving method of training. FL involves mul-
tiple clients which train their model on their private data
before sending the update back to a server. The promise is
that FL will keep the client data private from all (server as
well as other clients) as the update cannot be used to infer
information about client training data.

However, many recent works have shown that client gra-
dients are not truly privacy preserving. Specifically, data
reconstruction attacks [3,8,9,12,18,26,28,34] use a model
update to directly recover the private training data. These
methods typically consist of gradient inversion [9, 28, 34]
and analytic attacks [3, 8, 12, 14, 18, 26]. Gradient inver-
sion attacks observe an honest client gradient and iteratively

optimizes randomly initialized dummy data such that the
resulting gradient becomes closer to the honest gradient.
The goal is that dummy data that creates a similar gradi-
ent will be close to the ground truth data. These methods
have shown success on smaller batch sizes, but fail when
batch sizes become too large. Prior work has shown that
reconstruction on ImageNet is possible up to a batch size
of 48, although the reconstruction quality is low [28]. An-
alytic attacks cover a wide range of methods. Primarily,
they use a malicious modification of model architecture and
parameters [18,26], linear layer leakage methods [3,8], ob-
serve updates over multiple training rounds [14], or treat
images as a blind-source separation problem [12]. How-
ever, most of these approaches fail when secure aggrega-
tion is applied [4, 6, 7, 23, 24]. Particularly, when a server
can only access the updates aggregated across hundreds or
thousands of training images, the reconstruction process be-
comes very challenging. Gradient inversion attacks are im-
possible without additional model modifications or training
rounds. This is where linear layer leakage attacks [3,8] have
shown their superiority.

This sub-class of analytic data reconstruction attacks is
based on the server crafting maliciously modified models
that it sends to the clients. In particular, the server uses a
fully-connected (FC) layer to leak the input images. Com-
pared to any other attack, linear layer leakage attacks are
the only methods able to scale to an increasing number of
clients or batch size, maintaining a high total leakage rate.
This is done by continually increasing the size of an FC
layer used to leak the images. For example, with 100 clients
and a batch size of 64 on CIFAR-100, an attacker can leak
77.2% of all images in a single training round using an in-
serted FC layer of size 25,600. In this case, the number
of units in the layer is 4× the number of total images, and
maintaining this ratio when the number of clients or batch
size increases allows the attack to still achieve roughly the
same leakage rate. Despite the potential of linear layer leak-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3974

age, however, an analysis of the limits of its scalability in FL
has been missing till date.

In this work, we dive into this question and explore the
potential of scaling linear layer leakage attacks to secure
aggregation. We particularly highlight the challenges in
resource overhead corresponding to memory, communica-
tion, and computation, which are the primary restrictions of
cross-device FL. We discover that while SOTA attacks can
maintain a high leakage rate regardless of aggregation size,
the overhead is massive. With 1,000 clients and a batch size
of 64, maintaining the same leakage rate as before would re-
sult in the added layers increasing the model size by 6GB.
There would also be an added computation time of 21.85s
for computing the update for a single batch (size 64), a
10× overhead compared to a baseline ResNet-50. This is a
massive problem for resource-constrained FL where clients
have limited communication or computation budgets.

However, this problem arises from an incorrect perspec-
tive from prior work where they treat the attack on an aggre-
gate update the same as an individual client update. Specifi-
cally, we argue that it is critical to treat an aggregation attack
not as an attack on a single large update, but as individual
client updates combined together. In the context of linear
layer leakage, this is the difference between separating the
scaling of the attack between batch size and the number of
clients or scaling to all images together.

Following this, we use the attack MANDRAKE [32] with
sparsity in the added parameters between the convolutional
output and the FC layer to highlight the difference in model
size compared to prior SOTA. The addition can decrease the
added model size by over 327× and decrease computation
time by 3.34× compared to SOTA attacks while achiev-
ing the same total leakage rate. For a batch size of 64
and 1000 clients participating in training, the sparse MAN-
DRAKE module adds only a little over 18MB to the model
while leaking 77.8% of the total data in a single training
round (comparable to other SOTA attacks).

We discuss other fundamental challenges for linear layer
leakage including the resource overhead of leaking larger
input data sizes. We also discuss that sparsity in the client
update fundamentally cannot be maintained through secure
aggregation and the client still accrues a communication
overhead when sending the update back to the server. All
other aspects of resource overhead such as communication
cost when the server sends the model to the client, computa-
tion time, and memory size, are decreased through sparsity.

Our contributions are as follows:

• We show the importance of sparsity in maintaining
a small model size overhead when scaling to a large
number of clients and the incorrect perspective prior
work has had when treating the aggregate update as
a single large update. By using sparsity with MAN-
DRAKE and attacking 1000 clients with a batch size of

64, the added model size is only 18.33 MB. Compared
to SOTA attacks, this is a decrease in over 327× in
size and also results in a decreased computation time
by 3.3× while maintaining the same leakage rate.

• We show the fundamental challenge of linear layer
leakage attacks for scaling attacks towards leaking
larger input image sizes and the resulting resource
overhead added.

• We show the problem of maintaining sparsity in se-
cure aggregation when the encryption mask is ap-
plied, which adds to the communication overhead
when clients send updates back to the server.

2. Related work
We are interested in data reconstruction attacks in the

setting of FL under secure aggregation (SA) [4]. Under SA,
a server cannot gain access to any individual client’s up-
dates. Participating clients encrypt their updates such that
only after a server aggregates them will it have access to an
unencrypted aggregate update. This section discusses prior
work in data reconstruction attacks and their applicability
toward this challenging scenario.
Gradient inversion. An attacker with access to the model
parameters and an honest individual gradient performs a
gradient inversion attack by initializing random dummy
data and minimizing the difference between the gradient
computed by the dummy data and the ground truth gradi-
ent. Many works have looked to improve reconstruction
through zero-shot label restorations [10, 28, 31], regulariz-
ers [9], or the use of multiple initialization seeds [28]. How-
ever, they cannot scale to aggregation because the computa-
tional complexity scales with an increasing number of im-
ages as O(n× diminput) [12], where n is the total number
of images. For FL, n is the batch size × number of clients.
Analytic attacks. Analytic attacks involve parameter ma-
nipulation [18, 26] or attempting to dis-aggregate the gradi-
ent by observing multiple training rounds [14]. While these
methods work in the aggregate setting, they are not scalable
towards an increasing number of clients. [26] can only at-
tack a single training image within a single round and [18]
can only attack a single client. [14] can support an increas-
ing number of clients, but requires additional side-channel
information not required for FL and additionally can require
hundreds or thousands of training rounds to succeed. It also
relies on optimization, so if the client batch size is larger,
reconstruction quality will diminish.
Linear layer leakage. A sub-class of analytic methods is
linear layer leakage attacks [3, 8]. These attacks function
with an inserted module that is typically two FC layers (lin-
ear layers) at the start of the model architecture. The attacks
are then able to use the gradients of the first FC layer to di-
rectly recover the inputs to the layer. Since the FC layer is
placed at the start of the architecture, the inputs are the train-

3975

ing images themselves. Specifically, if an image activates a
neuron in an FC layer, the image can be reconstructed as

x =
δL

δW i
/
δL

δBi
(1)

where x is the recovered image and δL
δW i ,

δL
δBi are the weight

and bias gradient of the activated neuron [20].
These recovered images are near-exact reconstructions.

However, if multiple images activate the same neuron,
the reconstructed image becomes a combination of these
images. Prior work has proposed binning [8] and trap
weights [3] to prevent collision of activated neurons be-
tween different images. Trap weights aim to create a sparse
activation by initializing the FC layer weights as half nega-
tive and positive, with a slightly larger negative magnitude.
Under binning, the weights of the FC layer are set such
that they measure an aspect of the image, such as the im-
age brightness or pixel intensity. A ReLU activation is used
and the neuron biases increase (negatively) so that subse-
quent neurons allow fewer images to activate them. For any
neuron, if only one image has it as the activated neuron with
the largest cut-off bias, we can reconstruct the image as

xi = (
δL

δW i
− δL

δW i+1
)/(

δL

δBi
− δL

δBi+1
) (2)

where xi is the reconstructed image, i is the activated neu-
ron, and i+1 is the neuron with the next largest cut-off that
was not activated. This method can scale to larger number
of clients or batch size while maintaining a high leakage rate
by increasing the number of units in the FC layer [8, 32].
However, this scalability comes at the cost of an increas-
ing model size and becomes much worse under aggregation,
as the number of images increases multiplicatively with the
batch size and number of clients.

Another similar method uses blind-source separation of
an FC layer [12] to reconstruct images. This method can
support only reconstructions up to 1024 images and, in the
context of FL, is a small scale attack and is not particularly
applicable to scaling in FL. The size overhead added by the
method is not insignificant, as an FC layer added to the start
of the model for attacking a batch size of 1024 will be a
minimum of a 768MB model size overhead.

The size overhead added by scaling these methods is a
fundamental problem. With [3, 8], these methods treat ag-
gregation attacks the same as individual client attacks, evi-
dent through the statement that ”given an aggregated gra-
dient update, we always reconstruct as discussed in [the
methodology section]” [8]. [12] falls under similar think-
ing, applying their attack on aggregate updates as simply
the same attack on a larger batch size. Another work [21]
discusses how a full batch can be recovered as long as the
number of units is larger than the total number of images.
While many attacks have not been applied to aggregation

yet, it is clear that there is no key difference in the perspec-
tive of applying attacks to aggregation compared to individ-
ual updates.

Our work is mainly focused on linear layer leakage at-
tacks, but the applicability will be relevant to other meth-
ods as they explore large-scale attacks on aggregation. For
example, while optimization attacks still do not have a
good method of scaling to aggregation due to an increasing
computational complexity, a dual problem has been shown
where multiple solutions exist for a single update [29]. If
future work discusses model modifications in an increased
width or depth of the model to reconstruct larger numbers of
images, our work will be relevant. This is also likely since
prior work has already begun discussing the relationship
between model size/depth and reconstruction ability [9].
If computational complexity is not a problem, these same
ideas will be used for attack scalability.

In the next section, we will discuss why the prior work
perspective on attacking aggregate gradients as a single
large batch is a problem and how it leads to large resource
overheads in linear layer leakage. We will show how the
design of MANDRAKE with separate scaling between the
number of clients and batch size uses the correct perspec-
tive and allows us to use sparsity to decrease overhead.

3. Decreasing the resource cost
3.1. Requirement for linear layer leakage

Linear layer leakage relies on a fundamental require-
ment. Since the images are leaked from the gradients, the
images must be able to be stored in the model gradients.
For example, consider a CIFAR-100 image (32 × 32 × 3).
In order to store the image in the update, the total num-
ber of gradients must be at least 32 · 32 · 3 = 3, 072.
For a batch of 64 images, this number would then become
3, 072 · 64 = 196, 608. If aggregation across 100 clients is
added, this would then be 3, 072 · 64 · 100 = 19, 660, 800
total gradients. These gradients come from the weights con-
necting the input image to the first FC layer, and the mini-
mum size of the first FC layer would need to be 6, 400 units
just to be able to store all image information.

However, this only considers the case where images are
stored in the gradients perfectly. In reality, multiple images
can activate the same neuron causing overlap as discussed
in Section 2, and in order to maintain a high leakage, the
number of neurons must be greater than the total number of
images. We find experimentally using the binning approach
from Robbing the Fed [8], that if the number of neurons is 4
times the number of images, we can achieve an overall leak-
age rate of 70− 80% on Tiny ImageNet [15], MNIST [16],
and CIFAR-100 [13]. However, with the previous exam-
ple, this would be over 78.6 million gradients, where these
gradients would come from the weight parameters of an in-
serted FC layer at the start of the network. Furthermore,

3976

another FC layer would be needed to resize the previous
FC layer to the input image size prior to input to the rest
of the model. This process then adds another 78.6 million
weight parameters, making the total size about 157.3 mil-
lion weights, roughly 13.46× the size of a ResNet-18.

From the previous example, we can see the difficulty
in scaling linear layer leakage attacks to the FL setting in
terms of model size. An increased model size will exac-
erbate the fundamental problem of FL: the clients have re-
source restrictions. This additional overhead will affect all
aspects of resource constraints, increasing the memory re-
quired for storage and training the model along with the
communication and computational costs associated. With
a larger model size, receiving the model and sending the
update back to the server will be more costly for the client.
Similarly, a larger model will result in a longer time to com-
pute the update. Our goal then is to minimize these costs.

3.2. Single client overhead and sparsity

A batch gradient is the average across all gradients of
the individual training samples in the batch. Aggregation is
done on top of the batch gradients across multiple clients.
Following this, the aggregation of client updates can be in-
terpreted as a single large batch aggregation. This leads to
the natural perspective of prior work where an attack on an
aggregate update is simply an attack on a single large batch.
However, there is a key difference between a large batch
update and multiple smaller batch updates being aggregated
together to make up a single update when approaching from
an attack perspective. Specifically, the storage requirement
of linear layer leakage for each individual client is not the
same as for all clients combined.

For an individual client with a batch size of 64 on
CIFAR-100, an FC layer needs to have 786, 432 weight gra-
dients to maintain a 4:1 ratio of neurons to images. This
does not change regardless of how many other clients are
present. While this is clear for individual client attacks, the
application towards SA is much less obvious. Since an at-
tacking server only has access to the aggregate update, the
total number of weight gradients must still be large enough
to store all images across all clients. However, our con-
cern is with the resource overhead of individual clients. The
prior work perspective of treating the aggregate update as a
single large batch means each client must take on the full
overhead of the total number of images. Despite this, indi-
vidual clients only actually need enough for their own.

Hence, we propose the use of sparsity as the primary
method for decreasing the resource overhead of linear layer
leakage. Given SA, a server can access only the aggregate
update, and as a result, the model must still be large enough
to contain all images across participating clients. However,
each individual client update only needs to be large enough
to support their own images. If all added parameters and

(Weights)

FC 1 FC 2Conv layer and output

Original
model

Input image

Figure 1. MANDRAKE attack allows for sparsity by design. The
red color indicates non-zero parameters and the white is zeros. The
majority of added parameters come from the weights connecting
the convolutional layer output and the first FC layer and only 1

N

of this is non-zero, where N is the number of clients.

gradients are zero outside of this small set used for each
individual client’s images, the properties still hold. Thus,
the added parameters for the entire model are large enough
to store all images across clients, but individual clients will
only have a small set of non-zero parameters. The size of
this small set is also irrespective of the number of clients in
the aggregation, only needing to scale to the batch size for
each individual client. With a high level of sparsity in the
model parameters and updates, sparse tensors can be uti-
lized to decrease the resource overhead. Sparse tensors are
representations aimed at the efficient storage of data that is
mostly comprised of zeroes. We use the COO (coordinate)
format, a common sparse representation in PyTorch [19]
that stores the indices and values of all the non-zero ele-
ments. When non-zero elements make up a small part of
the total size, this leads to more efficient memory usage
and quicker computation, both desirable traits for FL. Ad-
ditional compression can also be used on top of sparsity to
further decrease communication costs.

3.3. Convolutional layer for sparsity

MANDRAKE encapsulates the idea of producing sparsity
within the attack design through the additional placement
of a convolutional layer in front of the 2 FC layers used by
standard linear layer leakage methods [32]. Figure 1 shows
an attack overview. An input image to the convolutional
layer can be directly passed through using a number of ker-
nels equal to the image channels. Each convolutional kernel
will push a different input channel forward using weight pa-
rameters of all zeros and a single one in the center of a dif-
ferent kernel channel. For a 3-channel image, only 3 convo-
lutional kernels will be required to push the image through.

The addition of a convolutional layer allows another
level of attack scalability in the number of convolutional
kernels in the model. Particularly, the number of convolu-
tional kernels is chosen based on the number of color chan-
nels in the input images, and this scales with the number of
clients attacked. If we have 3-channel input images and 100
clients, 3 · 100 = 300 kernels are used. Each client would
use a different set of 3 kernels in the convolutional layer

3977

to push their images forward. All other kernel parameters
can be set to zero. Similarly, only the weight parameters
connecting the output of those 3 non-zero kernels to the FC
layer will be non-zero. For this connection between con-
volutional output and the FC layer, the number of non-zero
weight parameters would be

|{wN s.t. wN ̸= 0}| = 1

N
· |wN | (3)

where N is the number of clients in aggregation and |wN | is
the total number of weight parameters connecting the con-
volutional output and FC layer. The number of non-zero
weights is also constant regardless of the number of clients

|{wN s.t. wN ̸= 0}| = |{wN+1 s.t. wN+1 ̸= 0}| (4)

For a client batch size of 64 on CIFAR-100, using an FC
layer of 256 units results in a leakage rate of 77% using
the same binning strategy of [8]. The number of non-zero
weight parameters between the convolutional output and FC
layer would be (32 ·32 ·3) ·256 = 786, 432, only 1% of the
number of non-zero parameters compared to prior work.

Additionally, scaling the convolutional layer means that
the FC layer will stay at a fixed size and only scale to the
client batch size. This is particularly useful for prevent-
ing a size increase in the weights of the second FC layer.
Since the second FC layer resizes the output of the previous
FC layer (used for leakage) to the size of the input image,
naively increasing the size of the first FC layer results in
an increase in the same increase in the size of the second.
The final design then has these layer sizes. The convolu-
tional layer has N × inputch kernels, the first FC layer has
a number of units equal to batch size × 4 (the ratio of neu-
rons to images), and the second FC layer has a number of
units equal to the input image size. What we then see is that
MANDRAKE has roughly half the total parameters of [8]
while maintaining the same leakage rate. The number of
weight parameters (non-zero and zero) is

|wN | = diminput·N ·|FC layer|+|FC layer|·diminput (5)

where diminput is the input image size. The |FC layer| de-
pends on the batch size and does not change regardless of
the number of clients. For a batch size of 64, we fix it to be
256 units and achieve a 77% total leakage rate. Increasing
or decreasing this layer size further can result in a higher or
lower leakage rate and model size respectively.

On the other hand, Robbing the Fed, which achieves
prior SOTA in leakage rate and number of additional pa-
rameters, adds a total number of |wN,RtF | = 2 · diminput ·
N · |FC layer| parameters from their method. The value of
the size of the FC layer is fixed to be the same as our method
in order for comparison. In aggregation, when N >> 1 we
have that |wN,ours| ≈ 1

2 · |wN,RtF |. This is considering
all zero and non-zero parameters equally for our method.

Robbing the Fed does not have non-zero weight parame-
ters, so we also have that |{wN,ours s.t. wN,ours ̸= 0}| ≈
1
N · |{wN,RtF s.t. wN,RtF ̸= 0}|.

We did not use the convolutional kernel weights or the
biases added during the comparison in the number of pa-
rameters, but they are significantly fewer than the weight
parameters of the FC layers. For 100 clients, the number of
parameters added by the convolutional kernel weights and
the layer biases are only 0.01% of the FC layer weights.

3.4. Linear layer leakage method

While the convolutional layer allows for sparsity and
separate leakage between each client, the underlying
methodology of the linear layer leakage is still important.
We use the binning methodology of Robbing the Fed [8]
instead of the trap weights in [3] since the leakage rate
achieved with the same FC layer size is higher for binning.

The approach of using a convolution layer to separate
the weight gradients between clients prevents the FC layer
from increasing, but also means we cannot retrieve the in-
dividual bias gradients δL

δBi , as they will be aggregated be-
tween clients. However, knowing the bias gradient values
are not important for reconstruction. If we know the range
of values, we can directly scale the weight gradients. If the
images are between [0,1], we can recover the images using
only the weight gradients through

xi
k =

abs(δL
δW i k

− δL
δW i+1 k

)

max(abs(δL
δW i k

− δL
δW i+1 k

))
(6)

where we scale the weight gradient such that it has a maxi-
mum value of 1. If the ground truth image has a max value
of 1, the reconstructed image will be exact. If this is not
the case and the maximum is lower, the reconstruction will
have a shifted brightness. This approach is described fur-
ther in [32] and the images are easily identifiable after the
range shift. This process does not cause issues with re-
constructions either, with the method still achieving a high
SSIM [25] and L-PIPS score [30].

3.5. Secure aggregation masking

While sparsity allows us to take advantage of the large
number of zero parameters in the model, the property be-
comes difficult to maintain through SA, as a non-sparse
mask will be used regardless of whether the individual
client update is sparse or not. Thus, even though the client
updates are sparse, SA applies a non-sparse mask on top
of the update such that it is encrypted. Since masking re-
moves the property of sparsity from the update, the client
incurs a communication overhead when sending the update
back to the server which will not be mitigated. For 100
clients with a batch size of 64 on CIFAR-100, the model
size that is transmitted from the server to the client by MAN-
DRAKE is 18.04MB and the update sent back to the server

3978

is 303.33MB. Robbing the Fed is larger than both, adding a
size overhead of 600.11MB to both ends of communication.

However, while sparsity does not benefit the communi-
cation cost when the client sends the update back to the
server, it benefits all other aspects of client resource over-
head, including when the server sends the model to the
client, the storage on the client, and the time for comput-
ing the update. The total number of added parameters of
MANDRAKE is also half the size of Robbing the Fed.

3.6. Broad applicability of sparsity

Sparsity can help with many forms of attacks with FL.
While we use the binning method of [8], sparsity also helps
the trap weight methodology [3] differently. We find that
the baseline attack of trap weights is unable to scale to an
increasing number of clients in aggregation. As the total
number of images increases, even if the ratio of neurons to
images remains the same, the leakage rate will decrease (we
refer to the supplement for experiments). However, using
the convolutional layer method of MANDRAKE, the leakage
process is separate between clients. This will prevent the
leakage rate decrease with an increasing number of clients.

While we previously explored the application of spar-
sity in linear layer leakage attacks, the idea can be applied
to other attacks when scaling to aggregation. For example,
sparsity can be used in the same way for the blind-source
separation method of Cocktail Party attack [12] when scal-
ing to aggregation. This would result in both model size
and computation complexity decrease. Using the origi-
nal method of Cocktail Party, the complexity would be
O(n×n) [12], where n is the total number of images. How-
ever, using sparsity would decrease the computational com-
plexity by lowering n from the total number of images to
just the batch size of the individual client instead.

Along the same line, sparsity could be brought to gra-
dient inversion to decrease the computational complexity.
The original challenge in scaling to aggregation for gradi-
ent inversion is that the number of total images is signifi-
cantly larger. However, sparsity once again can be used to
decrease the computational complexity O(n × diminput),
so that n is the client batch size instead of the total number
of images. This approach would require model modifica-
tion to introduce sparsity similar to MANDRAKE, resulting
in a model size increase. However, the storage size benefits
of sparsity can also help decrease the overhead.

4. Experiments
We evaluate our attack in the secure aggregation FL set-

ting. We are particularly focused on the resource costs in
terms of model size and computation overhead added by
linear layer leakage attacks when scaling to larger num-
bers of clients. We primarily compare three attacks: our
attack using dense tensors, our attack using the sparse ten-

0 200 400 600 800 1000
Number of clients

0

1000

2000

3000

4000

5000

6000

M
od

el
 si

ze
 (M

B)

Sparse weights
Dense weights
Robbing the Fed

Figure 2. Comparing the model size of the dense and sparse tensor
attack with Robbing the Fed on the downsampled Tiny ImageNet
dataset with a client batch size of 64. The model sizes are given
when achieving a total leakage rate of 77%. At 1000 clients, the
sparse representation is 327.33× smaller than Robbing the Fed.

sor representation, and Robbing the Fed [8] the prior SOTA
linear layer attack. For all experiments, we use a client
batch size of 64 with a varied number of clients in aggre-
gation. We use a |FC layer| 4× the number of images.
Using the binning method of [8], both our method and
Robbing the Fed achieve the same total leakage rate on the
Tiny ImageNet dataset [15]. Using a single training round
with 1000 clients, MANDRAKE leaks 76.9% (49,209) im-
ages, and Robbing the Fed leaks 76.5% (48,992) of the to-
tal 64,000 images. For additional examples of reconstructed
images and the leakage rate for other datasets, we refer to
the supplementary material.

We first show the model size comparison for each of
the methods on a downsampled Tiny ImageNet dataset
(32×32×3), comparing the model size trend with increas-
ing clients. We show the overhead added to standard vision
models from each method. In Section 4.3 we also look at
the size overhead of the inserted modules on the MNIST
(28 × 28 × 1) [16], CIFAR-100 (32 × 32 × 3) [13], Tiny
ImageNet (64×64×3), and ImageNet (256×256×3) [22]
datasets. We use this section to highlight the difficulties in
scaling with larger input image sizes.

When using larger input image sizes with a large num-
ber of clients, the FC layer size of Robbing the Fed grows
too large for memory. As a result, we use the downsam-
pled Tiny ImageNet dataset for these comparisons. We run
the attacks on a CPU compared to a GPU, focusing on the
resource restrictions of cross-device FL. For the computa-
tion overhead, we compare the additional time required to
compute the model gradients when compared to a baseline
ResNet-50 [11] from PyTorch. We place the extra layers at
the start of the architecture.

Finally, we experimentally show the binning method-
ology of Robbing the Fed [8] is more effective than trap-
weights [3] in terms of mutual information.

3979

Model size
(MB)

Sparse
attack

Robbing
the Fed

MobileNet v3 (L) 20.9161 87.65% 28690.76%
ResNet-18 44.5919 41.11% 13457.57%
ResNet-50 97.4923 18.80% 6155.35%
Inception v3 103.6120 17.69% 5791.79%
VGG-11 506.8334 3.62% 1184.02%

Table 1. Model size overhead added from the attacks with 1000
clients and a batch size of 64 on Tiny ImageNet compared to vi-
sion models. The overhead added by the sparse representation
attack (18.33MB) is significantly smaller than Robbing the Fed
(6000.99MB) and achieves the same leakage rate.

4.1. Model size

We start with a discussion on the model size. For these
experiments, we use PyTorch’s sparse COO (Coordinate
format) tensor representation [19]. This format stores the
non-zero values in indices and values tensor. The size of
the sparse tensor in bytes is

size = (dim · 8 + datasize) · |{wN | wN ̸= 0}| (7)

following PyTorch’s sparse tensor memory consumption.
The tensor dimensions are dim = 2 and the data size is
4 bytes for our model.

When the ratio of the number of neurons to images is
4 : 1, the attack methods achieve 77% total leakage rate
on the Tiny ImageNet dataset (small randomness coming
from batch images selection). In the case of Robbing the
Fed, this is achieved when the |FC layer| = (num clients) ·
(batch size) · 4. Our method achieves this with a fixed
|FC layer| = 256 by increasing the number of convolutional
kernels by 3 for each client.

Figure 2 shows the model size overhead (MB) added
by the 3 methods with a fixed leakage rate and a varying
number of clients. At 3 clients, the sparse representation is
nearly the same size as Robbing the Fed (99.994%). At 5
clients, the sparse and dense (update size with SA sent back
to server) representations are the same size. As the num-
ber of clients grows, both dense weights and Robbing the
Fed quickly grow in size, while the sparse representation re-
mains virtually the same. While the method of Robbing the
Fed is able to achieve the same total leakage rate, the num-
ber of parameters is roughly double the dense weights at-
tack. With 1000 clients, Robbing the Fed is 327.33× larger
than the sparse tensor attack. Between 1− 1000 clients, the
size overhead of the sparse representation increases from
18.04MB to 18.33MB. The small size increase comes from
the convolutional kernel parameters and biases.

Table 1 shows the percentage overhead added by the
sparse tensor attack and Robbing the Fed on several stan-
dard vision models. There are 1000 clients in aggregation
with a batch size of 64. The sparse tensor representation
adds a significantly smaller overhead (18.33MB) compared

0 200 400 600 800 1000
Number of clients

5

10

15

20

25

Tr
ai

n
tim

e
(s

)

ResNet-50 baseline
Sparse weights
Dense weights
RtF same leakage

Figure 3. Computational overhead in training time added to a
ResNet-50 on a CPU from attacks. At 1000 clients, the sparse
tensor method adds a 6.5s overhead while Robbing the Fed adds a
21.8s overhead.

to Robbing the Fed (6000.99MB) while achieving the same
leakage rate. Even with a large model like VGG-11, Rob-
bing the Fed adds a massive model size overhead increase
of 1184.0%, while the sparse attack only adds 3.6%.

We note that using a compressed sparse row (CSR) ten-
sor representation results in a model size overhead of only
roughly 2

3 compared to the COO representation. At 1000
clients, the size added using sparse CSR is only 12.33MB.
However, this sparse tensor representation is currently in the
beta phase of PyTorch, so we only use sparse COO tensors
for the experimental comparisons.

4.2. Computation overhead

We compare the computational overhead added by the
linear layer leakage attacks through a comparison of the
time to compute an update for an individual client. This
includes the time for a forward pass, loss computation, and
gradient computation on a client batch. The baseline model
we use is a ResNet-50. The vanilla model uses 2.14 seconds
for the update computation on a batch of 64 images.

Figure 3 shows the time required for the update compu-
tation for all three attacks with a varying number of clients
and a batch size of 64. With 100 clients, using sparse
weights adds a 34% (0.73s) time overhead, dense weights
adds a 55% (1.17s) overhead, and Robbing the Fed adds
a 67% (1.43s) overhead. At 1000 clients, the overhead is
305% (6.54s), 714% (15.30s), and 1019% (21.85s) respec-
tively. With 1000 clients, the sparse attack adds 3.34× less
computational overhead compared to Robbing the Fed.

Much work is going into sparse matrix/tensor optimiza-
tion [2, 5, 27, 33]. While these experiments give a brief
snapshot of the potential computational differences between
methods, we note that as sparse tensor implementations im-
prove, the computation overhead of the sparse weights will
continue to decrease.

3980

Clients Robbing
the Fed

Dense
weights

Sparse
weights

MNIST
(28x28x1)

100 153.2 77.3 4.6
1000 1532.2 766.4 4.6

CIFAR-100
(32x32x3)

100 600.1 303.0 18.0
1000 6001.0 3003.3 18.3

Tiny ImageNet
(64x64x3)

100 2400.1 1212.1 72.1
1000 24001.0 12012.4 72.4

ImageNet
(256x256x3)

100 38400.9 19392.8 1152.8
1000 384001.7 192193.1 1153.1

Table 2. Comparison of model size overhead (MB) using dif-
ferent datasets with batch size 64 and 100 and 1000 clients. At
1000 clients on ImageNet, the sparse representation adds a 1.1GB
overhead while Robbing the Fed adds 375GB.

4.3. Larger image sizes
We revisit the model size to show the overhead added for

different image sizes. As discussed in Section 3, the funda-
mental requirement of linear layer leakage is to be able to
store all image pixels in the gradients. As a result, the input
image size directly ties to the model overhead added by the
attack. Table 2 shows the overhead added from the dense
and sparse tensor representation attacks along with Robbing
the Fed on several different input image sizes. Results are
shown for 100 and 1000 clients with a batch size of 64.

As the input image size increases, so does the size over-
head from the inserted module. This size increase trend is
(near) directly proportional to the change in input image
size. For example, the difference in image size between
Tiny ImageNet and ImageNet is (256·256·3)/(64·64·3) =
16. We see that the size overhead difference for Robbing the
Fed is also 38, 400.9/2400.1 ≈ 16. This scaling property
also exists with dense and sparse tensor representations.

The model size overhead added, particularly for the
larger image sizes, is extremely large. For Robbing the
Fed and the dense weight representation, for 1000 clients
on ImageNet, the size overhead reaches 375GB and 188GB
respectively. By comparison, the sparse tensor setting is
much better for attack scalability, creating a little over 1GB
in size overhead for 1000 clients.

These experiments highlight a problem with the model
size overhead for current linear layer leakage methods when
working with larger input sizes. The need to store image
pixels in the gradients means that larger images inherently
create larger size overheads. This in turn results in over-
heads in all aspects of memory, communication, and com-
putation for the clients, and practically, these overheads are
too large for FL. For the malicious server, one solution
would be to use pooling operations prior to leaking the im-
ages. While this method will result in reconstructing down-
sampled images, leaking full-resolution large-sized images,
especially with aggregation, is unrealistic. This fundamen-
tal limitation applies to all current linear layer leakage meth-
ods. Sparsity can significantly decrease the size overhead,
but once the input images become large enough the attacks
become infeasible on reasonable-sized devices.

10 20 30 40 50 60
FC layer size

30

40

50

60

70

%
 im

ag
e

in
fo

rm
at

io
n

re
co

ns
tru

ct
ed Binning

Trap weights

Figure 4. Comparison of the percentage of the information leaked
into the gradient I(xinput

k ; g) that is recovered through reconstruc-
tion I(xinput

k ;xk) based on the FC layer size when using binning
and trap weights. MNIST dataset with a batch size = 10 is used.

4.4. Leakage in terms of mutual information
We focus on the differences between binning [8] and

trap-weights [3] in terms of mutual information using the
neural estimator proposed in [1]. Compared to leakage rate
which only considers the number of reconstructed images,
the mutual information ratio is a finer-grained metric — it
also captures the information leakage that cannot be recon-
structed directly into individual images due to images acti-
vating the same neurons and thus ignored by leakage rate.

Figure 4 shows that the power of the image reconstruc-
tion increases for both the binning and trap weights in terms
of the percentage of leaked information as the FC layer size
increases. Figure 4 also shows that for all FC layer sizes,
the leakage from trap weights [3] is lower than binning [8].

5. Conclusions
We discuss the fundamental perspective problem of prior

work in developing privacy attacks against FL when secure
aggregation is used. Attacking the aggregate update as a
single large-batch leads to unnecessary resource overheads
incurred by clients. By treating the aggregate update as
an aggregation of individual client updates we can use pa-
rameter sparsity, decreasing the model size by 327× and
the computation time by 3.3× compared to SOTA while
maintaining the same leakage rate even through SA. We
also show the challenge of maintaining sparsity through SA
when the client sends the update back to the server and of
scaling and leaking large input image sizes.

Acknowledgements. This work was supported by Army
Research Lab under Contract No. W911NF-2020-221,
National Science Foundation CNS-2038986, Defense Ad-
vanced Research Projects Agency (DARPA) under Contract
No. HR001120C0156, ARO award W911NF1810400, and
ONR Award No. N00014-16-1-2189. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily re-
flect the views of the sponsors.

3981

References
[1] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajesh-

war, Sherjil Ozair, Yoshua Bengio, Aaron Courville, and
Devon Hjelm. Mutual information neural estimation. In
Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research,
pages 531–540. PMLR, 10–15 Jul 2018. 8

[2] Nathan Bell and Michael Garland. Efficient sparse matrix-
vector multiplication on cuda. Technical report, Nvidia Tech-
nical Report NVR-2008-004, Nvidia Corporation, 2008. 7

[3] Franziska Boenisch, Adam Dziedzic, Roei Schuster,
Ali Shahin Shamsabadi, Ilia Shumailov, and Nicolas Paper-
not. When the curious abandon honesty: Federated learning
is not private. arXiv preprint arXiv:2112.02918, 2021. 1, 2,
3, 5, 6, 8

[4] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio
Marcedone, H Brendan McMahan, Sarvar Patel, Daniel Ra-
mage, Aaron Segal, and Karn Seth. Practical secure aggre-
gation for privacy-preserving machine learning. In proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1175–1191, 2017. 1, 2

[5] Steven Dalton, Luke Olson, and Nathan Bell. Optimiz-
ing sparse matrix—matrix multiplication for the gpu. ACM
Transactions on Mathematical Software (TOMS), 41(4):1–
20, 2015. 7

[6] Ahmed Roushdy Elkordy and A. Salman Avestimehr. Het-
erosag: Secure aggregation with heterogeneous quantization
in federated learning. IEEE Transactions on Communica-
tions, 70(4):2372–2386, April 2022. 1

[7] Ahmed Roushdy Elkordy, Jiang Zhang, Yahya H. Ezzeldin,
Konstantinos Psounis, and Salman Avestimehr. How much
privacy does federated learning with secure aggregation
guarantee? Proceedings on Privacy Enhancing Technolo-
gies, 2023. 1

[8] Liam H Fowl, Jonas Geiping, Wojciech Czaja, Micah Gold-
blum, and Tom Goldstein. Robbing the fed: Directly obtain-
ing private data in federated learning with modified models.
In International Conference on Learning Representations,
2022. 1, 2, 3, 5, 6, 8

[9] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and
Michael Moeller. Inverting gradients-how easy is it to break
privacy in federated learning? Advances in Neural Informa-
tion Processing Systems, 33:16937–16947, 2020. 1, 2, 3

[10] Jiahui Geng, Yongli Mou, Feifei Li, Qing Li, Oya Beyan,
Stefan Decker, and Chunming Rong. Towards gen-
eral deep leakage in federated learning. arXiv preprint
arXiv:2110.09074, 2021. 2

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[12] Sanjay Kariyappa, Chuan Guo, Kiwan Maeng, Wenjie
Xiong, G Edward Suh, Moinuddin K Qureshi, and Hsien-
Hsin S Lee. Cocktail party attack: Breaking aggregation-
based privacy in federated learning using independent com-

ponent analysis. arXiv preprint arXiv:2209.05578, 2022. 1,
2, 3, 6

[13] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Master’s thesis, Univer-
sity of Toronto, 2009. 3, 6

[14] Maximilian Lam, Gu-Yeon Wei, David Brooks, Vijay Janapa
Reddi, and Michael Mitzenmacher. Gradient disaggregation:
Breaking privacy in federated learning by reconstructing the
user participant matrix. In International Conference on Ma-
chine Learning, pages 5959–5968. PMLR, 2021. 1, 2

[15] Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. CS 231N, 7(7):3, 2015. 3, 6

[16] Yann LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998. 3, 6

[17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In Artificial intelligence and statistics, pages 1273–1282.
PMLR, 2017. 1

[18] Dario Pasquini, Danilo Francati, and Giuseppe Ateniese.
Eluding secure aggregation in federated learning via model
inconsistency. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2429–2443, 2022. 1, 2

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
4, 7

[20] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua
Wang, and Shiho Moriai. Privacy-preserving deep learn-
ing: Revisited and enhanced. In International Conference on
Applications and Techniques in Information Security, pages
100–110. Springer, 2017. 3

[21] Jia Qian, Hiba Nassar, and Lars Kai Hansen. Minimal model
structure analysis for input reconstruction in federated learn-
ing. NeurIPS Workshop on New Frontiers in Federated
Learning, 2021. 3

[22] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015. 6

[23] Jinhyun So, Ramy E. Ali, Basak Guler, Jiantao Jiao, and
Salman Avestimehr. Securing secure aggregation: Mitigat-
ing multi-round privacy leakage in federated learning. Pro-
ceedings of the AAAI Conference on Artificial Intelligence
37, 2023. 1

[24] Jinhyun So, Corey J Nolet, Chien-Sheng Yang, Songze Li,
Qian Yu, Ramy E Ali, Basak Guler, and Salman Avestimehr.
Lightsecagg: a lightweight and versatile design for secure
aggregation in federated learning. Proceedings of Machine
Learning and Systems, 4:694–720, 2022. 1

[25] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 5

3982

[26] Yuxin Wen, Jonas Geiping, Liam Fowl, Micah Goldblum,
and Tom Goldstein. Fishing for user data in large-batch
federated learning via gradient magnification. International
Conference on Machine Learning, 2022. 1, 2

[27] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf,
Katherine Yelick, and James Demmel. Optimization of
sparse matrix-vector multiplication on emerging multicore
platforms. In SC’07: Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing, pages 1–12. IEEE, 2007. 7

[28] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez,
Jan Kautz, and Pavlo Molchanov. See through gradients:
Image batch recovery via gradinversion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16337–16346, 2021. 1, 2

[29] Rui Zhang, Song Guo, Junxiao Wang, Xin Xie, and Dacheng
Tao. A survey on gradient inversion: Attacks, defenses and
future directions. In Lud De Raedt, editor, Proceedings of
the Thirty-First International Joint Conference on Artificial
Intelligence, IJCAI-22, pages 5678–5685. International Joint
Conferences on Artificial Intelligence Organization, 7 2022.
Survey Track. 3

[30] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 5

[31] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg:
Improved deep leakage from gradients. arXiv preprint
arXiv:2001.02610, 2020. 2

[32] Joshua C. Zhao, Atul Sharma, Ahmed Roushdy Elko-
rdy, Yahya H. Ezzeldin, Salman Avestimehr, and Saurabh
Bagchi. Secure aggregation in federated learning is not pri-
vate: Leaking user data at large scale through model mod-
ification. arXiv preprint arXiv:2303.12233, 2023. 2, 3, 4,
5

[33] Yue Zhao, Jiajia Li, Chunhua Liao, and Xipeng Shen. Bridg-
ing the gap between deep learning and sparse matrix format
selection. In Proceedings of the 23rd ACM SIGPLAN sym-
posium on principles and practice of parallel programming,
pages 94–108, 2018. 7

[34] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from
gradients. Advances in neural information processing sys-
tems, 32, 2019. 1

3983

