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Abstract

Unsupervised domain adaptation (UDA) in semantic
segmentation transfers the knowledge of the source domain
to the target one to improve the adaptability of the seg-
mentation model in the target domain. The need to access
labeled source data makes UDA unable to handle adap-
tation scenarios involving privacy, property rights protec-
tion, and confidentiality. In this paper, we focus on unsu-
pervised model adaptation (UMA), also called source-free
domain adaptation, which adapts a source-trained model
to the target domain without accessing source data. We find
that the online self-training method has the potential to be
deployed in UMA, but the lack of source domain loss will
greatly weaken the stability and adaptability of the method.
We analyze two reasons for the degradation of online self-
training, i.e. inopportune updates of the teacher model and
biased knowledge from the source-trained model. Based
on this, we propose a dynamic teacher update mechanism
and a training-consistency based resampling strategy to im-
prove the stability and adaptability of online self-training.
On multiple model adaptation benchmarks, our method ob-
tains new state-of-the-art performance, which is compara-
ble or even better than state-of-the-art UDA methods. The
code is available at https://github.com/DZhaoXd/DT-ST.

1. Introduction
Unsupervised Domain Adaptation (UDA) has received

extensive attention on semantic segmentation tasks [49, 59,
60, 63], which transfers the knowledge in the source do-
mains (e.g. synthetic scene) to the target ones (e.g. real
scene). UDA in semantic segmentation aims to alleviate
the dependence of deep neural network-based models on
dense annotations [18,46,61] and improve their generaliza-
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Figure 1. Under the unsupervised model adaptation (UMA) set-
ting, the mIoU score (%) of different methods on the validation set
throughout the training in GTA5 → Cityscapes adaptation task.
The dashed line represents the self-training UDA methods, and
the solid line represents the MDA methods.

tion ability to target domains [5, 12, 15]. However, in pro-
prietary, privacy, or profit-related concerns, source domain
data is often unavailable, which presents new challenges for
UDA [9, 27, 55]. To this end, the setting of Unsupervised
Model Adaptation (UMA) is proposed [6,9,21,30,35], aim-
ing to adapt the source-trained model to the unlabeled target
domain without using source domain data.

In UMA, the knowledge in the source-trained model
becomes the only available supervision signal, making
self-training on pseudo-labels the mainstream in the field.
Most existing UMA methods [26, 36, 57] adopt offline self-
training methods, which iteratively updates the pseudo-
labels and retrains the models. Although some improve-
ments have been made, iterative self-training requires ex-
pert intervention [1,59], as ill-suited rounds and termination
often make it under-adapted.

The recently proposed online self-training (ONST)
methods [1, 31, 59] in UDA avoid the iterative training by
online co-evolving pseudo labels, showing great potential.
Then can ONST be applied to UMA scenarios without ac-
cessing source data? We deploy the state-of-the-art ONST
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methods ProDA [1], SAC [59] and CPST [31] to UMA
and draw the mIoU score curve on the validation set dur-
ing training, as shown in Fig. 1. These ONST methods
(dashed line) achieve more competitive performance than
existing UMA methods (solid line). Nevertheless, taking a
closer look at the curves in Fig. 1, these ONST methods
present different degrees of degradation and unstable adap-
tation process. Besides, their best performance in UMA de-
creased by 4%− 5% mIoU scores on average than in UDA
(See Table 1 and 2 in detail). Consequently, we conclude
that existing ONST methods suffer from impaired stability
and adaptability when applied to UMA.

This paper is committed to improving the stability and
adaptability of ONST methods in UMA. To begin with, we
explore two reasons for the poor stability and adaptabil-
ity of ONST in UMA. (1) The inopportune update of the
teacher model causes the failure of co-evolution because the
teacher model will continuously aggregate unevolved stu-
dents. Concretely, as the teacher becomes the only supervi-
sor in UMA, rapid updating will make the student lose the
direction of evolution, and slow updating will make the stu-
dent overfit the historical supervision, all of which leads to
humble benefits of teachers’ updating. (2) The bias towards
minority categories in the source-trained model results in
insufficient adaptation to those minorities as the bias is eas-
ily amplified in ONST, even with heuristic [1] or prototype
thresholding [59] being set.

Next, we present the explored solutions. For (1), we find
that the student model’s performance on historical samples
during evolution can feedback on whether the student has
evolved. Consequently, we propose a Dynamic Teacher
Update (DTU) mechanism. DTU explores two feedback
signals by information entropy [13] and soft neighborhood
density [45], which can assess the evolutionary state of stu-
dents. DTU then dynamically controls the update inter-
val of the teacher model according to the students’ feed-
back to aggregate more evolved students. For (2), we find
that resampling minority categories can effectively alleviate
the bias towards minorities in UMA. However, most exist-
ing resampling strategies [10, 11, 20, 50] rely on the source
data and cannot apply in UMA. To this end, we propose
a Training-Consistency based Resampling (TCR) strategy.
TCR adaptively estimates the biased categories from the
being-adapted model and selects reliable samples in biased
categories as resampling candidates. Through these efforts,
our method greatly improves the stability and adaptability
of ONST in UMA, as shown in Fig. 1 (red solid line). We
refer our method to DT-ST, as DTU and TCR play critical
parts in online Self-Training under UMA.

Sufficient experiments show that DT-ST further exploits
the potential of online self-training in UMA, towards bet-
ter stability and adaptability. Moreover, DT-ST obtains new
state-of-the-art performance on different UMA benchmarks

and achieves comparable or even better performance than
advanced UDA methods.

2. Related Work
Unsupervised Domain Adaptation (UDA) technology can
often be summarized into the following three types for se-
mantic segmentation tasks. 1) Domain alignment adopts
adversarial training [4,19,22,39,52,53] or statistics match-
ing [23, 24, 38, 54, 62] to align distribution between the
source and target domain at certain space, so that the clas-
sifier trained in the source domain can be applied to the
target. Specifically, the imaging style at the input space
[4, 17, 25, 33, 56, 61], the statistics at the feature space
[39,41,52,53], and the layout at the output space [19,51,52]
are mainstream aligned objects. 2) Offline self-training
uses the source-trained or domain-aligned model to gener-
ate pseudo-labels, and iteratively fine-tune the model and
update the pseudo-labels. Works along this line aim to ex-
cavate and reasonably use high-quality pseudo-labels, e.g.
designing threshold strategies [48, 63, 64], reliable sample
selection [28, 29, 34, 40, 40], and anti-noise training [9, 14].
3) Online self-training [1, 7, 14, 31, 59] adopt online co-
evolving pseudo-labels to avoid iterative training. Most of
them adopt a teacher model to guide the evolution of a stu-
dent model. Then the evolved student model is aggregated
into the teacher to achieve co-evolution of both models.
Unsupervised Model Adaptation(UMA) [9, 27, 55, 57] is
proposed for confidential, privacy and non-stationary sce-
narios. In semantic segmentation, most advanced UMA
work [9, 26, 57] uses offline self-training to solve this prob-
lem, which will inevitably encounter the bottlenecks of ex-
pert intervention [1,59]. Huang et al. [21] propose an online
self-training method called HCL for model adaptation. To
stable self-training, HCL constrains current models to fo-
cus on knowledge consistent with historical models. How-
ever, the over-regularization of historical models may lead
to slow evolution. In contrast, our method can dynamically
balance historical regular and pseudo label updates.
Class Imbalance in UDA is a thorny problem [1,20,59,63]
due to the lack of attention and large semantic shift in the
minority category. To solve this problem, threshold policy
[1, 59, 63, 64] and resampling strategies [10, 11, 20, 50] are
designed. The former designs lower thresholds for minor-
ity categories, as they often underperform and show lower
confidence probabilities. In particular, ProDA [59] uses the
prototype distance to set the threshold for minority classes
without manual thresholding. However, we found that such
methods are not enough to mitigate the bias of source-
trained models due to insufficient incentives for minority
classes. Most resampling strategies [10, 11, 20, 50] perform
whole-image or local-patch paste-copy from source domain
images containing minority categories, but the reliance on
the source data limits its application to UMA. Our method
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Figure 2. Schematics of different online self-training methods.
The subfigure a, b and c come from [59], [1] and [21] in turn. In
d, m̃ denotes a dynamic update interval instead of fixed one.

doesn’t require source data as candidates but effectively al-
leviates the minority bias in the model.

3. Method
3.1. Problem Definition

In this part, we give the definition of the problem. Let
Dsd = {(xsd, ysd)} be the labeled source domain data,
Dtd = {xntd}Nn=1 be the unlabeled target domain data. The
Dsd andDtd shareK categories. LetG and θ be the source-
trained segmentation model and its parameters. In Unsu-
pervised Domain Adaptation (UDA), all these elements are
accessible, the goal is to adapt the modelG toDtd. In Unsu-
pervised Model Adaptation (UMA), we keep the same goal
but the source domain data is not accessible.

3.2. Online Self-training in UDA

We briefly introduce the online self-training (ONST)
methods [1,59] in UDA semantic segmentation in a generic
form. ONST maintains a student model Gstu and an online
updated teacher model Gtea. For the student model, a two-
part loss is used for supervision. The first is the supervised
loss of the source domain, i.e., Lsd = H[xsd, ysd], where
H is the pixel-level cross-entropy loss. The second is the
unsupervised weak-to-strong consistency loss of the target
domain,

Ltd = H[Gstu(W(xtd)), Gtea(S(xtd))]. (1)

W and S are the weak and strong image transformations,
respectively. The weak-to-strong transformation enables
the teacher to generate better pseudo-labels than the stu-
dent. For the teacher model, its parameters are the student’s
momentum-updated version, i.e., θ̄t+1 = (1 − γ)θt + γθ̄t.
θ̄t and θt are the teachers’ and students’ parameters at the
t-th iteration, respectively. γ is the update weights.

In the above paradigm, updating both teacher and student
simultaneously will lead to severe model degradation due
to the lack of a purposeful evolutionary direction. To this

end, these ONST methods [1, 59] adopt historical supervi-
sion to regularize the direction of model evolution. For ex-
ample, ProDA [59] and SAC [1] uses a fixed initial teacher
or a slowly updated teacher as historical supervision, re-
spectively. Their schematic can be seen in Fig. 2. For the
convenience of discussion, we uniformly express ONST in
the form of SAC, as the historical supervision in ProDA can
be regarded as a special form of that in SAC. Then Eq.1 can
be rewrite as follows,

Ltd = H[Gθtstu(W(xtd)), G
θ̄t−m

tea (S(xtd))]. (2)

Gθt denotes the model with parameters θt. m denotes the
update interval of the teacher model. The larger it is, the
slower the teacher update. Then, the update formula for the
teacher model can be rewritten as follows,

θ̄t = (1− γ)θt + γθ̄t−m, (3)

3.3. Online Self-training in UMA

In UMA, the source data is not accessible, which makes
the student’s supervision only from the weak-to-strong con-
sistency loss, i.e., Eq. 2. In that case, as mentioned be-
fore, ONST becomes unstable and prone to degradation. We
present our analysis as follows.

Intuitively, an important condition for co-evolution is
that the teacher model can continuously aggregate the
evolved student by Eq. 3. Then, in each update of the
teacher, whether the student evolves becomes the key fac-
tor for co-evolution. So, how to evaluate the evolutionary
state of the student model in Eq. 3? We conjecture that
changes in student model performance over historical sam-
ples during an update period can reflect evolution. To verify
the guesses, we perform the following experiments. Let the
sampling set in each teacher update interval be Dhis. We
evaluate the mIoU score of the student model before and
after m optimizations (i.e., Gθt−m

stu and Gθtstu ) on Dhis. If
the mIoU score of Gθtstu is higher than that of Gθt−m

stu , it is
recorded as a gain. Then, we accumulate the number of
gains and calculate the average gain rate GR. Formally,
GR is calculated as follows,

GR =
1

T

T∑
t

δ(V [G
θt−m

stu (Dhis)], V [Gθtstu(Dhis)]), (4)

where V [·] is the mIoU evaluation function. δ(·, ·) is a com-
parison function. If the former is large, δ(·, ·) returns 0;
Otherwise, it returns 1.

We set a series of m values and plot the curves of mIoU
score on the validation set of the teacher model and GR
with training, as shown in Fig. 3 (a) and (b). A compre-
hensive comparison of (a) and (b) can find the following
conclusions: 1© A more stable self-training tends to main-
tain a higher GR, meaning that co-evolution and GR are
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Figure 3. Training curves using different teacher update intervals.

positively correlated. Thus, it’s reasonable to argue that the
performance of the student model over historical samples
can approximately reflect its evolutionary state. More im-
portantly, 2© we argue that the inappropriate setting of the
teacher’s update intervalm prevents the teacher from aggre-
gating the evolved student, resulting in model degradation,
e.g., too fast (purple line) or too slow (green line) updates
will not keep high GR (in Fig. 3 (b)).

3.4. Dynamic teacher update mechanism

Based on the above conclusions, we can monitor the
student performance on historical data Dhis, e.g., set
V [G

θt−m

stu (Dhis)] > V [Gθtstu(Dhis)] to control the updates
interval, instead of setting a fixed interval m. In this way,
the update interval can be be set dynamically and appro-
priately by the student’s feedback, which will facilitate co-
evolution. However, V [·, ·] is the mIoU function requiring
the target domain labels. So next, we explore functions that
can replace V without using target domain labels.

Information entropy [13] is often used as a measure of
the uncertainty of model output. If the model output is low-
entropy, it is considered reliable. To verify its feasibility,
we replace the evaluation function V [·] in Eq. 4 with in-
formation entropy function E[·] (here E[·] includes the ex-
pectation over the w, h dimensions and returns a scalar) and
define average information entropy gain rate (IEGR) as,

IEGR =
1

T

T∑
t

δ(E[Gθtstu(Dhis)], E[G
θt−m

stu (Dhis)]).

(5)
We draw the change curve of IEGR with training, as shown
in Fig. 3 (c). It shows that the overall running trend of
IEGR is close to that of EGR, but they differ in local trends
and magnitudes of changes.

The soft neighborhood density (SND) [45] adopts the
cluster density to determine whether the model is well
adapted. The basis is that the feature structure of a well-
adapted model should be compact. SND is defined as,

SND = E[softmax(p ∗ pT )]. (6)

Algorithm 1 Dynamic teacher update mechanism.

Input: Student model Gθstu, teacher model Gθ̄tea, target
domain data Dtd, feedback function V
and meta maximum iteration M .

Output: Optimized teacher model Gtea
Copy Gθstu as Gθ0 ; U = 0
for sample batch xbtd ∈ Dtd do

Update Gθstu by Eq. 2 with xbtd, Gθ̄tea, and Gθstu
Store xbtd to the buffer Dhis ; U++
if V [Gθ0(Dhis)] < V [Gθstu(Dhis)] or U > M then

Update Gθ̄tea by Eq. 3 with Gθstu and Gθ̄tea
Clear the buffer Dhis; U = 0

return Gθ̄tea

p is the output probability map by the model with shape
wh · K. Inspired by this, we verify the feasibility of SND
as a feedback. We then replace the evaluation function V [·]
in Eq. 4 with SND[·] and introduce average SND gain rate
(SNDGR). The formula will not be repeated. Its change
curve with training is shown in Fig. 3 (d). SNDGR shows
a more similar trend to EGR, which shows that SND has
potential as a feedback signal.

After that, we introduce the dynamic teacher update
(DTU) mechanism to control the teacher update interval.
The details are in Algorithm 1. The feedback function V
in Algorithm 1 can be 1 − E[·] (DTU-E) or SND[·](DTU-
SND). Meta maximum iteration M is a hyper-parameter,
which prevents teachers from not updating for long time due
to some extreme conditions. The red curves in Fig. 3 is us-
ing DTU-SND. Compared with fixed update mechanism,
DTU shows better stability and adaptability.

3.5. Training-consistency based Resampling

As an effective strategy to alleviate the imbalance prob-
lem, Copy-Paste resampling [10, 11, 50] is widely used in
the UDA field. It uses the class statistical distribution of the
source domain to determine the minority categories, copies
the source domain images containing minority categories,
and pastes them to the target. However, the inaccessible
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source data prevents these methods from being applied to
UMA. To this end, we propose a training-consistency based
resampling (TCR) strategy for UMA. TCR adopts online es-
timated class distribution to determine minority categories,
and exploits training consistency as the criteria for selecting
copy objects. Specifically, we maintain an online average
class score ACS from the output probability of the teacher
model as follows,

ACStk =
1

hw

∑
i,j

pti,j,k, (7)

where pt is the probability map with resolution h× w gen-
erated by the Gθ̄ttea. The ACS is updated by exponential
moving average, i.e., ACStk = αACSt−1

k + (1 − α)ACStk.
The weight α is set as 0.999. The low-confidence categories
in ACS are considered to be minorities, because they are al-
ways at a disadvantage in competition with other categories.
We then use ACS to determine the sampling rate SRk for
k-th category as follows,

SRk = Normalize(1−ACSk), (8)

where Normalize(x)i = xi∑
j xj

. Through Eq. 8, the sam-
pling rate of the minority category will be greatly improved.

Next, we build reliable target candidates for copy-paste
operation. We regard the prediction consistency of the
teacher model before and after multiple iterations of evo-
lution as reliability. The motivation is that model evolution
in self-training is reflected in the correction of uncertain re-
gions. Thus, it is reasonable to argue that the prediction not
affected by model evolution is highly reliable. Concretely,
after each I iterations, for any sample xntd ∈ Dtd, we calcu-
late the corresponding reliability ReLn as follows,

ReLn = IoU[ξ(G
θ̄t−I

tea (xntd)), ξ(G
θ̄t
tea(xntd))], (9)

ξ is a labeling function that converses soft predictions to
hard labels. IoU[·, ·] is the IoU evaluation function of K
categories. ReLn is aK-dimensional IoU score vector. The
larger the element in ReLn, the higher the reliability of the
corresponding category. For each class k, we sort all target
domain images according to ReLk, and take the samples
from the top C as the candidates for copy-paste.

4. Experiments
4.1. Experimental Setup

We perform Unsupervised Model Adaptation (UMA) us-
ing pre-trained models from two simulation datasets GTA5
[43] and SYNTHIA [44], adapting them to real scenarios
including the single-domain Cityscapes dataset [8] and the
mixed-domain BDD-100k dataset [58]. As in previous pro-
tocol [12,21,36], we uses the training set of both real-world

datasets as the target domain training data and the validation
set as the testing data. We evaluate the segmentation perfor-
mance with per-class Intersection-over-Union (IoU) and the
mean IoU (mIoU).

4.1.1 Datasets.
Synthetic datasets GTA5 dataset contains 24,999 virtual
urban scene images with a resolution of 1914×1024. SYN-
THIA dataset is rendered from a virtual city, which provides
9,400 images with a resolution of 1280×760. On GTA5 and
Synthia dataset, we perform UMA with 19 and 16 common
semantic categories, respectively.
Real-world datasets Cityscapes dataset provides 3,975
real urban scene images from 50 different cities in pri-
marily Germany, with a resolution of 2048×1024. BDD-
100K [58] is another real-world dataset collected from var-
ious locations in the US, which contains diverse scene im-
ages (e.g. rainy, snowy, and cloudy image) with a resolution
of 1280×720.

4.1.2 Implementation Details.
We adopt the Deeplab-v2 [3] as the segmentation model
with ResNet-101 [16] and VGG-16 [47] as the feature ex-
tractor and the aspp [3] module as the classifier. In data
processing, all target domain images are resized to the same
shorter edge while preserving aspect ratios and then input to
the teacher model. The input to the teacher model is a weak
augmented version, including random flipping and small
range random scaling. The input to the student model is a
corresponding strong augmented version, including Gaus-
sian blur, colour jitter, and random center cropping. We
follow the augmentation parameters in [59]. During train-
ing, we apply the SGD optimizer [2] with the momentum
of 0.9. The initial learning rate is set to 2.5 × 10−4, and
then is reduced following a poly policy with a power of
0.9. The batch size is set as 4. We train our framework
for 20,000 iterations on all UMA tasks, using an RTX3090
GPU (24GB). For parameter setting, the teacher update
weight γ in Eq. 3 is set to 0.99. The meta maximum evo-
lutionary iteration M in Algorithm 1 is set to 50. In the
training-consistency based resampling strategy, the iteration
number I for reliability evaluation is set to 4000 and the top
50% candidates are select.

4.2. Comparison to state of the art

We compare our method with previous state-of-the-art
methods, including source-free unsupervised model adap-
tation (UMA) methods and unsupervised domain adapta-
tion (UDA) methods. Our method significantly boosts the
source-trained models on each MDA benchmark task, and
in fact, achieves new state-of-the-art performance. Further-
more, our method achieves competitive performance com-
pared to state-of-the-art UDA methods, despite not access-
ing source data during the adaptation process.
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IAST (ECCV’2020) [40] % 93.8 57.8 85.1 39.5 26.7 26.2 43.1 34.7 84.9 32.9 88.0 62.6 29.0 87.3 39.2 49.6 23.2 34.7 39.6 51.5
MetaCorr (CVPR’2021) [14] % 92.8 58.1 86.2 39.7 33.1 36.3 42.0 38.6 85.5 37.8 87.’6 62.8 31.7 84.8 35.7 50.3 2.0 36.8 48.0 52.1

ProDA (CVPR’2021) [59] % 91.5 52.4 82.9 42 35.7 40 44.4 43.3 87 43.8 79.5 66.5 31.4 86.7 41.1 52.5 0 45.4 53.8 53.7
SAC (CVPR’2021) [1] % 90.4 53.9 86.6 42.4 27.3 45.1 48.5 42.7 87.4 40.1 86.1 67.5 29.7 88.5 49.1 54.6 9.8 26.6 45.3 53.8

CPST(CVPR’2022) [31] % 91.7 52.9 83.6 43 32.3 43.7 51.3 42.8 85.4 37.6 81.1 69.5 30 88.1 44.1 59.9 24.9 47.2 48.4 55.7

Source model 65.0 16.1 68.7 18.6 16.8 21.3 31.4 11.2 83.0 22.0 78.0 54.4 33.8 73.9 12.7 30.7 13.7 28.1 19.7 36.8
URMDA (CVPR’2021) [9] ! 92.3 55.2 81.6 30.8 18.8 37.1 17.7 12.1 84.2 35.9 83.8 57.7 24.1 81.7 27.5 44.3 6.9 24.1 40.4 45.1
SFDA (CVPR’2021) [36] ! 91.7 52.7 82.2 28.7 20.3 36.5 30.6 23.6 81.7 35.6 84.8 59.5 22.6 83.4 29.6 32.4 11.8 23.8 39.6 45.8

SDF (MM’2021) [57] ! 95.2 40.6 85.2 30.6 26.1 35.8 34.7 32.8 85.3 41.7 79.5 61.0 28.2 86.5 41.2 45.3 15.6 33.1 40.0 49.4
HCL (NIPS’2021) [21] ! 92.0 55.0 80.4 33.5 24.6 37.1 35.1 28.8 83.0 37.6 82.3 59.4 27.6 83.6 32.3 36.6 14.1 28.7 43.0 48.1

DT-ST (Ours) ! 90.3 47.8 84.3 38.8 22.7 32.4 41.8 41.2 85.8 42.5 87.8 62.6 37.0 82.5 25.8 32.0 29.8 48.0 56.9 52.1

Source model + DG [32] 80.2 30.2 79.6 30.7 20.3 31.9 36.1 18.6 80.6 23.9 75.2 63.0 36.2 84.8 31.2 36.1 4.4 31.2 28.0 43.3
ProDA†(CVPR’2021) [59] ! 85.6 45.4 76.5 40.1 31.9 38.9 36.4 47.4 85.8 45.7 80.1 63.6 0 85.6 33.7 51.2 0 37.6 52.3 49.4

SAC†(CVPR’2021) [1] ! 89.1 52.7 82.1 40.3 26.7 40.7 44.1 40.1 81.6 40.1 81.6 67.4 26.1 85.1 44.5 48.8 3.8 26.4 43.1 50.8
CPST†(CVPR’2022) [31] ! 86.7 38.6 82.2 39.8 32.1 40.8 41.5 43.2 85.6 42.7 73.6 65.5 22.1 87.3 27.1 41.1 0 37.6 49.5 49.3

HCL (NIPS’2021) [21] ! 92.6 54.6 82.8 33.2 26.2 39.8 38.1 31.9 84.5 38.6 85.3 61.3 30.2 85.4 33.1 41.6 14.4 27.3 44.0 49.7
DT-ST (Ours) ! 93.5 57.6 84.7 36.5 25.2 33.4 44.7 36.7 86.8 42.8 81.3 62.3 37.2 88.1 48.7 50.6 35.5 48.3 59.1 55.4

Table 1. Experimental results for GTA5 → Cityscapes. ‘SF’ represents whether the method is in source-free setting. † denotes the
re-implementation in source-free setting.
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IAST (ECCV’20) [40] % 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 49.8 57.0
MetaCorr (CVPR’21) [14] % 92.6 52.7 81.3 8.9 2.4 28.1 13.0 7.3 83.5 85.0 60.1 19.7 84.8 37.2 21.5 43.9 45.1 52.5
ProDA (CVPR’2021) [59] % 87.1 44 83.2 26.9 0.7 42 45.8 34.2 86.7 81.3 68.4 22.1 87.7 50 31.4 38.6 51.9 58.5

SAC (CVPR’2021) [1] % 89.3 47.2 85.5 26.5 1.3 43 45.5 32 87.1 89.3 63.6 25.4 86.9 35.6 30.4 53 52.6 59.3
CPST (CVPR’2022) [31] % 87.3 44.4 83.8 25.0 0.4 42.9 47.5 32.4 86.5 83.3 69.6 29.1 89.4 52.1 42.6 54.1 54.4 61.7

Source model 52.2 23.6 62.2 6.0 0.2 28.3 7.3 12.7 79.7 75.7 52.5 10.2 75.0 24.6 8.9 10.3 33.1 38.1
URMDA (CVPR’2021) [9] ! 59.3 24.6 77 14 1.8 31.5 18.3 32 83.1 80.4 46.3 17.8 76.7 17 18.5 34.6 39.6 45
SFDA (CVPR’2021) [57] ! 67.8 31.9 77.1 8.3 1.1 35.9 21.2 26.7 79.8 79.4 58.8 27.3 80.4 25.3 19.5 37.4 42.4 48.7

SDF (MM’2021) [57] ! 90.9 45.5 80.8 3.6 0.5 28.6 8.5 26.1 83.4 83.6 55.2 25 79.5 32.8 20.2 43.9 44.2 51.9
HCL (NIPS’2021) [21] ! 80.9 34.9 76.7 6.6 0.2 36.1 20.1 28.2 79.1 83.1 55.6 25.6 78.8 32.7 24.1 32.7 43.5 50.2

DT-ST (Ours) ! 79.4 41.4 73.9 5.9 1.5 30.6 35.3 19.8 86.0 86.0 63.8 28.6 86.3 36.6 35.2 53.2 47.7 55.8

Source model + DG [32] 76.8 29.8 67.9 10.7 0.3 29.5 9.5 16.8 79.8 78.3 52.5 13.8 78.5 28.5 12.8 19.9 37.8 43.5
ProDA†(CVPR’2021) [59] ! 79.9 35.7 75.5 20.7 0 39.6 36.5 31.5 84.2 80.6 64.2 9.6 85.3 40.9 24.9 35.8 46.6 52.7

SAC†(CVPR’2021) [1] ! 84.7 39.6 80.9 16.3 0.2 38.4 40.9 27.4 82.5 84.7 59.1 16.6 82.3 31 20.8 36.1 46.3 52.8
CPST†(CVPR’2022) [31] ! 80.9 28.7 81 20.4 1.2 38.6 36.3 31.4 85.3 74.4 64.2 12.6 87.2 31.9 16.3 42.8 45.8 51.8

HCL (NIPS’2021) [21] ! 86.7 38.1 82.7 10.0 0.6 30.3 25.4 29.7 82.8 85.9 61.9 24.8 84.5 38.9 22.6 37.9 46.4 54.0
DT-ST (Ours) ! 88.9 45.8 83.3 13.7 0.8 32.7 31.6 20.8 85.7 82.5 64.4 27.8 88.1 50.9 37.6 57.3 50.7 58.8

Table 2. Experimental results for SYNTHIA → Cityscapes. Conforms to the same definition as in Table 1.

GTA5 → Cityscapes We report the experimental results
of GTA5 → Cityscapes in Table 1. In comparison with
UMA methods, using original source-trained models (i.e.
36.8% mIoU on validation set) for adaptation, our method
achieved a 52.1% mIoU score, outperforms the state-of-the-
art method SDF [57] by 2.7%. Note that, SDF performs
multiple rounds of offline training to improve performance,
while our method is performed online. Compared with
online self-training HCL [21], our method achieves better
adaptation performance, which exceeds the mIoU score of
HCL by 4%. In that case, our method is comparable to the
UDA methods IAST [40] and MetaCorr [14]. In addition,
we also use the model trained by domain generalization
technology [32] to perform adaptation, which can provide
better pre-training. Benefit from this, our method further

improved the mIoU score by 3.3%, and achieved the per-
formance comparable to the existing SOTA UDA method
CPST [31]. Besides, our method gains a 1.6% mIoU score
benefit than HCL, which shows that our method can mine
the knowledge in the model more efficiently.
SYNTHIA → Cityscapes We report the results of SYN-
THIA → Cityscapes in Table 2. Due to the large domain
shift in this task and the poor performance of the source-
trained model, most UMA methods obtain low adaptation
benefits in this task. Nevertheless, our method still main-
tains good model adaptability. In UMA setting, using orig-
inal source-trained model (i.e. 38.1% mIoU over 16 cat-
egories on validation set), our method achieves the mIoU
score by 47.7% and 55.8% over the 16 and 13 categories
separately. Compared with the source-trained model, our
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Source GTA→ SF
Compound Open Avg

Rainy Snowy Cloudy Overcast C C+O

Source Only 19.7 18.4 20.5 22.5 19.7 21.0
CBST [63] % 21.3 20.6 23.9 24.7 22.2 22.6

IBN-Net [42] % 20.6 21.9 26.1 25.5 22.8 23.5
PyCDA [34] % 21.7 22.3 25.9 25.4 23.3 23.8
OCDA [37] % 22.0 22.9 27.0 27.9 24.5 25.0

MOCDA [12] % 24.4 27.5 30.1 31.4 27.7 29.4

HCL [21] ! 22.8 25.8 28.6 27.7 25.9 26.2
DT-ST (Ours) ! 26.7 28.1 32.1 32.5 30.1 31.3

Table 3. Experimental results for GTA5 → BDD-100k using
VGG-16 as backbone following [12]. ‘SF’ represents whether the
method is in source-free setting.

method improves the mIoU score by 17.1% and 14.6% over
the 16 and 13 categories separately, which is better than the
currently published performance of SDF [57] by 3.5% and
3.9%. In addition, using pre-training model by domain gen-
eralization method [32], our method further improves the
mIoU score by 3.0% over the 16 and 13 categories, and
achieves comparable performance with the UDA methods
IAST [40], SAC [1], and ProDA [59].
GTA5 → BDD100k We carry out the MDA experiment
of GTA5 → BDD100k to verify the proposed method on
complex adaptation scenarios, i.e., single domain to mul-
tiple target domains. The results are reported in Table 3.
In this task, worse pre-train models and challenging adap-
tation scenarios are given, which further tests the stability
and adaptability of the MDA methods. Under the same
settings as MOCDA [12], our method achieved 30.1% av-
erage mIoU score in rainy, sunny, and cloudy scenarios,
with an average increase of 10.4% mIoU score. In contrast,
the UMA method HCL [21] does not achieve the desired
adaptation effect. Compared with the state-of-the art UDA
method MOCDA using meta-learning, our method has a
2.4% higher mIoU score, illustrating the potential of our
method to adapt to complex scenarios and tasks.

4.3. Ablation study

In this part, we perform ablation experiments on GTA5
→ Cityscapes task using two source-trained models, as
shown in Table 4. The two source-trained methods achieve
mIoU scores of 36.8% and 43.3%, respectively. The ba-
sic online self-training (ONST) provides a strong baseline,
which improves the mIoU score by 9.4% and 7.4% using
the two source-trained methods, respectively. On this ba-
sis, both DTU and TCR variants can further enhance the
performance of the model, which fits our motivation and
demonstrates their effectiveness. Specifically, DTU im-
proves the mIoU score of base ONST by 1.6% and 1.9%,
respectively, with DTU-SND being even better, suggesting
that controlling the teacher update interval to incorporate
an evolved student model can improve adaptability. TCR

source-trained Base ST DTU-E DTU-SND TCR-Prob TCR mIoU gain

original

36.8
X 46.2 +9.4
X X 47.2 +10.4
X X 47.8 +11.0
X X 49.3 +12.5
X X 50.6 +13.8
X X X 50.2 +11.0
X X X 52.3 +15.5

DG [32]

43.3
X 50.7 +7.4
X X 51.3 +8.0
X X 52.7 +9.4
X X 52.8 +9.5
X X 54.4 +11.1
X X X 53.8 +10.5
X X X 55.4 +12.1

Table 4. Ablation study. We report mIoU scores (%) (val) us-
ing two source-trained models on GTA5 → Cityscapes task Under
UMA setting. TCR-Prob denotes a strong copy-paste baseline us-
ing softmax entropy as reliability metrics (replacing Eq. 9).

0 5000 10000 15000 20000
Original source-trained model

40

42

44

46

48

50

52

m
Io

U 
(%

)

ONST+DTU+TCR
ONST+DTU
base ONST

0 5000 10000 15000 20000
Domain generalization model

44

46

48

50

52

54

m
Io

U 
(%

)

ONST+DTU+TCR
ONST+DTU
base ONST

Figure 4. The mIoU score curve (val) of adding DTU and TCR.

shows a larger adaptation contribution, with performance
gains by 4.4% and 3.7%, respectively. Compared with a
strong baseline TCR-prob using the probabilities of individ-
ual models as metrics, TCR shows its high efficiency. We
believe this is due to TCR-prob being prone to selecting bi-
ased and noisy candidates, TCR alleviates this problem by
exploiting the consistency of historical and current models.

To show training stability, we plot the mIoU score of
the model on the validation set during the training phase,
as shown in Fig. 4. The mIoU score of the base ONST
(blue curve) increases steadily at the beginning but gradu-
ally decreases at the later stage, showing the poor stabil-
ity of the base ONST. The mIoU score (green curve) with
the added DTU-SND rises steadily at the beginning and
then stabilizes, which stresses that DTU can effectively pre-
vent ONST degradation. On this basis, the performance
of adding TCR (red curve) shows faster improvement and
more stability, which means that TCR can further stabilize
training. Different source-trained models present similar
training trends, further confirming the above conclusions.

4.4. Hyperparameter sensitivity

In this part, we analyze the sensitivity of hyper-
parameters in DTU and TCR. In DTU, we explore the mov-
ing average weight γ in Eq. 3. When γ varies in the range
of 0.99-0.999, the corresponding mIoU score and the distri-
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Figure 5. The distribution of the update intervals by DTU with
varying γ. The sum of the update interval ratios represented by all
colors is 1. Thus, the update interval exceeding the set value M
(i.e. 50) is about 5%, and the remaining 95% update are dynami-
cally controlled by the proxy metric.

C ↓ I → 2000 3000 4000 5000
30 54.1 54.2 54.3 54.1
40 54.3 54.5 54.6 54.8
50 54.8 55.2 55.5 55.1
60 54.8 55.1 55.3 55.2

Table 5. The mIoU (%) score on GTA5 → Cityscapes (val) with
varying C% and I using domain generalization model.

M 30 50 70 90 110
GTA5→ Cityscapes 55.0 55.4 55.3 55.1 54.9

SYNTHIA→ Cityscapes 50.4 50.7 50.7 50.5 50.1

Table 6. The mIoU scores (%) with varying M on different tasks.

bution of the update intervals is shown in Fig. 5. It shows
that changing γ within a certain range has little effect on the
performance. Moreover, the update interval of the teacher
can be adaptively adjusted according to γ. When γ is small
(blue), the update degree of the teacher’s weight is large
each time. Correspondingly, the update interval tends to be
larger, meaning that students need to take longer to evolve.
This further presents the advantages of DTU than fixed in-
terval. Besides, we adopt the sensitive study of M in Table
6. It shows that the model is relatively robust to M within a
certain range on two public benchmarks. The setting of M
should generally be several tens to hundreds to prevent the
teacher model from not being updated for a long time.

In TCR, we explore the sensitivity of reliability evalua-
tion frequency I and top C% candidates on performance,
as shown in Table 5. Overall, the two parameters I and
C have little effect on the adaptation performance, and the
variance is within 1.4%. From the changing trend of mIoU
score, we find that picking more candidates for copy-paste
is benefit for adaptation. When C is selected above 50, the
performance fluctuation is smaller with only 0.7% variance,
showing that TCR is robust to both parameters.

1k iterations 5k iterations 15k iterationsInput image

Figure 6. Visualization of output from the teacher model for dif-
ferent iterations. Our method can stabilize the teacher model and
further achieve co-evolution in UMA.

Input images Non-Adapted Adapted
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Figure 7. Visualization of the adaptation results of our method
from single-domain to mixed-domain, including rainy, snowy and
cloudy scenes (i.e. GTA5 → BDD-100K).

4.5. Qualitative assessment

We visualize the output of teacher models with differ-
ent iterations in GTA5 → Cityscapes task in Fig. 6. At
the beginning of training, the output of the teacher model is
chaotic and noisy. With training, the noise is weakened, and
the prediction of the teacher model is gradually reasonable
and regular. The above discussion further verifies that our
method can steadily evolve the teacher model in UMA. Fig.
7 shows the visualization of our method performing UMA
in a more challenging scenario, i.e. GTA5→BDD100k. It
shows that our method can achieve good self-training per-
formance in difficult adaptation scenarios, even if only poor
source-trained models are given.

5. Conclusion
In this paper, we focus on the problem of domain adap-

tive semantic segmentation when the source domain is in-
accessible. We explore the reasons for the impaired sta-
bility and adaptability of online self-training, and propose
corresponding improvement schemes. On multiple standard
UMA benchmarks, our method greatly improves the stabil-
ity and adaptability of online self-training methods, achiev-
ing comparable or even better performance than state-of-
the-art UDA methods. We hope that our work can inspire
the community and promote the performance of online self-
training in more complex scenarios.
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