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Figure 1. (a) We learn a joint embedding between image patches and the EXIF metadata that cameras automatically insert into image files.
Our model treats this metadata as a language-like modality: we convert the EXIF tags to text, concatenate them together, and then processes
the result with a transformer. (b) We apply our representation to tasks that require understanding camera properties. For example, we can
detect image splicing “zero shot” (and without metadata at test time) by finding inconsistent embeddings within an image. We show a
manipulated image that contains content from two source photos. Since these photos were captured with different cameras, the two regions
have dissimilar embeddings (visualized by PCA). We localize the splice by clustering the image’s patch embeddings.

Abstract

We learn a visual representation that captures informa-
tion about the camera that recorded a given photo. To
do this, we train a multimodal embedding between image
patches and the EXIF metadata that cameras automatically
insert into image files. Our model represents this meta-
data by simply converting it to text and then processing it
with a transformer. The features that we learn significantly
outperform other self-supervised and supervised features
on downstream image forensics and calibration tasks. In
particular, we successfully localize spliced image regions
“zero shot” by clustering the visual embeddings for all of
the patches within an image.

1. Introduction

A major goal of the computer vision community has
been to use cross-modal associations to learn concepts that
would be hard to glean from images alone [2]. A particular
focus has been on learning high level semantics, such as

objects, from other rich sensory signals, like language and
sound [58, 62]. By design, the representations learned
by these approaches typically discard imaging properties,
such as the type of camera that shot the photo, its lens,
and the exposure settings, which are not useful for their
cross-modal prediction tasks [17].

We argue that obtaining a complete understanding of an
image requires both capabilities — for our models to per-
ceive not only the semantic content of a scene, but also
the properties of the camera that captured it. This type of
low level understanding has proven crucial for a variety of
tasks, from image forensics [33, 52, 80] to 3D reconstruc-
tion [34, 35], yet it has not typically been a focus of rep-
resentation learning. It is also widely used in image gen-
eration, such as when users of text-to-image tools specify
camera properties with phrases like “DSLR photo” [59,63].

We propose to learn low level imaging properties from
the abundantly available (but often neglected) camera meta-
data that is added to the image file at the moment of cap-
ture. This metadata is typically represented as dozens of
Exchangeable Image File Format (EXIF) tags that describe
the camera, its settings, and postprocessing operations that
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were applied to the image: e.g., Model: “iPhone 4s”
or Focal Length: “35.0 mm”. We train a joint embed-
ding through contrastive learning that puts image patches
into correspondence with camera metadata (Fig. 1a). Our
model processes the metadata with a transformer [75] after
converting it to a language-like representation. To do this
conversion, we take advantage of the fact that EXIF tags
are typically stored in a human-readable (and text-based)
format. We convert each tag to text, and then concate-
nate them together. Our model thus closely resembles con-
trastive vision-and-language models, such as CLIP [62], but
with EXIF-derived text in place of natural language.

We show that our model can successfully estimate cam-
era properties solely from images, and that it provides a
useful representation for a variety of image forensics and
camera calibration tasks. Our approaches to these tasks do
not require camera metadata at test time. Instead, camera
properties are estimated implicitly from image content via
multimodal embeddings.

We evaluate the learned feature of our model on two clas-
sification tasks that benefit from a low-level understanding
of images: estimating an image’s radial distortion param-
eter, and distinguishing real and manipulated images. We
find that our features significantly outperform alternative
supervised and self-supervised feature sets.

We also show that our embeddings can be used to de-
tect image splicing “zero shot” (i.e., without labeled data),
drawing on recent work [8, 33, 54] that detects inconsisten-
cies in camera fingerprints hidden within image patches.
Spliced images contain content from multiple real images,
each potentially captured with a different camera and imag-
ing pipeline. Thus, the embeddings that our model assigns
to their patches, which convey camera properties, will have
less consistency than those of real images. We detect ma-
nipulations by flagging images whose patch embeddings
do not fit into a single, compact cluster. We also localize
spliced regions by clustering the embeddings within an im-
age (Fig. 1b).

We show through our experiments that:

e Camera metadata provides supervision for self-
supervised representation learning.

* Image patches can be successfully associated with camera
metadata via joint embeddings.

* Image-metadata embeddings are a useful representation
for forensics and camera understanding tasks.

* Image manipulations can be identified “zero shot” by
identifying inconsistencies in patch embeddings.

2. Related Work

Estimating camera properties. Camera metadata has
been used for a range of tasks in computer vision, such
as for predicting focal length [1, 31, 50, 71], performing
white balancing [20, 49] and estimating camera models
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Figure 2. Cross-modal image and camera metadata model. We
use contrastive learning to associate each image patch with the
EXIF metadata that was extracted from its image file. We repre-
sent the metadata as text, which is obtained by concatenating the
EXIF tags together. We then process it using a transformer.

[7,39,74]. It has also been used as extra input for recogni-
tion tasks [19,72]. Instead of estimating camera properties
directly (which can be highly error prone [33]), our model
predicts an embedding that distinguishes a patch’s camera
properties from that of other patches in the dataset.

Image forensics. Early work used physically motivated
cues, such as misaligned JPEG blocks [6, 21], color filter
array mismatches [3,4,23, 78], inconsistencies in noise pat-
terns [37, 47,48, 61], and compression or boundary arti-
facts [5, 26, 32, 82]. Other works use supervised learning
methods [40,53,64,66,76,77,79-81,85]. The challenge of
collecting large datasets of fake images has led to alterna-
tive approaches, such as synthetic examples [53,79,81,85].
Other work uses self-supervised learning, such as methods
based on denoising [13], or that detect image manipulations
by identifying image content that appears to come from dif-
ferent camera models [7,9, 54]. Huh et al. [33] learned a
patch similarity metric in two steps: they determined which
EXIF tags are shared between the patches, then use these bi-
nary predictions as features for a second classifier that pre-
dicts whether two patches come from the same (or different)
images. In contrast, we obtain a visual similarity metric that
is well-suited to splice localization directly from our multi-
modal embeddings.

Language supervision in vision. Recent works have ob-
tained visual supervision from language. The formula-
tion includes specific keyword prediction [55], bag-of-word
multilabel classification [36], n-gram classification [46] and
autoregressive language models [16,68,84]. Recently, Rad-
ford et al. [62] obtained strong performance by training a
contrastive model on a large image-and-language dataset.
Our technical approach is similar, but uses text from cam-
era metadata in lieu of image captions.

Work in text-to-image synthesis often exploits camera
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information through prompting, such as by adding text like
“DSLR photo of...” or “Sigma 500mm {/5” to prompts [59].
These methods, however, learn these camera associations
through the (relatively rare) descriptions of cameras pro-
vided by humans, while ours learns them from an abundant
and complementary learning signal, camera metadata.

3. Associating Images with Camera Metadata

We desire a visual representation that captures low level
imaging properties, such as the settings of the camera that
were used to shoot the photo. We then apply this learned
representation to downstream tasks that require an under-
standing of camera properties.

3.1. Learning Cross-Modal Embeddings

We train a model to predict camera metadata from im-
age content, thereby obtaining a representation that con-
veys camera properties. Following previous work in mul-
timodal contrastive learning [62], we train a joint embed-
ding between the two modalities, allowing our model to
avoid the (error prone) task of directly predicting the at-
tributes. Specifically, we want to jointly learn an image
encoder and metadata encoder such that, given N images
and N pieces of metadata information, the corresponding
image—metadata pairs can be recognized by the model by
maximizing embedding similarity. We use full-resolution
image patches rather than resized images, so that our model
can analyze low-level details that may be lost during down-
sampling.

Given a dataset of image patches and their corresponding
camera metadata {(v;, m;)} Y ;, we learn visual and EXIF
representations fp(v) and g4 (m) by jointly training fy and
g using a contrastive loss [57]:

LYM g &P (Jo(vi) - gs(mi)/7)

SN exp(fo(vi) - gs(my)/7)

where 7 is a small constant. Following prior work [62], we
define an analogous loss £+ that sums over visual (rather
than metadata) examples in the denominator, and minimize
a combined loss £ = LV'"M LMV,

NCY

3.2. Representing the Camera Metadata

This formulation raises a natural question: how should
we represent the metadata? The metadata within photos is
stored as a set of EXIF tags, each indicating a different im-
age property as shown in Table 1. EXIF tags span a range of
formats and data types, and the set of tags that are present
in a given photo can be highly inconsistent. Previous works
that predict camera properties from images typically extract
attributes of interest from the EXIF tags, and cast them to an
appropriate data format — e.g., extracting a scalar-valued
focal length category. This tag-specific processing limits

EXIF tag Example values #values

Camera Make Canon, NIKON Corporation, Apple 312
NIKON D90, Canon EOS 7 3071
Picasa, Adobe Photoshop, QuickTimel71l

1/60 sec, 1/125 sec, 1/250 sec 2062

Camera Model
Software
Exposure Time

Focal Length 18.0 mm, 50.0 mm, 6.3 mm 931
Aperture Value F2.8, F4, F5.6, F3.5 137
Scene Capture Type Landscape, Portrait, Night Scene 5
Exposure Program Aperture priority, Manual control 9
White Balance Mode Auto, Manual 3
Thumbnail Compression JPEG, Uncompressed 3
Digital Zoom Ratio 1, 1.5, 2, 1.2 49
ISO speed Ratings 100, 400, 300 460
Shutter Speed Value 1/60 sec, 1/63 sec, 1/124 sec 1161
Date/Time Digitized 2013:03:28 04:20:46 95932

Table 1. What information is contained within photo EXIF
metadata? We list several of the most common EXIF tags, along
with the common values and number of values they contain in the
YFCC100M dataset [73].

the amount of metadata information that can be used as part
of learning, and requires special-purpose architectures.

We exploit the fact that EXIF tags are typically stored in
a human-readable format and can be straightforwardly con-
verted to text (Fig. 2). This allows us to directly process
camera metadata using models from natural language pro-
cessing — an approach that has successfully been applied
to processing various text-like inputs other than language,
such as math [45] and code [11]. Specifically, we create
a long piece of text from a photo’s metadata by convert-
ing each tag’s name and value to strings, and concatenating
them together. We separate each tag name and value with
a colon and space, and separate different tags with a space.
We evaluate a number of design decisions for this model in
Sec. 4.4, such as the text format, choice of tags, and network
architecture.

3.3. Application: Zero-shot Image Forensics

After learning cross-modal representations from images
and camera metadata, we can use them for downstream
tasks that require an understanding of camera properties.
One way to do this is by using the learned visual network
features as a representation for classification tasks, fol-
lowing other work in self-supervised representation learn-
ing [12,29]. We can also use our learned visual embeddings
to perform “zero shot” image splice detection, by detecting
inconsistencies in an input image’s imputed camera proper-
ties.

Spliced images are composed of regions from multiple
real images. Since they are typically designed to fool hu-
mans, forensic models need to rely more on subtle (often
non-semantic) cues to detect them. We got inspiration from
Huh et al. [33], which predicts whether two image patches
share the same camera properties. If two patches are pre-
dicted to have very different camera properties, then this
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Figure 3. Zero shot splice localization. Given a spliced image (left), we compute our cross-modal embeddings for each image patch,
which we visualize here using projections onto the top 3 principal components. We then compute the affinity matrix by taking dot product
for every pair of patches. We localize the spliced region by clustering these embedding vectors.

provides evidence that they come from different images.
In our work, we can naturally obtain this patch similarity
by computing the dot product between two patches’ em-
beddings, since they have been trained to convey camera
properties. We note that, unlike Huh et al. [33], we do not
train a second, special-purpose classifier for this task, nor
do we use augmentation to provide synthetic training ex-
amples (e.g., by applying different types of compression to
the patches).

To determine whether an image is likely to contain a
splice, we first compute an affinity matrix A;; = fg(v;) -
fo(v;) whose entries are the dot product between patches’
normalized embedding vectors. We score an image v us-
ing the sum of the exponentiated dot products between em-
beddings, ¢(v) = >_, ;exp(A;;/7). This score indicates
the likelihood that the image is unmodified, since high dot
products indicate high similarity in imputed camera prop-
erties. To localize the spliced image regions within an im-
age, we aggregate the similarity scores in A;; by clustering
the rows using mean shift, following [33]. This results in
a similarity map indicating the likelihood that each patch
was extracted from the largest source photo that was used
to create the composite. Alternatively, we can visualize the
spliced region by performing spectral clustering via normal-
ized cuts [33,69], using A;; as an affinity matrix between
patches. We visualize this approach in Fig. 3.

4. Results
4.1. Implementation

Architecture. We use ResNet-50 pretrained on ImageNet
as our image encoder. We found that the text encoder in
models trained on captioning, such as CLIP [62], were not
well-suited to our task, since they place low limits on the
number of tokens. For the EXIF text encoder, we use Dis-
tilBERT [67] pretrained on Wikipedia and the Toronto Book
Corpus [86]. We compute the feature representation of the
EXIF as the activations for the end-of-sentence token from

the last layer which is layer normalized and then linearly
projected into multi-modal embedding space.

Training. To train our model, we use 1.5M full-
resolution images and EXIF pairs from a random subset of
YFCC100M [73]. We discard images that have less than 10
of the EXIF tags. Because many images only have a small
number of EXIF tags available, we only use tags that are
present in more than half of these images. This results in 44
EXIF tags (see supplementary for the complete list). In con-
trast to other work [33], we do not rebalance the images to
increase the rate of rare tags. During training, we randomly
crop 124 x 124 patches from high-resolution images. We
use the AdamW optimizer [38] with a learning rate of 1074,
weight decay of 10~3, and mixed precision training. We use
a cosine annealing learning rate schedule [51]. The batch
size is set to 1024, and we train our model for 50 epochs.

Other model variations. To study the importance of
metadata supervision on the learned representation, we train
a similar model that performs contrastive learning but does
not use metadata. The model resembles image-image con-
trastive learning [12,29,33,87], which has been shown to be
highly effective for representation learning, and which may
learn low-level camera information [17]. Different from
typical contrastive learning approaches, we use strict crop-
ping augmentation so that the views for our model (Eq. 1)
come from different crops of the same image, to encour-
age it to learn low-level image features. We call this model
CropCLR. Additionally, we evaluate a number of ablations
of our model, including models that are trained with indi-
vidual EXIF tags, that use different formats for the EXIF-
derived text, and different network architectures (Table 5).

4.2. Evaluating the learned features

First, we want to measure how well the learned fea-
tures convey camera properties. Since EXIF file is already
embedded with a lot of camera properties such as camera
model, focal length, shuttle speed, etc., it should be unsur-
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Forensics Radial Distortion

CASIAT CASIAIl Dresden RAISE

Models

resize crop resize crop resize resize

ImageNet pretrained 0.69 0.64 0.71 0.72 0.23 0.24

MoCo 0.67 0.67 0.68 0.69 0.24 0.28
CLIP 0.71 0.82 0.84 0.81 0.21 0.22
Ours - CropCLR 0.70 0.81 0.86 0.80 0.28 0.32
Ours - Full 0.75 085 0.87 0.84 0.31 0.35

Table 2. We do linear probing on top of learned representation
to predict two camera related properties that are not presented in
EXIF files. The good performance indicates that our model learns
general imaging properties. resize and crop denote the image
preprocessing applied.

prising if we can predict those properties from images (we
provide such results in Sec. 4.4). Instead, we want to study
if the feature learned by the model can be generalized to
other imaging properties that are not provided in the EXIF
file. Specifically, we fit a linear classifier to our learned fea-
tures on two prediction tasks: radial distortion estimation
and forensic feature evaluation.

We compare the features from our image encoder with
several other approaches, including supervised ImageNet
pretraining [65], a state-of-the-art self-supervised model
MoCo [29], CLIP [62], which obtains strong semantic rep-
resentations using natural language supervision (rather than
EXIF supervision), and finally the CropCLR variation of
our model. To ensure a fair comparison, the backbone ar-
chitectures for all approaches are the same (ResNet-50).

Radial distortion estimation. Imperfections in camera
lens production often lead to radial distortion artifacts in
captured images. These artifacts are often removed as part
of multi-view 3D reconstruction [27, 70], using methods
that model distortion as a 4th-order polynomial of pixel po-
sition. Radial distortion is not typically specified directly by
the camera metadata, and is thus often must be estimated
through calibration [10], bundle adjustment [70], or from
monocular cues [50].

We followed the evaluation setup of Lopez et al. [50],
which estimates the quadratic term of the radial distor-
tion model, k1, directly from synthetically distorted images.
This term can be used to provide an estimate of radial dis-
tortion that is sufficient for many tasks [50, 60]. We syn-
thesized the 512 x 512 images from the Dresden Image
Database [25] and RAISE dataset [14] using k; parame-
ters uniformly sampled in the range [—0.4,0]. To predict
k1, we used a regression-by-classification approach, quan-
tizing the values of k; into 20 bins (We also show result in
regression RMSE metrics in supplementary). We extracted
features from different models, and trained a linear clas-
sifier on this 20-way classification problem. We provided

them with a 512 x 512 image as input, and obtained image
features from the global average pooling layer after the final
convolutional layer (i.e., the penultimate layer of a typical
ResNet).

Representation learning for image forensics. We evalu-
ate our model’s ability to distinguish real and manipulated
images. This is a task that requires a broader understanding
of low level imaging properties, such as spotting unusual
image statistics. We use the CASIA I [18] and CASIA
IT [43] datasets. The former contains only spliced fakes,
while the latter contains a wider variety of manipulations.
We again perform linear classification using the features
provided by different models. We evaluate two types of
preprocessing, resizing and center cropping, to test whether
this low level task is sensitive to these details.

In both tasks, we found that our model’s features signif-
icantly outperformed those of the other models (Table 2).
Our method achieves much better performance than tradi-
tional representational learning methods [29, 30, 62], per-
haps because these models are encouraged to discard low-
level details, while for our training task they are crucially
important. Interestingly, the variation of our model that
does not use EXIF metadata, CropCLR, outperforms the su-
pervised [30] and self-supervised baselines [29], but signifi-
cantly lags behind our full method. This is perhaps because
it often suffices to use high-level cues (e.g. color histograms
and object co-occurrence) to solve CropCLR’s pretext task.
This suggests metadata supervision is an important learning
signal and can effectively guide our model to learn general
imaging information.

4.3. Zero Shot Splice Detection and Localization

We evaluate our model on the task of detecting spliced
images without any labeled training data. This is in contrast
to Sec. 4.2, which used labeled data. We perform both splice
detection (distinguish an image being spliced or not) and
splice localization (localize spliced region within an image).

Implementation. For fair evaluation, we closely follow
the approach of Huh ez al. [33]. Given an image, we sample
patches in a grid, using a stride such that the number of
patches sampled along the longest image dimension is 25.
To increase the spatial resolution of each similarity map, we
average the predictions of overlapping patches. We consider
the smaller of the two detected regions to be the splice.

Evaluation. In splice localization task, we compare our
model to a variety of forensics methods. These in-
clude traditional methods that use handcrafted features
[24, 52, 83], supervised methods [41, 79, 80], and self-
supervised approaches [13, 33]. The datasets we use in-
clude Columbia [56], DSO [15], Realistic Tampering
(RT) [42], In-the-Wild [33] and Hays and Efros inpaint-
ing images [28]. Columbia and DSO are created purely
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Columbia [56] DSO [15] RT [42] In-the-Wild [33] Hays [28]
Style Method

p—mAP cIoU p-mAP cIoU p-mAP cIoU p—-mAP cIoU p-mAP cIoU
CFA [24] 0.76 0.75 024 046 040 0.63 0.27 0.45 0.22 045
Handcrafted  DCT [83] 0.43 0.41 032 051 0.12 050 041 0.51 0.21 0.47
NOI [52] 0.56 0.47 038 050 0.19 050 042 0.52 027 047
MantraNet [80] 0.78 0.88 053 078 050 0354 0.50 0.63 0.27  0.56
Supervised MAG [41] 0.69 0.77 048 056 051 0.55 047 0.59 030 0.61
OSN [79] 0.68 090 055 085 051 081 0.66 0.88 028  0.57
Noiseprint [13] 0.71 0.83 066 090 029 0.80 050 0.78 022 053
Unsupervised EXIF-SC [33] 0.89 0.97 0.47 0.81 022 0.5 0.49 0.79 0.26 0.54
P Ours - CropCLR  0.87 0.96 048  0.81 023 074 047 0.80 0.26  0.55
Ours - Full 0.92 0.98 056 085 023 074 051 0.82 0.30 0.58

Table 3. Zero shot splice localization. We evaluate our model on several datasets using permutation-invariant mean average precision
(p—mAP) over pixels and class-balanced IOU (cIoU) with optimal threshold selected per image. The result indicates that our model is
comparable to state-of-the-art methods, although not specially optimized for this task.

Dataset Columbia [56] DSO [15] RT [42]
CFA [24] 0.83 0.49 0.54
DCT [83] 0.58 0.48 0.52
NOI [52] 0.73 0.51 0.52
EXIF-SC 0.98 0.61 0.55
Ours - CropCLR 0.96 0.62 0.52
Ours - Full 0.99 0.66 0.53

Table 4. Zero-shot splice detection: We compare our splice de-
tection accuracy on 3 datasets. We measure the mean average pre-
cision (mAP) of detecting whether an image has been spliced.

via image splicing, while Realistic Tampering contains a di-
verse set of manipulations. In-the-Wild is a splicing image
dataset composed of internet images, which may also con-
tain a variety of other manipulations. Hays and Efros [28]
perform data-driven image inpainting. The quantitative
comparison in terms of permuted-mAP (p-mAP) and class-
balanced IoU (cIou) following [33] are presented in Ta-
ble 3. We also include splice image detection result in Ta-
ble 4, where we compare our model to methods that enable
splice detection.

Our model ranks first or second place for metrics in most
datasets, and obtains performance comparable to top self-
supervised methods that are specially designed for this task.
In particular, our model significantly outperforms the most
related technique, EXIF-SC [33]. We note that both our
method and EXIF-SC get relatively low performance on
the Realistic Tampering dataset. This may be due to the
fact that this dataset contains manipulations such as copy-
move that we do not expect to detect (since both regions
share the same camera properties). In contrast to meth-
ods based on segmentation [13, 79, 80], we do not aim to
have spatially precise matches, and output relatively low-
resolution localization maps based on large patches. Conse-
quently, our model is not well-suited to detecting very small

splices, which also commonly occur in the Realistic Tam-
pering dataset.

In Fig. 4, we show qualitative results, including both
similarity maps and spectral clustering results. In Fig. 6, we
compare our model with those of several other techniques.
Interestingly, EXIF-SC has false positives in overexposed
regions (as pointed out by [33]), since its classifier cannot
infer whether these regions are (or are not) part of the rest
of the scene. In contrast, our model successfully handles
these regions. CropCLR incorrectly flags regions that are
semantically different from the background, because this is
a strong indication that the patches come from different im-
ages. In contrast, we successfully handle these cases, since
our model has no such “shortcut” in its learning task.

4.4. Ablation Study

To help understand which aspects of our approach are
responsible for its performance, we evaluated a variety of
variations of our model, including different training super-
vision, representations for the camera metadata, and net-
work architectures.

We evaluated each model’s features quality using linear
probing on the radial distortion estimation and splice detec-
tion task (same as Sec. 4.2). As an additional evaluation, we
classify the values of common EXIF tags by applying lin-
ear classifiers to our visual representation. We convert the
values of each EXIF tag into discrete categories, by quan-
tizing common values and removing examples that do not
fit into any category. We average prediction accuracies over
44 EXIF tags to obtain overall accuracy. We provide more
details in the supplementary. All models were trained for 30
epochs on 800K images on a subset of YFCC100M dataset.
The associated texts are obtained from the image descrip-
tions and EXIF data provided by the dataset.

6950



Image Similarity Map  Normalized Cut  Ground Truth

Normalized Cut  Ground Truth

Image Similarity Map

-

Figure 4
Method EXIF Radial Forens. g g
g 078 078 o077 .. ore
Majority class baseline 0.12  0.05 0.50 3 e
. AIEXIF tags 035 029 085
-2 CropCLR 0.29 0.22 0.84 £ o 5
% “CameraModel” tagonly 031 027 0380 PN @:jo\oi@je(é\a‘f@«iﬁ‘;@g‘f@:‘f@ﬂ"a W Qi‘;ovifsvif@\*‘)
2 “Color Space” tag only 0.12 0.12 0.61 o HTAE R ‘<°°\>Qe‘;oe\>‘ied’9 o € e
e
“ YFcC image descriptions 0.15 0.16 0.70 el
= Fixed order, w/ tag name 0.35 0.29 0.85 Figure 5. Per-tag forensics task accuracy. We train various mod-
Fixed order. w/o tag name 5 2 els supervise: individua tags, then evaluate the learne
. wlo tag 0.3 0.28 0.86 Is supervised by individual EXIF tags, th 1 he 1 d
“ED Rand. order, w/ tag name 0.34 0.26 0.77 representations for splice detection task on CASIA 1.
£ Rand. order, w/o tag name 0.33 0.26 0.76 . . L.
common tags for this experiment, training a separate net-
> BTRE - .
El DistilBERT, w/ pretrained 035 0.29 0.85 work for each one. The results of the per-tag evaluation
g  DistlBERT, w/o pretrained  0.36 0.25 0.77 is shown in Fig. 5. These results suggest that having ac-
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Table 5. Model ablations. Downstream accuracy for versions of
the model trained with different text supervision, representations
of camera metadata, and architectures. We use linear probing to
evaluate the average prediction accuracy of EXIF tag values on
our YFCC test set, radial distortion estimation on Dresden dataset,
and real-or-fake classification on CASIA I dataset. Rows with gray
background (replicated for ease of comparison) represent the same
model which is our “full” model.

Metadata supervision. We evaluate a variation of our
model that trains using the image descriptions provided by
YFCC100M in lieu of camera metadata, as well as mod-
els supervised by individual EXIF tags (Table 5). For the
variations supervised by a single EXIF tag, we chose 14

formance than using individual tags. Moreover, there is a
wide variation in the performance of models that use dif-
ferent tag. This may be because the high performing tags,
such as Camera Model, convey significantly more infor-
mation about the full range of camera properties than oth-
ers, such as Color Space and Sensing Method. These
results suggest that a model that simply uses the full range
of tags can extract significantly more camera information
from the metadata. We also found that the variation trained
on image descriptions (rather than EXIF text) performed
significantly worse than other models.

Tag format. Since EXIF does not have a natural order of
tags, we ask what will happen if we randomize the EXIF tag
order during training. Table 5 shows the performance drops
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Figure 6. Qualitative comparison to other methods. Our method can correctly localize splices in many scenarios where other methods
fail. For example, EXIF-SC [33] fails on overexposed image regions; OSN [79] and CropCLR often segment scenes based on semantics.

for all three evaluations in this case. This may be due to the
fact that the Transformer model is forced to learn meaning-
ful positional embeddings corresponding to each EXIF tag
if their order keeps on changing. We also tried removing
the tag names from the camera metadata and just provide
the values for those keys, e.g. replacing Make: Apple with
Apple. Interestingly, this model performs on par with the
model that has tag names, suggesting that the network can
discern information about the tags from the values alone.

Text encoder architecture. To test whether performance
of our model tied to a specific transformer architecture, we
experimented with two different transformer models, Dis-
tilBERT [67] and ALBERT [44]. We see that both archi-
tectures obtain similar performance on all three tasks with
DistilBERT slightly outperforming ALBERT. We also test
how much pretraining the text encoder helps with the per-
formance. From Table 5, we can see pretraining improves
performance on the radial distortion and forensics tasks.

5. Discussion

In this paper, we proposed to learn camera properties
by training models to find cross-modal correspondences be-
tween images and camera metadata. To achieve this, we

created a model that exploits the fact that EXIF metadata
can easily be represented and processed as text. Our model
achieves strong performance amongst self-supervised meth-
ods on a variety of downstream tasks that require un-
derstanding camera properties, including zero shot image
forensics and radial distortion estimation. We see our work
opening several possible directions. First, it opens the pos-
sibility of creating multimodal learning systems that use
camera metadata as another form of supervision, providing
complementary information to high-level modalities like
language and sound. Second, it opens applications that
require an understanding of low level sensor information,
which may benefit from our feature sets.

Limitations and Broader Impacts. We have shown that
our learned features are useful for image forensics, which
has potential to reduce the spread of disinformation [22].
The model that we will release may not be fully representa-
tive of the cameras in the wild, since it was trained only on
photos available in the YFCC100M datatset [73].
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