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Figure 1. Taking an image sequence (a) as input, EditableNeRF is trained fully automatically to reconstruct the captured scene (b) and can

handle topological changes. After training, end-users are able to edit the scene (c) by controlling the automatically picked-out key points

(circled in green in (b)). Our method enables multi-dimensional editing and can generate novel scenes that are unseen during training.

Abstract

Neural radiance fields (NeRF) achieve highly photo-
realistic novel-view synthesis, but it’s a challenging prob-
lem to edit the scenes modeled by NeRF-based methods, es-
pecially for dynamic scenes. We propose editable neural
radiance fields that enable end-users to easily edit dynamic
scenes and even support topological changes. Input with
an image sequence from a single camera, our network is
trained fully automatically and models topologically vary-
ing dynamics using our picked-out surface key points. Then
end-users can edit the scene by easily dragging the key
points to desired new positions. To achieve this, we propose
a scene analysis method to detect and initialize key points
by considering the dynamics in the scene, and a weighted
key points strategy to model topologically varying dynamics
by joint key points and weights optimization. Our method
supports intuitive multi-dimensional (up to 3D) editing and
can generate novel scenes that are unseen in the input se-
quence. Experiments demonstrate that our method achieves
high-quality editing on various dynamic scenes and outper-
forms the state-of-the-art. Our code and captured data are

available at https://chengwei-zheng.github.
io/EditableNeRF/.

1. Introduction

Neural radiance fields (NeRF) [23] have shown great

power in novel-view synthesis and enable many applica-

tions as this method achieves photo-realistic rendering [9].

Recent techniques have further improved NeRF by extend-

ing it to handle dynamic scenes [27, 30, 40] and even topo-

logically varying scenes [28]. However, these works mainly

focus on reconstruction itself but do not consider scene edit-

ing. Thus, for rendering, only the camera views can be

changed, while the modeled scenes cannot be edited.

Recently, some frameworks have been proposed to make

neural radiance fields editable in different aspects. Some of

them aim to edit the reconstructed appearance and enable

relighting [2,35,54]; some allow controlling the shapes and

colors of objects from a specific category [15, 20, 44, 47];

and some divide the scene into different parts and the loca-

tion of each part can be modified [48, 49, 52]. However, the
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dynamics of moving objects cannot be edited by the previ-

ous methods. And this task becomes much more challeng-

ing when the dynamics contain topological changes. Topo-

logical changes can lead to motion discontinuities (e.g., be-

tween the hammer and the piano keys, between the cups

and the table in Fig. 1) in 3D space and further cause notice-

able artifacts if they are not modeled well. A state-of-the-art

framework CoNeRF [16] tries to resolve this problem by us-

ing manual supervision. However, it only supports limited

and one-dimensional editing for each scene part, requiring

user annotations as supervision.

We propose EditableNeRF, editable topologically vary-

ing neural radiance fields that are trained without manual

supervision and support intuitive multi-dimensional (up to

three-dimensional) editing. The key of our method is to rep-

resent motions and topological changes by the movements

of some sparse surface key points. Each key point is able

to control the topologically varying dynamics of a mov-

ing part, as well as other effects like shadow and reflection

changes through the neural radiance fields. This key-point-

based method enables end-users to edit the scene by easily

dragging the key points to their desired new positions.

To achieve this, we first apply a scene analysis method

to detect key points in the canonical space and track them in

the full sequence for key point initialization. We introduce a

network to estimate spatially-varying weights for all scene

points and use the weighted key points to model the dynam-

ics in the scene, including topological changes. In the train-

ing stage, our network is trained to reconstruct the scene

using the supervision from the input image sequence, and

the key point positions are also optimized by taking motion

(optical flow) and geometry (depth maps) constraints as ad-

ditional supervision. After training, the scene can be edited

by controlling the key points’ positions, and novel scenes

that are unseen during training can also be generated.

The contribution of this paper lies in the following as-

pects:

• Key-point-driven neural radiance fields achieving intu-

itive multi-dimensional editing even with topological

changes, without requiring annotated training data.

• A weighted key points strategy modeling topologically

varying dynamics by joint key points and weights op-

timization.

• A scene analysis method to detect and initialize key

points by considering the dynamics in the scene.

2. Related Work

2.1. Novel-View Synthesis

Many methods achieve rendering novel-view images by

reconstructing scenes and objects into meshes [5, 6, 12,

39, 55], neural voxels [21, 33], and multi-plane images

[7, 24, 58]. Besides these methods based on discrete repre-

sentations, some methods also achieve novel-view synthe-

sis by using continuous representations [26, 34] and have

shown great potential in this task.

Neural radiance fields (NeRF) [23] achieve photo-

realistic rendering in novel-view synthesis by leverag-

ing continuous implicit functions of density and view-

dependent color to represent static scenes. To handle dy-

namic scenes, time-variant latent codes could be used to en-

code time-variant components based on NeRF, but requiring

multi-view video inputs [17]. To further enable dynamic

reconstructions from a single-view sequence, deformation

fields implemented by MLPs are applied to warp objects in

each frame into a canonical space [27, 30, 40]. Some meth-

ods also utilize estimated depth maps [45], ToF depth im-

ages [1], or optical scene flow [18] to improve the perfor-

mance of dynamic neural radiance fields. HyperNeRF [28]

further extends dynamic NeRF to reconstruct topologically

varying scenes by modeling canonical spaces with different

topology states into a unified continuous hyperspace, and

the discontinuous deformations in 3D space caused by topo-

logical changes can be modeled by continuous functions in

hyperspace. However, unlike traditional explicit representa-

tions such as triangular meshes, NeRF-based methods rep-

resent the scenes by implicit functions, making the modeled

scenes difficult to be edited.

2.2. Editing on Neural Radiance Fields

As our method focuses on NeRF editing, we mainly dis-

cuss NeRF-based methods that support user editing in this

section. For editing on explicit representations or other im-

plicit representations, please refer to [4, 32, 50, 57].

One approach to edit neural radiance fields is to segment

the scene into different components and build MLP for each

component [48, 49, 52]. Assuming that different compo-

nents are individual, this representation allows control of

the placements and the relative positions of these compo-

nents, as well as deleting or reduplicating a component. But

these methods do not support editing the dynamics inside a

component and only result in limited applications.

In addition, some methods achieve relighting and ma-

terial editing on neural fields [2, 35, 54] by decomposing

the scene into surface normals, lights, albedo, and material.

Texture editing can also be accomplished by a 3D-to-2D

texture mapping [46].

Besides, there are also some methods that focus on mod-

eling a specific category of objects [15, 20, 44, 47] instead

of general objects. A common solution for this problem

is to model the category of objects with conditional NeRF

and use latent codes as conditions to encode the variations

of different objects in this category. Then the shape and

appearance can be edited by changing the latent codes or

by fine-tuning the network [20], and even controlled by
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Figure 2. EditableNeRF pipeline. The query point x is first warped into the canonical space by a warp field and a latent code βt in frame

t. Next, we compute the key point weights of this canonical point x′ and use it to calculate a linear combination of all key point positions

kt, called weighted key points. After that, we feed the following NeRF MLP with the weighted key points and x′, then the output density

and color are used for volumetric rendering. In the training stage, optical flow and depth maps are used to supervise key point positions.

text [41] with the help of a multi-modal model. And many

methods also focus on modeling editable human bodies or

human faces based on NeRF representation. By using hu-

man body parametric models and skinning techniques such

as SMPL [22], neural radiance fields have been extended to

model the human body and can be animated by controlling

skeleton poses [3, 19, 25, 29, 36]. Human face parametric

models also contribute to extending NeRF for human face

modeling and controlling [8, 10, 14, 37, 42, 56], and even

driven by audio [13]. However, general objects cannot be

handled by these methods.

Recently, NeRF-editing [51] proposes to deform NeRF

on static objects by extracting explicit meshes, deforming

the meshes, and transferring the deformations back into the

implicit representations. However, this method cannot han-

dle dynamic scenes. CoNeRF [16] proposes an attribute

re-rendering method based on dynamic NeRF. This method

requires users to provide annotations in several frames, in-

cluding masks for every dynamic part and their correspond-

ing attribute values, for network training. Then these parts

could be edited by controlling the one-dimensional attribute

values. We will show our advantages against CoNeRF in

Sec. 4.2.

3. EditableNeRF

Input with color image sequence, our method can recon-

struct the captured scene fully automatically based on neu-

ral radiance fields, and the topologically varying dynamics

are modeled using surface key points. After reconstruction,

end-users can edit the scene by controlling the key points.

Our pipeline is shown in Fig. 2. First, We use two meth-

ods, HyperNeRF [28] and RAFT [38], to derive the depth

maps of input frames and optical flow between adjacent in-

put images, respectively. Then we apply a scene analysis

method to detect and initialize key points for each frame

(Sec. 3.3). After that, our NeRF-based network (Sec. 3.1)

can be trained fully automatically (Sec. 3.2) to model the

captured scene based on our weighted key points strategy.

When the reconstruction is finished, the reconstructed scene

can be edited by dragging the key points to desired positions

(Sec. 3.4).

3.1. Network

We first introduce our network architecture, which is

shown in Fig. 2. Our network represents the scene as a field

of density and radiance [23]. Given a query point, similarly

to other dynamic NeRF methods [27,28], we first use a warp

field to model slight movements:

x′ = T (x, βt). (1)

Here the warp filed T maps a query 3D point x to its canon-

ical location x′, and βt is the warp latent code in frame t.
This warp field ensures that the scene in different frames

is aligned despite some errors in input camera parameters,

by using slight movements. While as discussed in [28], it’s

hard for this continuous warp field to model discontinuous

movements caused by topological changes.

Then we need to model different topology and motion

states in the canonical space. We find that motions and

topological changes are always related to some movements
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(a) (b) (c)

Figure 3. Examples of key points and key point weights. (a) shows

an input frame and its corresponding key points (circled in green).

(b) and (c) demonstrate the weights of the two key points, respec-

tively. These weights are obtained by using the surface points cor-

responding to the pixels as query points.

of surface points, so we achieve this modeling by making

use of sparse surface key points. These 3D key points are

attached to the objects’ surfaces and also move with the ob-

jects. Each key point is able to control the topologically

varying dynamics of a moving part and also some effects

like shadow and reflection changes. An example of key

points is shown in (a) of Fig. 3. For each moving part in

the scene, we automatically select one corresponding key

point, which will be detailed in Sec. 3.3, and the number

of key points is denoted as N . The key points’ positions

in each input frame will be optimized automatically in our

training stage to achieve this modeling.

We assume that different locations in the canonical space

are affected by different key points. So for a query point

x′, an MLP followed by softmax is used to decide which

key point should control its dynamics. We call this network

weight estimating network, which takes canonical coordi-

nate x′ as input and outputs a weight vector w ∈ R
N , indi-

cating how each key point affects the query point x′.

w = W (x′). (2)

An example of these spatially-varying key point weights is

shown in (b) and (c) of Fig. 3.

We then construct a weighted key points vector p by tak-

ing a linear combination of all key point positions k to

model the topologically varying dynamics at x′.

pt(x
′) =

N∑
i=1

wi(x′) · kit. (3)

The superscript i is the index of key points, and the subscript

t is the frame index. If there is only one object that moves

and causes topological changes, our method will model this

scene with only one key point (N = 1), and (3) becomes

pt(x
′) = kt because the softmax always outputs a scalar 1.

So we directly set pt(x
′) to be kt in this situation.

Next, the 3D canonical coordinate x′ and the weighted

key points p are concatenated to construct a coordinate in

hyperspace for topologically varying scene modeling. This

hyperspace is proposed in HyperNeRF [28]. In addition

to 3D space, HyperNeRF makes use of ambient dimen-

sions to model objects in hyperspace, and different topology

states are encoded with different ambient coordinates. Dis-

continuous deformations caused by topological changes in

3D space can be modeled by continuous functions (such as

MLP) in hyperspace, and more details can be found in [28].

Here we use the weighted key points p as ambient coordi-

nates, modeling topologically varying dynamics.

Finally, the following NeRF MLP is fed with this 6D

coordinate in hyperspace:

(c, σ) = H(x′ ⊕ pt(x
′), d, αt). (4)

Here d is the view direction, and αt is the appearance latent

code as in [28]. This NeRF MLP outputs the color c and

the density σ that can be used in volumetric rendering. To

render an image, we should trace the camera rays of all pix-

els, sample points along these rays, obtain their colors and

densities, and run the volumetric rendering, which are the

same as in the original NeRF [23].

3.2. Loss Functions and Training

All the latent codes and MLP parameters are optimized

in the training stage to model the scene. As we use key

points to encode topologically varying dynamics, we need

to additionally optimize key point positions in each input

frame. To keep our key points on the object surfaces and

to be time-consistent, novel losses are added in our training

stage.

First, we propose a motion loss, which constrains that the

key point positions in two adjacent frames should be con-

sistent with the optical flow from pre-trained RAFT [38].

Lmotion(t, i)=
∥∥Πt+1(k

i
t+1)−Πt(k

i
t)−F t+1

t (Πt(k
i
t))

∥∥2 ,
(5)

where Πt is the projection function using the camera pose of

frame t, and F t+1
t is the optical flow from frame t to frame

t + 1. This loss ensures that the 2D key point positions in

different frames correspond to the same surface point.

The motion loss provides good supervision in 2D image

space, while the key points are in the 3D space. Thus, a

geometry loss can help to keep the key points on the object

surfaces.

Lgeo(t, i) =
∥∥Φt(k

i
t)−Dt(Πt(k

i
t))

∥∥2 . (6)

Here the function Φt(k
i
t) calculates the distance from the

key point kit to the camera position in frame t, and Dt de-

notes the depth map rendered from HyperNeRF [28] in the

original camera view. This HyperNeRF is pre-trained be-

fore our training stage and takes the same input as ours.

Besides, we also apply a reconstruction loss between the

rendered RGB images C and the input images C̃, as well as

a warp regularization loss.

Lrec(t) =
∥∥∥Ct(kt, αt, βt)− C̃t

∥∥∥2 , (7)
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Figure 4. A 2D visualization of our key point detection method.

For each point x, we compute the variance of its ambient coordi-

nates a in the full sequence. Then the points with local maximum

variances after a 2D Gaussian filter will be selected as our refer-

ence key points.

Lreg(t) =
1

‖St‖
∑
x∈St

‖x− T (x, βt)‖2 , (8)

where St is the set of surface points in frame t. This warp

regularization loss makes sure that the warp field only mod-

els slight movements to compensate for the errors in the in-

put camera parameters and distortions in the input images.

Thus, it can avoid the ambiguity between the warp field and

our weighted key points model.

3.3. Key Point Detection and Initialization

To initialize the network training, we need to determine

the key point number N and obtain the initial 3D locations

of key points. To achieve this, we apply a scene analysis

method, which first finds reference key points in canoni-

cal space and reference frames where these reference key

points are on the object surfaces, then initializes key points’

positions in each frame.

As our key points are used to model topologically vary-

ing dynamics, we find the 3D points in the canonical space

with dramatic dynamics including topological changes as

our reference key points. Recall that HyperNeRF [28] uses

different ambient coordinates a to encode different topol-

ogy and motion states at a position. And we have already

trained a HyperNeRF for depth maps in (6). So we can de-

tect key points by making use of the ambient dimensions a
from this pre-trained HyperNeRF. For a point x, great vary-

ing of its a in different frames indicates great dynamics at

x, so we use all the positions with locally greatest variations

of ambient coordinates as our reference key points.

To be specific, for each input frame, we trace the orig-

inal camera rays of all pixels and find the corresponding

surface points. A 3D voxel volume in the canonical space is

then built to record the ambient coordinates of these surface

points. After traversing the whole input sequence, we com-

pute the variance of ambient coordinates for every voxel,

followed by a 3D Gaussian filter. And the center points

of the voxels with local maximum variances after Gaussian

blur will be selected as the reference key points kref . As

tref tref +1tref -1 tref +Mtref -M

tref

Skipping Propagation (Optional)

Figure 5. Propagating the reference key point in the reference

frame to other frames for initialization. Skipping propagation is

only used for some long input sequences.

our 3D version is difficult to visualize, we show a 2D ver-

sion of this process in Fig. 4 by rendering all frames in

a fixed camera view and computing the variance for each

pixel, followed by a 2D Gaussian filter.

Then for each reference key point, we need to select a

reference frame in which the reference key point is on the

object surface. We use a similar formulation with the ge-

ometry loss in (6) to decide this. (Here we omit the index

of key points as they are handled individually.)

‖Φt(kref )−Dt(Πt(kref ))‖2 < δ, (9)

where δ is a pre-defined threshold. The first frame t that

satisfies (9) will be selected as the reference frame tref .

Now for each key point, we have a reference key point

position and a corresponding reference frame. To initial-

ize key point positions in the whole sequence, we propagate

this reference key point to other frames by optical flow from

pre-trained RAFT [38]. The reference key point is first pro-

jected into the input image of the reference frame to get its

2D position, and the 2D position is propagated frame by

frame using optical flow as shown in Fig. 5. Then these 2D

positions are projected back into 3D space by depth maps

from HyperNeRF. Note that there are accumulative errors in

this initialization due to frame-by-frame propagation, while

these errors will be eliminated in our training stage.

For some very long input sequences, we found that the

initialization method above may not perform well. This is

because the accumulative errors may become too large, and

the key points in the image space may be propagated into

other objects (e.g., background). So we propose a skipping

propagation method as shown in Fig. 5. For each key point,

we additionally propagate the reference key point in the ref-

erence frame every M frames (i.e., tref to tref + M , tref
to tref + 2M , and so on), and replace the frame-by-frame

positions if their confidences are greater than a threshold.

This confidence is calculated by the consistency between

the forward optical flow and the backward optical flow:

Conf(t) =
∥∥∥F tref

t (F t
tref

(k̂ref ))− k̂ref

∥∥∥−1

, (10)

where t = tref + iM , i ∈ Z, and the hat of k̂ref indicates

that it is a 2D position in the reference frame.
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Figure 6. Our editing results on various scenes. The first image of each scene also shows the key points (circled in red or green). The car
transformer sequence on the right side is provided by CoNeRF [16]. The last row on the right side is from a synthetic sequence.

3.4. Editing by Key Points

After training, users can easily edit the modeled scenes

by feeding the network with desired key point positions. As

the key points are in the 3D space, our method supports up

to three-dimensional editing for each part. We also provide

a graphical user interface (GUI) in Sec. 4.4.

4. Experiments

We show some results after editing in Fig. 6. Some ef-

fects, like shadow and reflection changes, can also be edited

correctly. And please refer to our accompanying video and

supplementary materials for more results and experiments.

4.1. Implementation Details

We set the weight of motion loss to 10−4, the weight

of geometry loss to 0.5, and the weight of warp regulariza-

tion loss to 0.1. The real data is captured in a resolution of

1280 × 720 and down-sampled to 320 × 180 for network

training. Our network is trained on 4 NVIDIA GeForce

RTX 3090 graphics cards, and takes around 5 hours for

training with 250k iterations. Our code is based on Hy-

perNeRF [28]. And the camera poses of input frames are

solved by COLMAP [31]. More details and discussions of

our method are provided in our supplementary materials.

4.2. Comparisons

Here we compare our method with state-of-the-art meth-

ods HyperNeRF [28] and CoNeRF [16]. HyperNeRF is

capable of topologically varying scene reconstruction but

does not enable scene editing. CoNeRF allows topolog-

ically varying editing but only supports one-dimensional

editing for each dynamic part, and user annotations, includ-

ing masks for every part and their attribute values, are nec-

essary for its pipeline. For example, to train a CoNeRF

network on an opening mouth sequence, users have to se-

lect some input frames, mask the mouth regions in these

frames, and set the corresponding attribute values to 1 when

the mouth is open and −1 when the mouth is closed.

Qualitative results. As our method focuses on editing,

we first evaluate the editing ability of our method. We com-

pare our method with CoNeRF, while HyperNeRF does not

support editing.

We show some editing results of ours and CoNeRF in

Fig. 7. Firstly, as shown in the (a) results, our method based

on 3D key points enables up to three-dimensional editing,

while CoNeRF fails to encode multi-dimensional dynamics

by using one-dimensional attribute values. Secondly, our

training stage is fully automatic without user annotations.

Especially when different parts are close to each other, it be-

comes quite difficult for end-users to provide very accurate

masks at the boundaries, which further leads to artifacts in

CoNeRF as shown in (c) of Fig. 7. In contrast, ours can dis-

tinguish different parts automatically. Besides, our editing

method allows users to drag the key points to their desired

positions, which is more intuitive than inputting attribute

values as in CoNeRF.

Quantitative results on synthetic data. Here we com-

pare our method with HyperNeRF and CoNeRF on syn-

thetic data. We use three data sequences synthesized by

Kubric [11], and each contains 400 frames for training.

Some results on one of these sequences are shown in Fig. 6.

For CoNeRF training, we annotate 5% frames in the train-

ing set using ground truth masks and ground truth attribute

values, which are the same as the experiment settings in

CoNeRF paper [16]. While for our method, we still use

the optical flow from RAFT and depth maps from Hyper-

NeRF. We do not use ground truth optical flow or ground

truth depth maps, keeping these settings the same as for real

data. Both compared methods are implemented by the orig-

inal authors and are trained with the same batch size and
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Ours CoNeRF Ours CoNeRF Ours CoNeRF
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Figure 7. Qualitative comparisons with CoNeRF [16]. Our method does not require user annotations for training and supports multi-

dimensional editing. Note that the rotations in (b) also cannot be represented by the one-dimensional attribute values in CoNeRF.

Reconstruction Editing

Method PSNR ↑ MS-SSIM ↑ LPIPS ↓ PSNR ↑ MS-SSIM ↑ LPIPS ↓
HyperNeRF [28] 42.67 0.9964 0.0823 - - -

CoNeRF [16] 40.40 0.9891 0.0947 39.79 0.9886 0.0949

Ours 44.35 0.9973 0.0808 40.01 0.9956 0.0822

Table 1. Quantitative comparisons of reconstruction and editing qualities on synthetic data. The reconstruction qualities are measured by

the errors in novel-view synthesis. We report PSNR, MS-SSIM [43], and LPIPS [53]. Our method performs the best.

iteration step as ours.

First, we compare the reconstruction qualities of these

methods by rendering the same synthetic scenes in novel

viewpoints and evaluating the novel-view synthesis abili-

ties. As shown in Table 1, our method reaches the best per-

formance. Note that our method even slightly outperforms

HyperNeRF on this task. This is because, in our method,

the frames with similar motions are initialized with similar

key point positions, while HyperNeRF uses random initial-

ization. Thus, it is easier for our network to integrate the

information from the frames with similar motions but in dif-

ferent viewpoints. An experiment on this is further provided

in our supplementary materials.

Next, we compare the editing qualities of our method and

CoNeRF, while HyperNeRF cannot be used for editing. We

derive ground truth key point positions and attribute values

from ground truth motions, then use them to edit the scenes

in our method and CoNeRF, respectively. Errors are com-

puted between the ground truth images and the rendered im-

ages after editing. Our method also outperforms CoNeRF

as shown in Table 1.

Quantitative results on real data. As it is difficult to

obtain novel-view ground truth for real data sequences, we

turn to compare the interpolation qualities on real data. For

a real data sequence with 2N frames, we pick out N frames

with even indices as the training set, and the other N frames

Method PSNR ↑ MS-SSIM ↑ LPIPS ↓
HyperNeRF [28] 30.56 0.9864 0.1281

CoNeRF [16] 30.65 0.9869 0.1307

Ours 30.67 0.9869 0.1314

Table 2. Quantitative comparisons of interpolation qualities on

real data.

with odd indices are used as ground truth for testing. Ta-

ble 2 demonstrates that all the compared methods get simi-

lar quantitative results on this task. Key point positions for

our method, attribute values for CoNeRF, and all the latent

codes are interpolated in this task. In CoNeRF training, we

select 1% frames with extreme attribute values for annota-

tions, as recommended by CoNeRF [16].

Besides, when rendering the same real scene with two

dynamic parts in the same resolution, CoNeRF takes 1.77s,

HyperNeRF takes 0.95s, while ours takes 0.90s. And CoN-

eRF needs to add a new MLP for each dynamic part, which

makes its network not as compact as the other methods.

4.3. Ablation Studies

Our method makes use of 3D key points with the help of

2D optical flow and 1D depth maps. They are first utilized

to initialize key point positions, then to formulate the mo-
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Method PSNR ↑ MS-SSIM ↑ LPIPS ↓
Base (w/o supervision) 24.60 0.8540 0.1680

+ Lmotion 29.79 0.9429 0.1150

+ Lmotion + Lgeo 32.59 0.9670 0.1013

+ Lmotion + Lgeo + init 40.01 0.9956 0.0822

Table 3. Ablation studies. We evaluate the motion loss, the geom-

etry loss, and the initialization stage. Our final method in the last

row performs the best.

Figure 8. Graphical user interface. The left widget shows the ren-

dered image and the corresponding draggable key points. The

right widget allows the user to change the viewpoint. Our GUI

also supports drawing a trail of key points, then rendering a video.

tion loss and the geometry loss. We evaluate the two losses

and the initialization stage in Table 3 by measuring the edit-

ing qualities on synthetic data. The base method does not

use any information from optical flow or depth maps, and

its modeled scene changes randomly according to key point

movements, while our final method in the last row of Table

3 reaches the best performance.

4.4. Applications

Graphical user interface. We implement a graphical

user interface (GUI) for editing and novel-view synthesis,

which is shown in Fig. 8 and in our accompanying video.

Note that end-users actually drag the key points in the 2D

interface, so we provide 1D default depth values for key

points to form 3D positions, and we also allow end-users

to further edit these depth values. The default depth value

for a pixel position is obtained by finding K closest key

point positions in the input sequence after projecting into

the current view and computing their average depth.

Novel scenes generation. Novel scenes that are un-

seen in the training sequence can also be generated by our

method. For example, in the piano toy sequence of Fig. 1,

the input data only contains knocking on each piano key,

while our method can generate sliding on the piano keys by

interpolation. And our method can also combine various

dynamics of different parts to create novel scenes, such as

the dice cups sequence results shown in Fig. 1.

Motion transfer. Once reconstructed, our modeled

scenes can be driven by motions from other sequences. We

Figure 9. Editing results on a challenging scene where the selected

key point is not always visible in the full sequence.

show a phonograph toy driven by a disk in our accompany-

ing video. Optical flow is used to track a manually selected

point on the source video and an affine transformation then

maps the tracked point into our key point space.

4.5. Discussions

We build our framework based on surface key points.

While in some challenging sequences, there may not exist a

proper surface point that is visible in all frames to become

a key point. Our method can still get plausible results on

these sequences, but the consistency of key points is not as

good as in other scenes, as shown in Fig. 9.

Limitations. We assume that the dynamics of a canon-

ical location mainly depend on one key point. If the scene

becomes very complex that does not satisfy this assumption

(e.g., a dancing human), our method may fail. Also, it’s

hard for our method to pick out surface key points for semi-

transparent objects like smoke. Extrapolation cannot be per-

formed well for our method when the key points are dragged

too far away from their positions in the training sequence.

Our method supports multi-dimensional editing, but if the

captured objects only have one-dimensional dynamics (e.g.,

drawer only moves in 1D), our method can only generate

one-dimensional dynamics. Besides, our method cannot

work well when RAFT or HyperNeRF fails.

5. Conclusions
We propose EditableNeRF, editable topologically vary-

ing neural radiance fields that enable end-users to easily

edit dynamic scenes. The key to achieving this is to build

our framework by leveraging weighted key points to model

topologically varying dynamics, which further achieves in-

tuitive multi-dimensional editing. And a scene analysis

method that can measure the dynamics in the scene is also

proposed to detect and further initialize these key points.

Our method is trained fully automatically using a single-

view input sequence and can be easily used by end-users,

bringing new applications for editable photo-realistic novel-

view synthesis.
Acknowledgements. This work was supported by the National

Key R&D Program of China (2018YFA0704000), Beijing Natu-

ral Science Foundation (M22024), the NSFC (No.62021002), and

the Key Research and Development Project of Tibet Autonomous

Region (XZ202101ZY0019G). This work was also supported by

THUIBCS, Tsinghua University, and BLBCI, Beijing Municipal

Education Commission. Feng Xu is the corresponding author.

8324



References
[1] Benjamin Attal, Eliot Laidlaw, Aaron Gokaslan, Changil

Kim, Christian Richardt, James Tompkin, and Matthew

O’Toole. Törf: Time-of-flight radiance fields for dynamic

scene view synthesis. Advances in Neural Information Pro-
cessing Systems, 34:26289–26301, 2021. 2

[2] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T Bar-

ron, Ce Liu, and Hendrik Lensch. Nerd: Neural reflectance

decomposition from image collections. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 12684–12694, 2021. 1, 2

[3] Jianchuan Chen, Ying Zhang, Di Kang, Xuefei Zhe, Lin-

chao Bao, Xu Jia, and Huchuan Lu. Animatable neural

radiance fields from monocular rgb videos. arXiv preprint
arXiv:2106.13629, 2021. 3

[4] Yu Deng, Jiaolong Yang, and Xin Tong. Deformed implicit

field: Modeling 3d shapes with learned dense correspon-

dence. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 10286–10296,

2021. 2

[5] Mingsong Dou, Philip Davidson, Sean Ryan Fanello, Sameh

Khamis, Adarsh Kowdle, Christoph Rhemann, Vladimir

Tankovich, and Shahram Izadi. Motion2fusion: Real-time

volumetric performance capture. ACM Transactions on
Graphics (TOG), 36(6):1–16, 2017. 2

[6] Ruofei Du, Ming Chuang, Wayne Chang, Hugues Hoppe,

and Amitabh Varshney. Montage4d: interactive seamless

fusion of multiview video textures. In Proceedings of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, pages 1–11, 2018. 2

[7] John Flynn, Michael Broxton, Paul Debevec, Matthew Du-

Vall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and

Richard Tucker. Deepview: View synthesis with learned gra-

dient descent. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2367–

2376, 2019. 2

[8] Guy Gafni, Justus Thies, Michael Zollhofer, and Matthias

Nießner. Dynamic neural radiance fields for monocular 4d

facial avatar reconstruction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 8649–8658, 2021. 3

[9] Kyle Gao, Yina Gao, Hongjie He, Denning Lu, Linlin Xu,

and Jonathan Li. Nerf: Neural radiance field in 3d vision,

a comprehensive review. arXiv preprint arXiv:2210.00379,

2022. 1

[10] Philip-William Grassal, Malte Prinzler, Titus Leistner,

Carsten Rother, Matthias Nießner, and Justus Thies. Neural

head avatars from monocular rgb videos. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18653–18664, 2022. 3

[11] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch,

Yilun Du, Daniel Duckworth, David J Fleet, Dan Gnanapra-

gasam, Florian Golemo, Charles Herrmann, et al. Kubric: A

scalable dataset generator. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 3749–3761, 2022. 6

[12] Kaiwen Guo, Feng Xu, Tao Yu, Xiaoyang Liu, Qionghai Dai,

and Yebin Liu. Real-time geometry, albedo, and motion re-

construction using a single rgb-d camera. ACM Transactions
on Graphics (TOG), 36(3):1–13, 2017. 2

[13] Yudong Guo, Keyu Chen, Sen Liang, Yong-Jin Liu, Hujun

Bao, and Juyong Zhang. Ad-nerf: Audio driven neural ra-

diance fields for talking head synthesis. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 5784–5794, 2021. 3

[14] Yang Hong, Bo Peng, Haiyao Xiao, Ligang Liu, and Juy-

ong Zhang. Headnerf: A real-time nerf-based parametric

head model. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 20374–

20384, 2022. 3

[15] Wonbong Jang and Lourdes Agapito. Codenerf: Disentan-

gled neural radiance fields for object categories. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 12949–12958, 2021. 1, 2

[16] Kacper Kania, Kwang Moo Yi, Marek Kowalski, Tomasz
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