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Figure 1. Given sparse-view RGBD input (left), our method reconstructs detailed geometry (middle left), albedo (middle right), and
visibility for realistic 3D human relighting under different illuminations (right).

Abstract

Detailed 3D reconstruction and photo-realistic relight-
ing of digital humans are essential for various applications.
To this end, we propose a novel sparse-view 3d human re-
construction framework that closely incorporates the oc-
cupancy field and albedo field with an additional visibil-
ity field–it not only resolves occlusion ambiguity in multi-
view feature aggregation, but can also be used to evalu-
ate light attenuation for self-shadowed relighting. To en-
hance its training viability and efficiency, we discretize vis-
ibility onto a fixed set of sample directions and supply it
with coupled geometric 3D depth feature and local 2D im-
age feature. We further propose a novel rendering-inspired
loss, namely TransferLoss, to implicitly enforce the align-
ment between visibility and occupancy field, enabling end-
to-end joint training. Results and extensive experiments
demonstrate the effectiveness of the proposed method, as
it surpasses state-of-the-art in terms of reconstruction ac-
curacy while achieving comparably accurate relighting to
ray-traced ground truth.

1. Introduction

3D reconstruction and relighting are of great impor-
tance in human digitization, especially in supporting real-
istic rendering in varying virtual environments, that can be
widely applied in AR/VR [32, 37], holographic communi-

cation [24, 63], movie and gaming industry [7].

Traditional methods often require dense camera setups
using multi-view stereo, non-rigid registration and texture
mapping [9, 13]. To enhance capture realism, researchers
have extended them with additional synchronous variable
illumination systems, which aid photometric stereo for de-
tail reconstruction and material acquisition [12]. However,
these systems are often too complex, expensive and difficult
to maintain, thus preventing widespread applications.

By leveraging deep prior and neural representation, so-
phisticated dense camera setups can be reduced to a sin-
gle camera, leading to blossoms in learning-based human
reconstruction. In particular, encoding human geometry
and appearance as continuous fields using Multi-Layer Per-
ceptron (MLP) has emerged as a promising lead. Starting
from Siclope [36] and PIFu [43], a series of methods [15]
improve the reconstruction performance in speed [11, 25],
quality [44], robustness [65, 66] and light decoupling [1].
However, single-view reconstruction quality is restricted by
its inherent depth ambiguity, thus limiting its application
under view-consistent high-quality requirements.

Therefore, as the trade-off between view coverage and
system accessibility, sparse-view reconstruction has be-
come a research hotpot. The predominant practice is to
project the query point onto each view to interpolate lo-
cal features, which are then aggregated and fed to MLP
for inference [6, 16, 43, 47, 52, 61]. This method suffers
from occlusion ambiguity, where some views may well
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be occluded, and mixing their features with visible ones
causes inefficient feature utilization, thus penalizing the re-
construction quality [43]. A natural solution is to filter fea-
tures based on view visibility. Human templates such as
SMPL [29] can serve as effective guidance [2,40,56,64], but
introduce additional template alignment errors and there-
fore cannot guarantee complete occlusion awareness. Func-
tion4D [61] leverages the truncated Projective Signed Dis-
tance Function (PSDF) for visibility indication, but its level
of details is susceptible to depth noise.

To this end, we directly model a continuous visibility
field, which can be efficiently learned with our proposed
framework and discretization technique using sparse-view
RGB-D input. The visibility field enables efficient visibil-
ity query, which effectively guides multi-view feature ag-
gregation for more accurate occupancy and albedo infer-
ence. Moreover, visibility can also be directly used for
light attenuation evaluation–the key ingredient in achiev-
ing realistic self-shadowing. When supervising jointly with
our novel TransferLoss, the alignment between the visibility
field and occupancy field can be implicitly enforced without
between-field constraints, such as matching visibility with
occupancy ray integral. We train our framework end-to-end
and demonstrate its effectiveness in detailed 3D human re-
construction by quantity and quality comparison with the
state-of-the-art. We directly relight the reconstructed geom-
etry with inferred visibility using diffuse Bidirectional Re-
flectance Distribution Function (BRDF) as in Fig. 1, which
achieves photo-realistic self-shadowing without any post
ray-tracing steps. To conclude, our contributions include:

• An end-to-end framework for sparse-view detailed 3D
human reconstruction that also supports direct self-
shadowed relighting.

• A novel method of visibility field learning, with the
specifically designed TransferLoss significantly im-
proves field alignment.

• A visibility-guided multi-view feature aggregation
strategy that guarantees occlusion awareness.

2. Background and Related Work
Neural human synthesis The literature on human re-

construction is vast and rapidly growing. Here, we only re-
view and contrast with closely related work and refer read-
ers to surveys [55, 59] for comprehensive reviews.

Neural implicit representation encodes geometry as a
function of spatial coordinate using MLP. This representa-
tion is appealing as it is naturally differentiable, has excep-
tional expressiveness yet maintains compact memory foot-
print. The pioneer work follows an encoder-decoder-like
architecture, where the globally encoded feature is applied

to condition spatial coordinates to infer low-level geomet-
ric details [5, 33, 34, 38]. This highly unbalanced infor-
mation flow limits its capability to represent mere simple
shapes [39]. PIFu [43] proposes to replace the global fea-
ture with pixel-aligned local features, which captures con-
volutional inductive bias and achieves highly detailed hu-
man reconstruction. It inspires a variety of works, rang-
ing from quality improvement [44], parametric model ex-
tension [2, 65], animation support [14, 17], light estimation
and relighting [1].

By averaging local features across views, the pixel-
aligned framework can be easily extended to multi-view set-
tings [43]. However, simple averaging diminishes high fre-
quency details, yielding overly smoothed geometry. More-
over, it treats all views as equally visible even for par-
tially occluded regions, resulting in inaccurate and erro-
neous reconstruction. Zhang et al. [64] addresses the occlu-
sion ambiguity by incorporating the attention mechanism,
which weights features by their learned cross-view correla-
tions. Despite its promising performance, self-attention in-
troduces substantial memory and computation overhead. Yu
et al. [61] additionally leverages global depth information,
namely PSDF, to annihilate the ambiguity but is sensitive to
depth noise. In contrast, we use robustly learned visibility
to weight per-view contribution, which handles occlusion
in a physically plausible manner while being more memory
efficient to compute.

Relighting boils down to substituting the incident en-
vironment radiance and re-evaluating the rendering equa-
tion [19]. For a scene of reflectors, the outgoing radiance
reflected at the surface point x in direction ωo can be de-
scribed as:

L(x,ωo) =

∫
Ω+

L(x,ωi)ρ(x,ωi,ωo)V (x,ωi)(n·ωi)dωi

(1)
where n is unit surface normal at x, Ω+ is hemisphere of
possible directions ωi, L(x,ωi) is incident radiance arriv-
ing x along ωi, directly from environment or indirectly re-
flected. ρ is the BRDF that models the surface reflectance.
V is the visibility function that describes whether light x
is attenuated along ωi, As the main contributor to realis-
tic self-shadowing, visibility evaluation requires ray tracing
geometry over all sample directions ωi per fragment [18],
which is expensive and usually omitted [45] or baked offline
using Precomputed Radiance Transfer (PRT) [48]. PRT
rewrites Eq. (1) with the following transfer function

T (x,ωi,ωo) = ρ(x,ωi,ωo)V (x,ωi)(n · ωi) (2)

which is independent of light and can be precomputed and
projected on the Spherical Harmonics (SH) basis as coeffi-
cients [42] ahead of time to save rendering cost.

However, PRT does not ameliorate visibility calculation
complexity and requires recompute after deformation. Its
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Figure 2. Method overview. Given sparse RGB-D frames as input, our framework first infer visibility, which is then applied to guide multi-
view 2D feature aggregation for joint occupancy and albedo inference. Our framework is end-to-end trainable and produces high-fidelity
human reconstruction that supports direct self-shadowed relighting without using any post ray-tracing steps.

limitation has been addressed by several learning-based ap-
proaches [20, 23, 26, 41, 53], which predict transfer coeffi-
cients using deep neural networks. Instead of its SH param-
eterization, we predict raw visibility, as it (1) can be used
for feature aggregation, and (2) is also well defined in free
space that can be learned without surface evaluation.

NeRF [35] models the surface density and employs vol-
ume rendering for high fidelity novel view synthesis. It
has been extended with reflectance [3] and transfer func-
tion [31] to support relighting. Visibility is naturally de-
fined in the density field, but its evaluation requires the in-
tegration of multiple density queries along the ray, which
is equally inefficient and needs to be accelerated, such as
using occlusion map [4] or MLP [50]. Although sharing
similar ends, we achieve this with different means: (1) We
emphasize accuracy by supervising with ground truth and
use the TransferLoss to regularize the field alignment, rather
than attempting to directly align the fields by matching in-
ferred visibility with accumulated transmittance. (2) We ex-
tensively train our model on human scan dataset to ensure
fast inference, rather than fitting it per-scene in order to ren-
der arbitrary within-scene objects.

3. Method

To introduce our method, we first define the visibility
field and its discretization process, which prioritizes effi-
ciency without compromising performance. We then out-
line our framework and visibility learning procedure. Fi-
nally, we showcase its application in sparse-view 3D human
reconstruction, where it guides feature aggregation and en-
ables direct self-shadowed relighting.

3.1. Visibility Field

For any point X ∈ R3, whether it is visible V ∈ {0, 1}
along any view direction ω ∈ R3 of the unit sphere S forms
a continuous field and can be parameterized using MLP:

MLPϕ : (X,ω) → Vϕ ∈ [0, 1], ω ∈ S (3)

where ϕ is the MLP weights. Although Eq. (3) helps mit-
igate the cost of the ray integral, querying visibility over
s directions still requires s calls per point of interest. This
cost is exacerbated in pixel-aligned settings due to excessive
point-wise feature F duplication as illustrated in Fig. 3a
(top), leading to substantially high memory overhead.

We observe that, by uniformly sampling a discrete set of
directions, visibility along any direction can be interpolated
by Eq. (5) (Fig. 3c), with accuracy capped by the sample
size. Thus, the O(s) complexity can be reduced to a single
MLP call plus an additional interpolation cost. To this end,
we propose an alternative definition, by treating visibility
as a function of X conditioned on a fixed set of n sample
directions ω(n) as in Fig. 3a (bottom).

MLPϕ|ω(n) : (X,F ) → Vϕ|ω(n) ∈ [0, 1]n,ω(n) ∈ S (4)

In practice, we interpolate by top k closest cosine distance
with respect to ω(n):

{ω(i)}i=1...k = topk(ω(n) · ω)

V (X,ω) =

k∑
i=1

Vω(i)(X)(ω(i) · ω)∑k
j=1(ω

(j) · ω)

(5)

The simplification in Eq. (4) leads to a surprisingly sim-
ple implementation–visibility prediction can be treated as
n−D binary classification supervised by BCE loss:

LVis = VGT · log Vϕ|ω(n) +(1−VGT) · log(1−Vϕ|ω(n)) (6)
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(a) (b) (c) (d) (e)

Figure 3. (a) Visibility as a continuous function of both point position X and sample direction ω (top) leads to multiple queries and point-
wise feature F duplication. In contrast, by fixing the sampling directions ω(n) (bottom), it only requires a single query. We extensively
analyze our visibility field simplification strategy over 10% of training data and report average accuracy over the sample size n in (b) with
the following procedure: For each sample size decision, we sample 10k query points per model (same sampling distribution as training
data) with visibility evaluated over ω(n), that we apply cosine distance interpolation (c) to infer 10k randomly sampled validation directions
per point. For aggregating multi-view features (d), we apply the same interpolation method as in (c) for each camera view direction to
evaluate visibility along the back projection ray. (e) Directional visibility naturally constraints on the presence of surface.

Figure 4. TransferLoss ablation: From left to right: w/o, w Trans-
ferLoss, ground truth. TransferLoss significantly mitigates render-
ing defects and improves near-surface visibility prediction accu-
racy (27.5% → 88.4% for synthesized testset, 20.8% → 84.7%
for real-captured data).

3.2. Framework Overview

As shown in Fig. 2, our framework represents all fields
using MLPs. Given sparse multi-view RGB-D frames
{(Ii,Di), i = 1 . . .m} with known camera projection ma-
trices πi, we first extract depth point cloud voxelized 3D
feature and pixel-aligned RGB 2D feature to directly pre-
dict visibility. Then we utilize inferred visibility to guide
the aggregation of multi-view 2D feature, which are paired
with 3D feature for joint geometry and albedo inference.

3.3. Hybrid Feature Extraction

Conventionally, evaluating visibility requires tracing ray
along the direction of interest and checking surface hits. In
other words, it requires reasoning about the geometric fea-
ture of surfaces near that direction. Since we model both ge-
ometry (occupancy) and visibility, it is crucial to also bridge
the two fields to incorporate their interconnection.

To this end, we adopt a hybrid feature extraction pro-
cedure, by separating depth from RGB and encoding it as
3D feature. Specifically, we follow [39] to unproject depth
image into pointcloud, voxelize and filter using 3D convo-
lutional as coarse feature volume. For a query point X ,

we acquire its local 3D feature FD by trilinear interpola-
tion based on point coordinates and then share it with both
visibility and occupancy MLPs. Intuitively, the 3D feature
originates from voxelized point cloud, which can be viewed
as noisy samples of the underlying surface (decision bound-
ary of the occupancy field). By applying 3D convolution,
the network reasons the coarse geometric surface feature
over a sufficiently large receptive field, consequently aid-
ing visibility inference. 3D feature is necessary for accurate
visibility prediction as ablated in Fig. 8.

For multi-view RGB frames, we directly filter them us-
ing HRNet [51] to acquire 2D feature maps Fi. The local
2D features are then extracted in the pixel-aligned fashion
as in [43], by projecting the point coordinate X onto each
view as the image coordinate π(X), then bilinearly inter-
polating the corresponding feature maps Fi(π(X)). Com-
pared to feature volume, 2D feature maps have much higher
resolution and thus grant better details.

Follow Eq. (4), we infer Vϕ|ω(n) by providing 3D feature
FD and averaged 2D feature Favg:

MLPϕ|ω(n) : (X, FD, Favg) ∈ [0, 1]n (7)

3.4. Field Alignment Regularization

Given similar formulations, it is natural to train the visi-
bility field and occupancy field together. However, as the
point moves across the surface (occupancy classification
boundary), its visibility changes drastically, ranging from
fully occluded to partially visible. A slight misalignment
between the two fields could cause inner visibility leakage
and introduce conspicuous rendering defects as in Fig. 4.
To enforce their alignment, a common practice is to explic-
itly constrain their correspondence, by matching visibility
with surface queried along the ray [50], but at the expense
of substantially large training overhead.
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(a) (b) (c) (d) (e) (f) (g) ‘ (h) (i)

Figure 5. Qualitative comparisons on THUman2.0 [61]. We show (a) shaded color reference, geometry of (b) MV-PIFu [43], (c) Func-
tion4D [61], (d) MV-PIFuHD [44], (e) ours, (f) our albedo, (g-i) from left to right: our irradiance, our relighting and ground truth.

Since we bridge the two fields with the 3D feature rea-
soning about their correlation, we exploit the constraint of
visibility over occupancy (Fig. 3e) by emphasizing the ac-
curacy of near-surface visibility prediction, so that their
alignment can be implicitly enforced. To this end, we pro-
pose a novel TransferLoss inspired by radiance transfer in
Eq. (2):

LTransfer =
∑
i

|T̂ (X, Vϕ|ω(i))− T (X, VGT)| (8)

It supervises visibility, but (1) prioritizes the normal-
facing directions in contrast to equal weighting in BCE
(Eq. (6)) loss, and (2) follows the same parameterization
for diffuse BRDF evaluation, which intuitively renders the
light-independent part of the scene and perceptually penal-
izes the difference.

Since occupancy and visibility are jointly supervised, we
directly sample query points on the ground truth mesh sur-
face and use their normals to assist Eq. (8) evaluation for

inferred visibility. TransferLoss effectively enforces fields
alignment, resulting in significantly less rendering defects
and higher relighting fidelity as ablated in Sec. 4.3 and
Fig. 4.

3.5. Visibility-Guided Feature Aggregation

For each view, we trace back to its camera center and
evaluate the directional visibility as described in Eq. (5).
We then prioritize visible features over occluded ones using
clamped negative log weighted average:

Fagg =

m∑
i=1

WV
ϕ|ω(n) )Fi(πi(X))

WV
ϕ|ω(n)

(X,ω) = max(− log(1− Vϕ|ω(n)), 100)

(9)

Thus, occupancy and albedo are represented as:

MLPocc : (X, FD, Fagg) → [0, 1]

MLPalbedo : (X, FD, Fagg) → R3
(10)
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3.6. Reconstruction and Relighting

During inference, we first apply visibility-guided aggre-
gation to sample a grid of occupancy for surface mesh ex-
traction [30]. We then pass the mesh vertices to obtain
albedo and visibility using the same technique. Following
Eq. (2), we compute per-vertex transfer coefficients and di-
rectly apply them for rasterized self-shadowed relighting.

4. Experiments
4.1. Experimental Settings

Training details. For training, we collect 400 high-quality
clothed human scans from THUman2.0 [61], rotate each
one around the yaw axis, and apply random shifts to ob-
tain 60 views. For each view, we render 512×512 images
of albedo, color using diffuse BRDF and depth fused with
TOF depth sensors noise [10]. To simulate the incomplete
depth caused by capture insensitivity for materials such as
hair, we use [60] to mask hair out.

For each scanned mesh, we sample total 5k points for
occupancy and visibility, with 4k near surface and 1k uni-
formly within the bounding volume. Near-surface points
are sampled using normal distribution with standard devia-
tion of 0.05, and we ensure that half of them with distances
less than the standard deviation are used for albedo training.
As described in Sec. 3.1 and Fig. 3b, we uniformly sample
64 fixed directions using the Fibonacci lattice and keep it
consistent throughout the experiment. We use Embree [57]
for ground truth visibility evaluation.

In addition to visibility, we supervise per-sample occu-
pancy with BCE loss and albedo with L1 loss. We also ex-
tract patches using depth-guided raymarching [27] and su-
pervise its albedo using VGG perceptual loss.

We set the view number to 4 and train our framework us-
ing Adam [21] optimizer and Cyclic learning rate (lr) sched-
uler [49] over 600 epochs. The lr ranges from 5e−5 to 5e−4
every 5 epochs, with the max lr halved every 100 epochs.
Evaluation details. For evaluation, we prepare 100
training-excluded scans from THUman2.0, and an addi-
tional 100 scans from Twindom [46]. We follow the same
rendering procedure as for training and report metrics av-
eraged over the two sets. We further prepare real-captured
RGB-D video sequences from a synchronized multi-Kinect
capturing system that we leverage RVM [28] for foreground
mask segmentation. For all experiments, we keep the num-
ber of views to 4 except for the view-number ablation.
All meshes are extracted from 5123 voxel using Marching
Cube [30]. The relighting results are rendered using diffuse
BRDF with inferred visibility and SH order of 2.

All experiments run on a PC with an Nvidia GeForce
RTX3090 GPU and an Intel i7-8700k CPU. Our framework
requires 50 ms for 3D and 100 ms for 2D feature extrac-
tion, and 200 ms per 2 million point queries for each of

Methods Metrics
NC ↑ CD (L1) ↓ F-score (0.5%)↑

MV-PIFu [43] 0.912 0.145 0.624
MV-PIFuHD [44] 0.906 0.135 0.690
Function4D [61] 0.893 0.129 0.704

Ours 0.917 0.122 0.736

Table 1. Quantitative comparisons on reconstruction quality.

the 4-layer ResNet MLP decoders. The total reconstruction
process takes approximately 3 seconds. After experiment-
ing with TensorRT conversion, 3D and 2D feature extrac-
tion can be reduced to 10 and 7 ms, respectively. Since they
can be performed in parallel, our framework has the poten-
tial to achieve real-time performance under heavy decoder
optimization.
Metrics. We report normal consistency (NC) [33], L1

Chamfer Distance (CD L1) [8] and F-score [22] for geo-
metric quality evaluation. Specifically, NC is calculated as
the mean absolute dot product of normals of points sam-
pled from reconstructed mesh and their closest neighbours’
ones on ground truth mesh. We follow [33] to use 1/10 of
the maximum bounding box edge as unit 1 for CD L1 and
0.5% as the F-score distance threshold as suggested by [54].

To evaluate the quality of relighting, we adopt the peak
signal-to-noise ratio (PSNR), the structural similarity in-
dex measure (SSIM) [58] and the learned perceptual image
patch similarity (LPIPS) [62]. We mask out renderings with
ground truth alpha channel and only report the average con-
tributions of valid pixels.

4.2. Comparisons

Reconstruction. We compare our framework with the
state-of-the-art prior-free sparse-view reconstruction ap-
proaches, namely multi-view PIFu (MV-PIFu) [43], multi-
view PIFuHD (MV-PIFuHD) [44] and Function4D [61].
MV-PIFu takes RGB inputs and aggregates using averag-
ing, which we adapt with additional depth input to en-
sure comparison consistency. PIFuHD integrates normal
information, coarse-to-fine two-stage inference, and higher
1024 × 1024 resolution input. We self-implement multi-
view RGB-D variants (MV-PIFuHD) with the same averag-
ing aggregation as MV-PIFu. Normal maps are still inferred
rather than being computed from depth maps due to noise
concern. Function4D uses averaging in geometry inference
as well, but its integration of the truncated PSDF serves as a
strong signal to identify visible features and has been shown
to generalize well on real captured data. For a fair com-
parison, we re-render and train all three approaches on our
dataset until converge. Regrettably, we could only compare
the geometry, since none of them estimates surface albedo.
Relighting. Limited by the dataset, which maps human into
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 6. Qualitative comparisons on Twindom. From left to right: (a) shaded color reference, geometry of (b) MV-PIFu [43], (c)
Function4D [61], (d) MV-PIFuHD [44], (e) ours, (f) our albedo, (g-i) from left to right: our irradiance, our relighting and ground truth.

Figure 7. Visualization comparison between Function4D [61]
(green) and our method (red) on data captured by Kinect.

single albedo texture without differentiating specular com-
ponents and coefficients, we were only able to render using
diffuse BRDF. This also limits our relighting comparison
with NeRF-like method [3,4,50], where the view-dependent
specular term is explicitly modeled and is crucial for ren-
dering fidelity. Therefore, we directly compare our results
to ray-traced ground truth to demonstrate our relighting per-

(a) (b)

Figure 8. 3D Feature ablation. (a) We compare the visibility error
maps using 2D RGB input (left half of first two), 2D RGB-D input
(left half of last two) and ours (right half of all four). (b) We count
per-vertex number of wrong directional visibility predictions (out
of 64) and plot the normalized histogram.

formance.
Qualitative Comparison. Fig. 5 shows the reconstruction
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Table 2. Feature aggregation ablation.

Method Geometry Metric Relit Rendering
NC↑ CD (L1)↓ F-score (0.5%)↑ PSNR↑ SSIM↑ LPIPS↓

Average 0.911 0.129 0.696 17.933 0.650 0.327
Attention 0.909 0.127 0.710 19.148 0.713 0.259

Ours 0.917 0.122 0.736 23.436 0.809 0.196

Figure 9. Feature aggregation ablation in geometry. From left to
right: color reference, the results of average, attention and ours.

Figure 10. Feature aggregation ablation in rendering quality. From
left to right: average, attention, and ours and ground truth.

on the synthetic datasets. Benefiting from visibility-guided
feature aggregation, our method produces at least compa-
rable details to MV-PIFuHD, but with simpler architecture,
less input information and visual cues. Compared to over-
smoothed geometry from Function4D, our hybrid features
relax the dominant contribution of noisy depth input, lead-
ing to improved facial details. We further demonstrate our
generalizability on real captured data in comparison with
Function4D. As shown in Fig. 7, our method evidently pro-
duces more complete and detailed reconstructions, espe-
cially in regions of the eyes, glasses and hair.
Quantitative Comparison summarized in Tab. 1 is consis-
tent with qualitative analysis, and our method outperforms
others in all metrics.

4.3. Ablation Study

3D Feature. We ablate our hybrid feature with 2D RGB and
2D RGB-D variants. The results validate the necessity of
the 3D feature, as it predicts visibility with higher accuracy
(Fig. 8a) and lower error variance (Fig. 8b).
Visibility-guided Feature Aggregation. In comparison
with other aggregation techniques, namely averaging [43]
and self-attention [61], we implement them in our frame-
work. Our strategy surpasses others in metrics (Tab. 2) and
achieves sharper geometric details (Fig. 9), better rendering
fidelity (Fig. 10), even near heavily folded clothing thanks
to our occlusion-aware aggregation.
View number. Though we train our model with 4 views, it
generalizes well across different view numbers and achieves

Figure 11. View number ablation.

similar performance under sufficient view coverage as ab-
lated in Fig. 11. As view number increases, compared to
degraded reconstruction quality from average and attention,
our aggregation technique mitigates visibility ambiguity to
leverage additional visual cues, resulting in better geometry.
TransferLoss. Finally, we verify the effectiveness of our
proposed TransferLoss in Fig. 4. It enforces the alignment
of the fields and significantly alleviates rendering defects.

5. Conclusion

Limitations. Our method cannot achieve real-time perfor-
mance for interactive applications. We leave its acceleration
using TensorRT and CUDA for future work. Moreover, our
framework relies on depth input for accurate visibility pre-
diction, it would be interesting to see if it can be extended
to simpler RGB setup.
Conclusion. In this work, we integrate visibility into
sparse-view reconstruction framework by exploiting its ef-
fective guidance in multi-view feature aggregation and di-
rect support for self-shadowed relighting. Our discretiza-
tion strategy and novel TransferLoss enable visibility to be
learned jointly alongside occupancy in an end-to-end man-
ner. Our paper demonstrates the effectiveness of visibility
in simultaneous reconstruction and relighting and provides
a good baseline for future work.
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