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Abstract

Realistic face rendering from multi-view images is bene-
ficial to various computer vision and graphics applications.
Due to complex spatially-varying reflectance properties and
geometry characteristics of faces, however, it remains chal-
lenging to recover 3D facial representations both faithfully
and efficiently in the current studies. This paper presents a
novel 3D face rendering model, namely NeuFace, to learn
accurate and physically-meaningful underlying 3D repre-
sentations by neural rendering techniques. It naturally in-
corporates the neural BRDFs into physically based render-
ing, capturing sophisticated facial geometry and appear-
ance clues in a collaborative manner. Specifically, we intro-
duce an approximated BRDF integration and a simple yet
new low-rank prior, which effectively lower the ambiguities
and boost the performance of the facial BRDFs. Extensive
experiments are performed to demonstrate the superiority
of NeuFace in human face rendering, along with a decent
generalization ability to common objects. Code is released
at NeuFace.

1. Introduction
Rendering realistic human faces with controllable view-

points and lighting is now becoming ever increasingly im-
portant with its applications ranging from game production,
movie industry, to immersive experiences in the Metaverse.
Various factors, including the sophisticated geometrical dif-
ferences among individuals, the person-specific appearance
idiosyncrasies, along with the spatially-varying reflectance
properties of skins, collectively make faithful face rendering
a rather difficult problem.

According to photogrammetry, the pioneering studies on
this issue generally leverage complex active lighting setups,
e.g., LightStage [8], to build 3D face models from multiple
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Figure 1. Demonstration of the face rendering results and recov-
ered underlying 3D representations.

photos of an individual, where accurate shape attributes and
high-quality diffuse and specular reflectance properties are
commonly acknowledged as the premises of its success. An
elaborately designed workflow is required, typically involv-
ing a series of stages such as camera calibration, dynamic
data acquisition, multi-view stereo, material estimation, and
texture parameterization [42]. While a compelling and con-
vincing 3D face model can be finally obtained, this output
highly depends on the expertise of the engineers and artists
with significant manual efforts, as the multi-step process in-
evitably brings diverse optimization goals.

Recently, 3D neural rendering, which offers an end-to-
end alternative, has demonstrated promising performance in
recovering scene properties from real-world imageries, such
as view-dependent radiance [26, 28, 36, 38, 47] and geome-
try [33, 48, 49, 54, 55]. It’s mainly credited to the disentan-
glement of the learnable 3D representations and the differ-
entiable image formation process, free of the tedious pho-
togrammetry pipeline. However, like classical function fit-
ting, inverse rendering is fundamentally under-constrained,
which may incur badly-conditioned fits of the underly-
ing 3D representations, especially for intricate cases, e.g.,
non-Lambertian surfaces with view-dependent highlights.
With the trend in the combination of computer graphics
and learning techniques, several attempts take advantage
of physically motivated inductive biases and present Phys-
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ically Based Rendering (PBR) [14, 31, 47, 56], where Bidi-
rectional Reflectance Distribution Functions (BRDFs) are
widely adopted. By explicitly mimicking the interaction
of the environment light with the scene, they facilitate net-
work optimization and deliver substantial gains. Unfortu-
nately, the exploited physical priors are either heuristic or
analytic [7, 20, 44], limited to a small set of real-world ma-
terials, e.g., metal, incapable of describing human faces.

For realistic face rendering, the most fundamental issue
lies in accurately modeling the optical properties of multi-
layered facial skin [21]. In particular, the unevenly dis-
tributed fine-scale oily layers and epidermis reflect the inci-
dent lights irregularly, leading to complex view-dependent
and spatially-varying highlights. This characteristic and the
low-textured nature of facial surfaces strongly amplify the
shape-appearance ambiguity. Moreover, subsurface scatter-
ing between the underlying dermis and other skin layers fur-
ther complicates this problem.

In this paper, we follow the PBR paradigm for its poten-
tial in learning 3D representations and make the first step
towards realistic 3D neural face rendering, mainly target-
ing complex skin reflection modeling. Our method, namely
NeuFace, is able to recover faithful facial reflectance and
geometry from only multi-view images. Concretely, we es-
tablish a PBR framework to learn neural BRDFs to describe
facial skin, which simulates physically-correct light trans-
port with a much higher representation capability. By using
a differentiable Signed Distance Function (SDF) based rep-
resentation, i.e., ImFace [61], as the shape prior, the facial
appearance and geometry field can be synchronously opti-
mized in inverse rendering.

Compared to the analytic BRDFs, the neural ones allow
richer representations for sophisticated material like facial
skin. In spite of this superiority, such representations pose
challenges to computational cost and data demand during
training. To tackle these difficulties, the techniques in real-
time rendering [1] are adapted to separate the hemisphere
integral of neural BRDFs, where the material and light in-
tegrals are individually learned instead, bypassing the mas-
sive Monte-Carlo sampling phase [34] required by numer-
ical solutions. Furthermore, a low-rank prior is introduced
into the spatially-varying facial BRDFs, which greatly re-
stricts the solution space thereby diminishing the need for
large-scale training observations. These model designs in-
deed enable NeuFace to accurately and stably describe how
the light interacts with the facial surface as in the real 3D
space. Fig. 1 displays an example.

The main contributions of this study include: 1) A novel
framework with naturally-bonded PBR as well as neural
BRDF representations, which collaboratively captures fa-
cial geometry and appearance properties in complicated fa-
cial skin. 2) A new and simple low-rank prior, which sig-
nificantly facilitates the learning of neural BRDFs and im-

proves the appearance recovering performance. 3) Impres-
sive face rendering results from only multi-view images,
applicable to various applications such as relighting, along
with a decent generalization ability to common objects.

2. Related Work
We restrict the discussion specifically to static facial ge-

ometry and appearance capturing and 3D neural rendering.
Please refer to [9, 21, 43] for more in-depth discussion.

Face Capturing. Its goal is to render a realistic 3D face
under arbitrary lighting condition. Existing methods gener-
ally take advantage of photogrammetry techniques to esti-
mate facial geometries and appearances, requiring massive
manual efforts. In this case, they typically decompose the
problem where facial geometry is pre-captured by an intri-
cate multi-view stereo process [3, 4]. However, facial ap-
pearances with reflectances are still hard to acquire due to
complex interactions between light and skin. The initial at-
tempts [8, 16, 51] tackle the challenge by densely capturing
the per-pixel facial reflectance at the cost of extensive data
acquisition and specialized equipment. Subsequently, gra-
dient [11,19,25] or polarized illumination [11,12,25,39] is
explored to reduce the memory cost, where most efforts are
paid to the well-conditioned fitting of BRDFs. In contrast to
the studies above, our solution is truly end-to-end and only
observes facial skin under a single, unknown illumination
condition, without cumbersome capturing settings.

3D Neural Rendering. The recent advance in this field,
like NeRF [29], have already revolutionized the paradigm
of multi-view reconstruction. With learnable volumetric
representations (e.g. neural field [29, 55], grid [10], and
hybrid [30]) and analytic differentiable forward mapping,
scene properties can be directly inferred from only 2D
imageries. While reporting impressive results on novel
view synthesis [26, 28, 36, 38, 47] or geometry reconstruc-
tion [33, 48, 49, 54, 55], those studies still suffer from 2D-
3D ambiguities, leading to that realistic appearances and
accurate geometries can hardly be established simultane-
ously [57]. Such an issue is more prominent for facial skin
due to the rather complicated reflection properties. Ref-
NeRF [47] makes a step forward to the goal of both accurate
surface normals and glossy appearances, which is achieved
by reparameterizing the radiance in classical NeRF with re-
flection direction. It validates the significance of physical
laws in disambiguity. [14, 22, 31, 41, 56] go further with
PBR pipelines, delivering improved quality and supporting
relighting simultaneously. Nevertheless, simplified material
models are utilized or assumed, which are incapable of han-
dling complex materials like skin. [24, 59, 60] train a neu-
ral material model from measurement data. But acquiring
such data is impractical for live biotissue. By contrast, our
method directly builds neural skin BRDFs and reconstructs
accurate geometrical clues without any external data.
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Figure 2. Method overview. NeuFace is composed of an appearance module implemented by Spatial MLP and Integrated Basis MLP, a
geometry module achieved by SDF MLP, a physically-based forward rendering, and a neural photometric calibration module. In forward
rendering, the complex appearance reflectance properties are explicitly decomposed to (a) diffuse albedo, (b) light integral, and (c) BRDFs
integral. Closed-form solutions are provided for the first two terms under learnable Spherical Harmonics (SH) lighting. For the BRDFs
integral term, a low-rank prior is introduced to learn a set of neural bases which describe the complex material characteristics of facial skin.

3. Preliminaries
We resort to PBR [18] to explicitly predict complex skin

reflectances, where outgoing radiance Lo at surface position
x along direction ωo can be expressed as:

Lo(x, ωo) =

∫
S2

Li(ωi)f(x, ωi, ωo)(ωi · n)+dωi, (1)

where Lo is calculated by an integral of the product of inci-
dent radiance Li from direction ωi, skin BRDF f , and half-
cosine function (ωi · n)+ between surface normal n and ωi

over sphere S2. Single-bounce direct illumination without
shadows is assumed, and Li is thus independent to x. Be-
sides, as a pixel-level subsurface scattering is assumed, Lo

is only considered within a single, small region.
Spherical Harmonics (SH) [6] and Spherical Gaussians

(SG) [56] are commonly exploited as efficient representa-
tions of incident illumination. SH is selected in this study
for its completeness and compactness. More importantly, it
can implicitly facilitate specular separation with lower or-
ders [45]. Accordingly, unknown Li can be approximated
by spherical basis functions Yℓm of the first ten orders mul-
tiplied by corresponding learnable coefficients cℓm:

Li(ωi) ≈
10∑

ℓ=0

ℓ∑
m=−ℓ

cℓmYℓm(ωi). (2)

f is modeled as two components, akin to prior art [13, 39]:

f (x, ωi, ωo) =
a(x)

π
+ ϱfs (x, ωi, ωo) , (3)

where the left term is a diffuse component (Lambertian)
that is only determined by albedo a(x), with the residual
term mainly accounting for the glossy reflection, which is
represented by fs (x, ωi, ωo) with a scale factor ϱ indicating

the specular intensity. Consequently, the rendering equation
(Eq. (1)) can be split into two terms:

Lo(x, ωo) =
a(x)

π

∫
S2

Li(ωi)(ωi · n)+dωi︸ ︷︷ ︸
diffuse term Ld

+ ϱ

∫
S2

Li(ωi)fs(x, ωi, ωo)(ωi · n)+dωi︸ ︷︷ ︸
residual (specular) term Ls

.

(4)

4. Method
We incorporate neural BRDFs into PBR to collabora-

tively learn complex appearance properties (i.e., diffuse and
specular albedo) and sophisticated geometry attributes. The
proposed NeuFace performs 3D face capturing from multi-
view images, which only requires additional camera poses.
As Fig. 2 illustrates, it exploits a Spatial MLP and an Inte-
grated Basis MLP to learn the skin BRDFs and simulates
the physically-correct light transport by explicitly decom-
posing it into diffuse albedo, light integral, and BRDFs in-
tegral. Facial appearance modeling can be formulated by
Eq. (4), where we make great efforts to tackle the challenges
caused by high computational cost and data demand during
the learning procedure. For more accurate estimation, Neu-
Face further makes use of an SDF-based representation, i.e.,
ImFace [61], as the facial geometry prior in forward map-
ping. The facial appearance and geometry field are jointly
recovered by an end-to-end inverse rendering.

4.1. Specular Modeling

The specular term i.e. Ls with BRDF fs(x, ωi, ωo) is in-
tractable to solve due to the view-dependent characteristic
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of ωo. In prior studies dealing with non-face neural render-
ing, the analytic BRDFs, e.g. microfacet models [31,40,56],
have been explored for an approximated integral. Neverthe-
less, these explicit models can only recover a small set of
materials while excluding facial skin which exhibits quite
unique properties [32]. For a stronger representation abil-
ity, NeRFactor [59] employs the data-driven BRDFs learned
from the real-world captured MERL database [27], but the
live tissues like facial skin with spatially-varying BRDFs
are extremely difficult to measure in vivo [15]. Moreover,
heavy Monte Carlo sampling has to be performed in NeR-
Factor to solve the rendering equation, which is not practi-
cal in our case as the facial geometry is originally unknown.

In this study, we propose an alternative to render compli-
cated facial highlights without external data and numerical
integration. In particular, inspired by the split-integral ap-
proximation in real-time rendering [1], the specular is de-
composed, where Ls can be approximated by:

Ls≈ϱ

∫
s2
fs (x, ωi, ωo) (ωi ·n)+dωi

∫
s2
D(h)Li (ωi) dωi, (5)

where D(h) is a distribution function suggesting how light
bounces at the half vector h= ωi+ωo

∥ωi+ωo∥2
. The entire equa-

tion is flanked by the integral terms of material and light, re-
spectively, which are solved individually in the subsequent.

Material Integral. The first split integral term in Eq. (5)
is only related to the material property, which is parameter-
ized by a learnable network in our method for a higher rep-
resentation capacity to facial skin. Considering that the 2D
observations can only constrain the integrated values, rather
than modeling fs (x, ωi, ωo) as in [59, 60], we directly for-
mulate the entire integral as a smoother function F :∫

s2
fs (x, ωi, ωo) (ωi · n)+dωi = F (x, ωo,n). (6)

It should be noted that an enormous number of ground-
truth samples are needed to achieve robust fitting with MLP
for such a spatially-varying 9-variable function, which is
not available in practice. Based on the previous studies on
face appearance measurements [12, 51], we put forward a
key assumption that all the facial surface positions of an in-
dividual share a similar specular structure, and the spatially-
varying properties can thus be represented by diverse linear
combinations of only a few (low-rank) learnable BRDFs:

fs (x, ωi, ωo) ≈
k∑

j=1

cj(x)bj(ωi, ωo), (7)

where {bj(ωi, ωo)}kj=1 denotes k global space-independent
BRDF bases, and c(x) = [c1(x), c2(x), ..., ck(x)]

T means
the corresponding linear coefficients for each surface posi-
tion x. As such, the material integral can be formulated as:∫

s2
fs (x, ωi, ωo) (ωi · n)+dωi = c(x) ·B(ωo,n), (8)

where B(ωo,n) = [B1, B2, ..., Bk]
T indicates k integrated

BRDF basis bj multiplied by half-cosine function (ωi ·n)+:

Bj(ωo,n) =

∫
s2
bj (ωi, ωo) (ωi · n)+dωi, j = 1, 2, ..., k. (9)

We leverage an MLP, namely Integrated Basis MLP, to
fit B(ωo,n). ωo ·n is also fed into it to account for the Fres-
nel effects. Meanwhile, coefficient vector c(x) is predicted
by a Spatial MLP with x as input. Note that facial skin is di-
electric and cannot color the highlight; we thus use a single
channel Bj to represent the monochromatic facial BRDFs.

As depicted in Fig. 2 (c), the low-rank prior globally re-
stricts the solution space for all facial specularities without
enforcing any spatial smoothness [53] or clustering of sam-
pling positions [31]. With such a prior, the material integral
term is much easier to fit and interpolate, producing impres-
sive results with moderate training data.

Light Integral. For glossy surfaces, the reflected energy
is mostly concentrated near the reflection direction, denoted
by ωr, as illustrated in Fig. 2 (b). Accordingly, we model
D(h) with a 3-dimensional normalized Spherical Gaussian
distribution (vMF), centered at ωr with a concentration pa-
rameter κ indicating the shininess:

D(h) ≈ vMF(ωi;ωr, κ). (10)

κ is predicted by Spatial MLP, and a larger value suggests
a sharper underlying BRDF lobe pointing to ωr, making
facial skin look shinier. As the proof in our Supplementary
Material shows, the second split integral in Eq. (5) which
describes specular light transport can be approximated by:∫

s2
D(h)Li (ωi) dωi ≈

∑
ℓ=0

ℓ∑
m=−ℓ

e−
ℓ(ℓ+1)

2κ cℓmYℓm(ωr). (11)

The entire specular term in the neural BRDFs (Eq. (4))
can then be efficiently and differentiably computed as:

Ls≈ϱ (c(x) ·B(ωo,n))
∑
ℓ=0

ℓ∑
m=−ℓ

e−
ℓ(ℓ+1)

2κ cℓmYℓm(ωr). (12)

4.2. Diffuse Modeling

qrefshl, thediffuseradianceLd at a surface position x
can be rewritten as: Based on Eq. (2), diffuse radiance Ld

at surface position x can be rewritten as:

Ld(x) =
a(x)

π

∑
ℓ=0

ℓ∑
m=−ℓ

cℓm

∫
s2
Yℓm (ωi) (ωi · n)+ dωi. (13)

Following the Funk-Hecke theorem [2], the convolution
of (ωi · n)+ with spherical harmonics Yℓm can be analyti-
cally calculated by:∫

s2
Yℓm (ωi) (ωi · n)+ dωi ≈ ΛℓmYℓm(n), (14)

where
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Λℓm =


2π
3
, if ℓ = 1,
(−1)ℓ/2+1π

2ℓ−1(ℓ−1)(ℓ+2)

(
ℓ

ℓ/2

)
, if ℓ is even ,

0, if ℓ is odd .

(15)

Refer to [2] for details. In NeuFace, diffuse albedo a(x) is
modeled by Spatial MLP. With learnable coefficients clm of
SH lighting, the diffuse term can be directly computed as:

Ld(x) ≈
a(x)

π

∑
ℓ=0

ℓ∑
m=−ℓ

ΛℓmcℓmYℓm (n) . (16)

In summary, the appearance component of NeuFace is
composed of a Spatial MLP: x 7→ (ϱ, c, κ,a), an Integrated
Basis MLP: (ωo,n, ωo ·n) 7→ B, and the learnable environ-
ment light coefficients i.e. cℓm. Radiance Lo can finally be
estimated through Eq. (12) and Eq. (16).

4.3. Geometry Modeling

To achieve end-to-end training, a differentiable geometry
representation is essential. Similar to most neural rendering
practices [48,54–56], a neural SDF can be used to implicitly
define the facial geometry. Here, we leverage ImFace [61]
as a direct facial SDF prior to facilitate sampling and train-
ing. To capture the geometries outside the prior distribution,
we fine-tune ImFace I : x 7→ SDF and introduce a neural
displacement field D(x) to correct the final results:

SDF(x) = I(x) +D(x). (17)

Based on the property of SDF, surface normal n can be
extracted by auto-gradient: n = ∇SDF(x).

4.4. Sampling and Rendering

In order to cope with multi-layered facial skin, we volu-
metrically render the radiance value as in VolSDF [54]. For
a ray x(t) emanated from a camera position o ∈ R3 in di-
rection ωo, defined by x(t) = o + tωo, t > 0, the density
function is defined as σ(t) = β−1Ψβ(−SDF(x(t))). Ψβ

is the cumulative distribution function of the Laplace distri-
bution with zero mean and learned scale parameters β. As
such, the integrated radiance for each ray is evaluated by:

I(o, ωo) =

∫ tb

ta

Lo(x(t), ωo)σ(t)T (t)dt, (18)

where T (t) = exp(−
∫ t

0
σ(s)ds) is the transparency.

For rendering acceleration, instead of densely sampling
points along the ray as in [54], we first perform aggressive
sphere tracing [23] to quickly find position t0 near the sur-
face (with a 0.05mm threshold), and 32 points are then uni-
formly sampled from t ∈ [ta, tb], where ta = t0 − 0.5mm,
tb = t0 + 0.5mm. As Fig. 3 shows, for the rays that do not
hit the surface, we sparsely sample points within sphere Ω
defined by the geometry prior from ImFace [61] and calcu-
late the accumulation, bypassing the mask loss [55] which
requires heavy sampling. By combining volume and surface
rendering, it makes a good trade-off balancing the rendering
quality, geometry precision, and sampling efficiency.

Neural Photometric Calibration. To auto-calibrate the
inconsistent color response and white balance among cam-
eras, we apply per-image linear mapping matrices An ∈
R3×3 to the rendered radiance values:

In = AnI, (19)

where An is predicted by a lightweight MLP conditioned
on learnable per-image embedding.

4.5. Loss Functions

NeuFace is trained with a compound critic to learn accu-
rate appearance and geometry properties:

L=LRGB + Lwhite + Lspec + Lgeo. (20)

Let Pn be the pixels of the n-th multi-view image, Īn.
Each term of L is described as follows, where λ denotes the
trade-off hyper-parameter.
Reconstruction Loss. It is used to supervise the rendered
2D faces being close to the real observations:

LRGB=λ1

∑
n

∑
ωo∈Pn

|In − Īn|. (21)

Light Regularization. We assume a nearly white environ-
ment light in capturing, achieved by:

Lwhite=λ2

∑
n

∑
ωo∈Pn

|Li − L̄i|, (22)

where L̄i is calculated by averaging RGB channels.
Facial Specular Regularization. Only a small ratio of the
incident light on facial surfaces (roughly 6% [46]) reflects
directly, and we thus penalize the specular energy by:

Lspec=λ3

∑
n

∑
ωo∈Pn

Ls. (23)

Geometry Losses. Following [61], the embedding regu-
larization, Eikonal regularization, and a new residual con-
straint are exploited for accurate geometry modeling:

Lgeo=λ4∥z∥2+λ5

∑
x∈Ω

|∥∇SDF(x)∥−1|+λ6

∑
x∈Ω

|D(x)|. (24)

where z represents the embeddings of ImFace [61].
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Figure 4. Comparison of novel view synthesis with Ref-NeRF [47], PhySG [56], VolSDF [54] and DIFFREC [31]. Zoom in for a better
view. NeuFace captures faces with much richer skin details and high-fidelity highlights.

w/ our calibration F. S.N. ↓
Subject 1 (Rich Reflection) Subject 2 (Moderate Reflection) Subject 3 (Low Reflection)

PSNR ↑ SSIM ↑ LPIPS ↓ Chamfer ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Chamfer ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Chamfer ↓

NeRF [29] ✗ 256 13.98 0.712 .1378 3.666 13.67 0.724 .1493 1.910 - - - -
Ref-NeRF [47] ✗ 256 19.83 0.845 .1134 2.042 20.01 0.846 .1410 1.782 17.33 0.820 .1381 3.682
VolSDF [54] ✗ 610 29.03 0.941 .0502 0.516 28.40 0.937 .0730 0.589 26.74 0.926 .0580 0.626
PhySG [56] ✔ 40.2 27.77 0.928 .0611 0.864 26.36 0.913 .0864 0.977 23.07 0.902 .0735 1.776
DIFFREC* [31] ✔ 39.5 27.72 0.942 .0244 0.546 27.61 0.934 .0353 0.606 27.02 0.930 .0372 0.727
NeuFace ✔ 35.8 31.25 0.958 .0237 0.447 31.87 0.961 .0314 0.481 30.92 0.953 .0240 0.533

‘F.’ refers to factorization. ‘S.N.’ refers to the number of sampled points per ray. DIFFREC* is implemented with neural surface. NeRF fails to converge on Subject 3.

Table 1. Quantitative comparison with NeRF [29], Ref-NeRF [47], VolSDF [54], PhySG [56], and DIFFREC [31]. NeuFace outperforms
the counterparts by a large margin in both appearance and geometry metrics. Red, orange, and yellow: the best, second-best, and third-best.

5. Experiments

We extensively conduct experiments for both subjective
and objective evaluation and compare our NeuFace with the
state-of-the-art neural rendering methods. Ablation studies
are performed to validate the specifically designed modules.
For more implementation details on the network architec-
ture and training procedure, please refer to the Supplement.
FaceScape [52] is adopted, and it is a large-scale 3D face
dataset including high-quality multi-view images of 4K res-
olution, which is collected from 359 real subjects with 20
expressions. During capturing, around 58 cameras with dif-
ferent types and settings are equally distributed on a spher-
ical structure with uniform illumination. We use the autho-
rized data from 3 individuals for model evaluation, with 43

Shading Model PSNR ↑ SSIM ↑ LPIPS ↓ Chamfer ↓
SH+Phong Model 29.31 0.951 .0300 0.556
Cubemap+Disney BRDF 30.45 0.954 .0242 0.524
Cubemap+Neural Bases 30.82 0.958 .0256 0.426
SH+Neural Bases (Ours) 31.25 0.958 .0237 0.447

Table 2. Quantitative ablation study on the shading model.

images for training and 11 images for testing. The images
are downsampled to 1K resolution.

5.1. Comparison

To validate the ability of NeuFace for simultaneous ap-
pearance and geometry capturing, we compare it with the
state-of-the-art approaches to view synthesis [29,47], geom-
etry reconstruction [54] and appearance factorization [31,
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Figure 5. Comparison of geometry reconstruction to PhySG [56],
VolSDF [54], and DIFFREC [31]. NeuFace achieves lower errors.
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Figure 6. Comparison with the Phong [35] and Disney BRDFs [5].

Designs PSNR ↑ SSIM ↑ LPIPS ↓ Chamfer ↓
w/o low rank (directly fitting) 29.45 0.950 .0304 0.553
w/o low rank (256-D feature) 29.43 0.951 .0302 0.544
w/o calibration 24.04 0.943 .0284 0.451
w/o geometry prior 28.11 0.942 .0452 0.647
w/o specular loss 31.03 0.957 .0248 0.453
NeuFace 31.25 0.958 .0237 0.447

Table 3. Quantitative ablation study on the low-rank prior, neural
calibration, geometry prior, and specular loss.

56]. Considering that neural rendering is extremely sensi-
tive to camera inconsistency, we apply the proposed neural
photometric calibration to all the counterparts for fair com-
parison. Because DIFFREC [31] fails to reconstruct all the
faces with explicit tetrahedral grids, we implement a more
stable neural surface version instead. PSNR, SSIM [50] and
LPIPS [58] are used as the metrics to evaluate the view syn-
thesis quality, and the Chamfer distance to the ground-truth
3D model is used to measure the geometry accuracy.

Novel View Synthesis. Fig. 4 displays the results. It can
be seen that as a recent advanced view-synthesis method,
Ref-NeRF [47] fails to recover facial appearances, mainly
due to the strong shape-appearance ambiguity on faces. De-
signed for geometry reconstruction, VolSDF [54] sacrifices
the appearance quality, resulting in blurred face renderings.
PhySG [56] and DIFFREC [31] are also physically-based
neural rendering methods as ours, which aim at end-to-end
appearance and geometry recovery. However, limited by the
inadequate capacity of the analytic BRDFs, they can only
recover rough facial appearances with obvious artifacts. By
contrast, NeuFace achieves realistic face appearances with
much richer skin details and high-fidelity highlights, e.g.,

the areas around lips, glabellar, and nose. The quantitative
results in Tab. 1 confirm its effectiveness, which are evalu-
ated on smile subjects 1, neutral subjects 2 and 3.

Geometry Reconstruction. Fig. 5 makes comparison
of geometry reconstruction with PhySG [56], VolSDF [54],
DIFFREC [31], and ground-truth, measured by color-coded
distance. NeuFace reports the lowest errors and even out-
performs the geometry-oriented method, i.e., VolSDF, sug-
gesting that our PBR framework benefits not only facial ap-
pearances but also facial shapes. The quantitative results in
Tab. 1 further validate this claim.

Tab. 1 demonstrates the efficiency of our rendering strat-
egy (Section 4.4) in terms of average sampling number per
ray. Our method requires fewer sampling points than gen-
eral volume rendering and is on par with surface rendering,
which needs additional sampling to minimize mask loss.

5.2. Ablation Study

The following experiments are performed on Subject 1
as the face images exhibit more complex highlights.

On Shading Model. Our neural BRDFs module is de-
signed for a higher representation capability to facial skin,
and we carry out an ablation study by replacing it with the
well-reputed Phong [35] and Disney BRDFs [5]. In particu-
lar, the specular term in the Phong BRDFs is approximated
as in [37], controlled by a single shininess parameter. The
Disney BRDFs are implemented by using the code provided
by DIFFREC [31]. We show novel view rendering results in
Fig. 6, which demonstrate that the proposed neural BRDFs
module can capture high-fidelity reflections of facial skin,
such as the sheen around grazing angles, while such light
transport cannot be well modeled by the Phong and Disney
BRDFs. Tab. 2 also reveals the higher representation ability
of neural BRDFs in learning sophisticated skin reflections.

Moreover, we show factorization and relighting results
in Fig. 7, where SH lighting is compared with Cubemap.
As shown, Cubemap indeed achieves comparable results
of novel view synthesis and even slightly better geometries
by combining our other designs. However, in our under-
constrained settings, it fails to accurately relight faces un-
der new environment maps. In contrast, NeuFace can well
adapt to arbitrary lighting conditions.

On Neural Integrated Basis. The low-rank prior is in-
troduced to constrain the solution space and learn accurate
neural BRDFs with moderate observations. We compare
it with two variants: 1) directly fitting the 9-variable ma-
terial integral function formulated in Eq. (6) (“directly fit-
ting”); and 2) following IDR [55], we use Spatial MLP to
predict a 256-dimensional feature and then feed it into In-
tegrated Basis MLP to learn the material integral (“256-D
feature”). Tab. 3 shows that without low-rank regulariza-
tion, both variants perform significantly worse. Besides, as
shown in our Supplement, the basis number k = 3 yields the
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Figure 7. Ablation on shading models. Ours (bottom) compares with improved DIFFREC [31] (upper) and Cubemap lighting (middle).
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Figure 8. Comparison with DIFFREC on the DTU database [17].
Upper row: DIFFREC; bottom row: ours.

best scores. Increasing the basis number makes the under-
lying BRDFs more difficult to fit with limited observations,
leading to performance declines for both metrics.

Miscellaneous Ablation. We analyze the neural photo-
metric calibration, the ImFace prior, and the specular energy
loss. Table 3 demonstrates the importance of each compo-
nent in achieving realistic face rendering and accurate ge-
ometry recovery. Neural calibration remarkably benefits the
inverse rendering procedure by accounting for camera in-
consistency. The ImFace prior significantly improves the
recovered geometry and appearance quality by constraining
sampling within a valid 3D space during forward rendering.
Additionally, the specular energy loss includes real-world
empirical evidence on face skin and stabilizes the factoriza-
tion by preventing energy influx into the specular term.

5.3. Extension to Common Objects

To validate the generalization ability of NeuFace, we ex-
tend it to common objects in the DTU database [17], which
contains large-scale real-world multi-view captures. In this
evaluation, the classical IDR [55] is modified with our ren-
dering pipeline. As Fig. 8 shows, our model achieves more
impressive reconstruction and factorization qualities than
DIFFREC [31]. More results are in the Supplement.

6. Limitation
The fidelity of the appealing rendering results achieved

in this study can be further improved since NeuFace mainly
focuses on reflection modeling of complex facial skin with-
out explicitly tackling the more challenging issue of subsur-
face scattering, and only applies a simplified shading model
instead. Moreover, NeuFace currently delivers a static 3D
face rather than a drivable one, and although the geometry
model, i.e. ImFace, is a non-linear morphable model and
theoretically supports controllable expression editing, more
work is needed for decent performance.

7. Conclusion
This paper presents a novel 3D neural rendering model,

i.e., NeuFace, to simultaneously capture realistic facial ap-
pearances and geometries from only multi-view images. To
cope with complex facial skin reflectance, we bond physi-
cally based rendering with neural BRDFs for more accurate
and physically-meaningful 3D representations. Moreover,
to facilitate the optimization of the underlying BRDFs, we
introduce a split-integral technique as well as a simple yet
new low-rank prior, which significantly improve the recov-
ering performance. Extensive experiments demonstrate the
superiority of NeuFace in face rendering and its decent gen-
eralization ability to common objects.
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[13] Paulo Gotardo, Jérémy Riviere, Derek Bradley, Abhijeet
Ghosh, and Thabo Beeler. Practical dynamic facial appear-
ance modeling and acquisition. ACM TOG, 37(6):1–13,
2018. 3

[14] Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg.
Shape, light & material decomposition from images using
Monte Carlo rendering and denoising. In NeurIPS, 2022. 2

[15] Takanori Igarashi, Ko Nishino, and Shree K Nayar. The ap-
pearance of human skin. 2005. 4

[16] Henrik Wann Jensen, Stephen R Marschner, Marc Levoy,
and Pat Hanrahan. A practical model for subsurface light
transport. In ACM SIGGRAPH, 2001. 2

[17] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola,
and Henrik Aanæs. Large scale multi-view stereopsis evalu-
ation. In CVPR, 2014. 8

[18] James T Kajiya. The rendering equation. In ACM SIG-
GRAPH, 1986. 3

[19] Christos Kampouris, Stefanos Zafeiriou, and Abhijeet
Ghosh. Diffuse-specular separation using binary spherical
gradient illumination. In EGSR, 2018. 2

[20] Brian Karis and Epic Games. Real shading in Unreal Engine
4. Proc. Physically Based Shading Theory Practice, 4(3):1,
2013. 2

[21] Oliver Klehm, Fabrice Rousselle, Marios Papas, Derek
Bradley, Christophe Hery, Bernd Bickel, Wojciech Jarosz,
and Thabo Beeler. Recent advances in facial appearance cap-
ture. In CGF, 2015. 2

[22] Gengyan Li, Abhimitra Meka, Franziska Mueller, Marcel C
Buehler, Otmar Hilliges, and Thabo Beeler. Eyenerf: a
hybrid representation for photorealistic synthesis, animation
and relighting of human eyes. ACM TOG, 41(4):1–16, 2022.
2

[23] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc
Pollefeys, and Zhaopeng Cui. DIST: Rendering deep implicit
signed distance function with differentiable sphere tracing.
In CVPR, 2020. 5

[24] Linjie Lyu, Ayush Tewari, Thomas Leimkühler, Marc Haber-
mann, and Christian Theobalt. Neural radiance transfer fields
for relightable novel-view synthesis with global illumination.
In ECCV, 2022. 2

[25] Wan-Chun Ma, Tim Hawkins, Pieter Peers, Charles-Felix
Chabert, Malte Weiss, and Paul E Debevec. Rapid acqui-
sition of specular and diffuse normal maps from polarized
spherical gradient illumination. ECRT, 2007(9):183–194,
2007. 2

[26] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. NeRF in the Wild: Neural radiance fields for uncon-
strained photo collections. In CVPR, 2021. 1, 2

[27] Wojciech Matusik, Hanspeter Pfister, Matt Brand, and
Leonard McMillan. A data-driven reflectance model. ACM
TOG, 22(3):759–769, 2003. 4

[28] Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla,
Pratul P Srinivasan, and Jonathan T Barron. NeRF in the
Dark: High dynamic range view synthesis from noisy raw
images. In CVPR, 2022. 1, 2

[29] B Mildenhall, PP Srinivasan, M Tancik, JT Barron, R Ra-
mamoorthi, and R Ng. NeRF: Representing scenes as neural
radiance fields for view synthesis. In ECCV, 2020. 2, 6

[30] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM TOG, 41(4):102:1–102:15,
2022. 2

[31] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao,
Wenzheng Chen, Alex Evans, Thomas Müller, and Sanja Fi-
dler. Extracting triangular 3D models, materials, and lighting
from images. In CVPR, 2022. 2, 4, 6, 7, 8

[32] H Murakami, T Horii, N Tsumura, and Y Miyake. Measure-
ment and simulation of 3D gonio spectral reflectance of skin
surface. DBJ, 93:21–26, 2002. 4

16876



[33] Michael Oechsle, Songyou Peng, and Andreas Geiger.
UNISURF: Unifying neural implicit surfaces and radiance
fields for multi-view reconstruction. In CVPR, 2021. 1, 2

[34] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically
based rendering: From theory to implementation. Morgan
Kaufmann, 2016. 2

[35] Bui Tuong Phong. Illumination for computer generated pic-
tures. Communications of the ACM, 18(6):311–317, 1975.
7

[36] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-NeRF: Neural radiance fields
for dynamic scenes. In CVPR, 2021. 1, 2

[37] Ravi Ramamoorthi and Pat Hanrahan. Frequency space en-
vironment map rendering. In ACM SIGGRAPH, 2002. 7

[38] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. KiloNeRF: Speeding up neural radiance fields with
thousands of tiny MLPs. In CVPR, 2021. 1, 2
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