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Abstract

In recent years, there has been a significant increase in
focus on the interpolation task of computer vision. Despite
the tremendous advancement of video interpolation, point
cloud interpolation remains insufficiently explored. Mean-
while, the existence of numerous nonlinear large motions
in real-world scenarios makes the point cloud interpolation
task more challenging. In light of these issues, we present
NeuralPCI: an end-to-end 4D spatio-temporal Neural field
for 3D Point Cloud Interpolation, which implicitly inte-
grates multi-frame information to handle nonlinear large
motions for both indoor and outdoor scenarios. Further-
more, we construct a new multi-frame point cloud interpo-
lation dataset called NL-Drive for large nonlinear motions
in autonomous driving scenes to better demonstrate the su-
periority of our method. Ultimately, NeuralPCI achieves
state-of-the-art performance on both DHB (Dynamic Hu-
man Bodies) and NL-Drive datasets. Beyond the interpola-
tion task, our method can be naturally extended to point
cloud extrapolation, morphing, and auto-labeling, which
indicates its substantial potential in other domains. Codes
are available at https://github.com/ ispc-lab/NeuralPCI.

1. Introduction
In the field of computer vision, sequential point clouds

are frequently utilized in many applications, such as VR/AR
techniques [11, 38, 49] and autonomous driving [4, 32, 46].
The relatively low frequency of LiDAR compared to other
sensors, i.e., 10–20 Hz, impedes exploration for high tem-
poral resolution point clouds [47]. Therefore, interpolation
tasks for point cloud sequences, which have not been sub-
stantially investigated, are receiving increasing attention.

With the similar goal of obtaining a smooth sequence
with high temporal resolution, we can draw inspiration from
the video frame interpolation (VFI) task. Several VFI meth-
ods [6,8,20,35,45,48] concentrate on nonlinear movements
in the real world. They take multiple frames as input and
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Figure 1. Common cases of nonlinear motions in autonomous
driving scenarios. Spatially uniform linear interpolation ( ) using
the middle two frames of the point cloud differs significantly from
the actual situation ( ), so it is necessary to take multiple point
clouds into consideration for nonlinear interpolation.

generate explicit multi-frame fusion results based on flow
estimation [6, 8, 20, 45, 48] or transformer [35]. Nonethe-
less, due to the unique structure of point clouds [31], it is
non-trivial to extend VFI methods to the 3D domain.

Some early works [18,19] rely on stereo images to gener-
ate pseudo-LiDAR point cloud interpolation. For pure point
cloud input, previous methods [22,47] take two consecutive
frames as input and output the point cloud at a given inter-
mediate moment. However, with limited two input frames,
these approaches can only produce linear interpolation re-
sults [22], or perform nonlinear compensation by fusing in-
put frames in the feature dimension linearly [47], which is
inherently a data-driven approach to learning the dataset-
specified distribution of nonlinear motions rather than an
actual nonlinear interpolation. Only when the frame rate of
the input point cloud sequence is high enough or the object
motion is small enough, can the two adjacent point clouds
satisfy the linear motion assumption. Nonetheless, there
are numerous nonlinear motions in real-world cases. For
instance, as illustrated in Fig. 1, the result of linear interpo-
lation between two adjacent point cloud frames has a large
deviation from the actual situation. A point cloud sequence
rather than just two point cloud frames allows us to view
further into the past and future. Neighboring multiple point
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clouds contain additional spatial-temporal cues, namely dif-
ferent perspectives, complementary geometry, and implicit
high-order motion information. Therefore, it is time to re-
think the point cloud interpolation task with an expanded
design space, which is an open challenge yet.

Methods that explicitly fuse multiple point cloud frames
generally just approximate the motion model over time,
which actually simplifies real-world complex motion. The
neural field provides a more elegant way to parameterize
the continuous point cloud sequence implicitly. Inspired by
NeRF [25] whose view synthesis of images is essentially
an interpolation, we propose NeuralPCI, a neural field to
exploit the spatial and temporal information of multi-frame
point clouds. We build a 4D neural spatio-temporal field,
which takes sequential 3D point clouds and the indepen-
dent interpolation time as input, and predicts the in-between
or future point cloud at the given time. Moreover, Neu-
ralPCI is optimized on runtime in a self-supervised man-
ner, without relying on costly ground truths, which makes
it free from the out-of-the-distribution generalization prob-
lem. Our method can be flexibly applied to segmentation
auto-labeling and morphing. Besides, we newly construct
a challenging multi-frame point cloud interpolation dataset
called NL-Drive from public autonomous driving datasets.
Finally, we achieve state-of-the-art performance on indoor
DHB dataset and outdoor NL-Drive dataset.

Our main contributions are summarized as follows:

• We propose a novel multi-frame point cloud interpola-
tion algorithm to deal with the nonlinear complex mo-
tion in real-world indoor and outdoor scenarios.

• We introduce a 4D spatio-temporal neural field to in-
tegrate motion information implicitly over space and
time to generate the in-between point cloud frames at
the arbitrary given time.

• A flexible unified framework to conduct both the inter-
polation and extrapolation, facilitating several applica-
tions as well.

2. Related Work

Video Frame Interpolation. Most VFI approaches are
based on optical flow estimation, focusing on the motion
cues between two consecutive input frames. These methods
warp source frames with the aid of the optical flow to gen-
erate the intermediate frame [1, 13, 26, 33]. In order to deal
with complex motions, some works exploit nonlinear infor-
mation by expanding the design domain to multiple con-
secutive frames [6, 8, 20, 35, 45]. QVI [45] approximates
the flow-based velocity and acceleration of the quadratic
motion model explicitly. Following QVI, EQVI [20] im-
proves the training strategy. Recently, Dutta et al. [8] uti-
lizes space-time convolution to adaptively switch motion
models with discontinuous motions. These works inspire us

to design a point cloud interpolation network with multiple
input frames. However, it is still challenging to extend these
methods to the unordered and unstructured point cloud.

Point Cloud Interpolation. Existing point cloud inter-
polation methods try to find point-to-point correspondences
between two point cloud reference frames. An intuitive way
is to utilize scene flow, the extension of optical flow in the
3D domain. PointINet [22] warps two input frames with
bi-directional flows to the intermediate frame, then samples
the two warped results adaptively and fuses them with at-
tentive weights. This approach is performed under the lin-
ear motion assumption and relies heavily on the accuracy
of the scene flow backbone. IDEA-Net [47] proposes an al-
ternative method to solve the correlation between two input
frames by learning a one-to-one alignment matrix and refin-
ing linear interpolation results with a trajectory compensa-
tion module. However, the one-to-one correspondence as-
sumption limits its application for large-scale outdoor point
cloud datasets. Moreover, the higher-order motion informa-
tion in the temporal domain is overlooked [8] when taking
two frames as input. Therefore, there remain challenges
to capturing and modeling the complex nonlinear motion
in the real world. To address this issue, we propose a novel
neural field that takes advantage of the more comprehensive
spatio-temporal information of multiple point cloud frames.

Neural Implicit Representation. Distinct from the
common paradigm of learning-based methods, neural fields
are fitted to a single degraded sample rather than a large
dataset of samples. The neural field can be seen as a
parameterization of diverse input types, such as 2D im-
ages [5, 14], 3D shapes [24, 27], etc. Since NeRF [25]
presents a novel neural radiance field, which encodes a
scene with spatial location and view direction as input and
outputs volume rendering, several dynamic scene synthesis
studies [7, 10, 16, 17, 28, 30, 36, 43] have been proposed to
exploit the representation ability of neural radiance fields
for dynamic scenes. Based on the linear motion assump-
tion, Li et al. [17] proposes a time-variant continuous neu-
ral representation for space-time view synthesis. NSFP [16]
presents a neural prior to regularize scene flow implicitly.
Following NSFP, Wang et al. [37] introduce a neural trajec-
tory prior to representing the trajectories as a vector field.
Coordinate-based networks show great potential for encod-
ing a continuous input domain over arbitrary dimensions at
an arbitrary resolution. Our work utilizes and exploits the
ability of the coordinate-based network to represent contin-
uous spatio-temporal motions of dynamic nonlinear scenes.

3. Methodology
In this section, we propose a novel end-to-end 4D

spatio-temporal neural field for 3D point cloud interpola-
tion named NeuralPCI. Firstly, we state the problem of
multi-frame point cloud interpolation. Sec. 3.1 then pro-
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Figure 2. Overview of our proposed NeuralPCI. The 4D neural field is constructed by encoding the spatio-temporal coordinate of
the multi-frame input point clouds via a coordinate-based multi-layer perceptron network. In the inference stage after self-supervised
optimization, NeuralPCI receives a reference point cloud and an arbitrary interpolation frame moment as input to generate the point cloud
of the associated spatio-temporal location.

vides an overview of NeuralPCI’s architecture and design
philosophy. Following this, we explain the details of how
to construct the 4D spatio-temporal neural field and in-
tegrate neighboring multi-frame nonlinear information of
point clouds in Secs. 3.2 and 3.3. Finally, in Sec. 3.4, we
further elaborate on the self-supervised optimization man-
ner of the whole neural field.

Problem Formulation. Let P ∈ RN×3 be one frame of
a dynamic point cloud sequence, with N sampled points at
the time t ∈ R. Given a low temporal resolution sequence
of M frames of point clouds S = {P0, P1, ..., PM−1} with
their corresponding timestamps T = {t0, t1, ..., tM−1}, the
goal of NeuralPCI is to predict the intermediate point cloud
frame Pi at an arbitrary given time ti for interpolation. In-
terpolating n ∈ Z+ frames of point clouds at equal intervals
between every two consecutive frames yields a sequence of
point clouds with n+ 1 times higher temporal resolution.

For the multi-frame point cloud interpolation task, we
define the input as every four consecutive point cloud
frames in the sequence S and assume that these frames are
equally time-spaced for convenience. The output is the tem-
porally uniform interpolation result of n point cloud frames
between the middle two frames. Then, sliding the window
of multi-frame inputs traverses the entire sequence.

3.1. NeuralPCI Overview

Mildenhall et al. [25] build the neural radiance field by
inputting a series of 2D images with different viewpoints,
and then generate the unknown image under a new view-
point using neural volume rendering. Although the huge
gap between images and point clouds makes it non-trivial to

apply the neural field technique to the point cloud interpo-
lation task, we still want to find a way to address the nonlin-
ear interpolation problem of multi-frame point clouds under
a similar design philosophy. That is, encoding a sequence
of 3D point clouds at different moments to construct a 4D
neural spatio-temporal field and then feeding an arbitrary
interpolation frame moment into the network to generate
the point cloud of the associated spatio-temporal location.

Consequently, we propose NeuralPCI whose overall
structure is depicted in Fig. 2. It can be divided into three
main sections for elaboration. In the optimization stage,
the 4D neural field is constructed by encoding the spatio-
temporal coordinate of the multi-frame input point cloud
via a coordinate-based Multi-Layer Perceptron (MLP) net-
work. For each point cloud frame of the input, the inter-
polation time is set to the corresponding timestamps of four
input frames in order to provide the network with the ability
to generate the point cloud of the respective spatio-temporal
position, and then optimize the neural field through self-
supervised losses. In the inference stage, we run forward the
neural field with the spatio-temporal coordinate of a refer-
ence point cloud and the moment of the interpolation frame
as input to obtain the corresponding in-between point cloud.

3.2. 4D Spatio-temporal Neural Field

Following the statement in [44], a field is a quantity de-
fined for all spatial and/or temporal coordinates, and a neu-
ral field is a field that is parameterized fully or in part by
a neural network. Here, we use a coordinate-based MLP
network to represent the scenes, which takes as input the
3D spatial coordinate x ∈ R3 and the 1D temporal coordi-
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nate t ∈ R, and produces as output the motions ∆x ∈ R3.
The MLP is parameterized by Θ and it can be viewed as a
mapping from the coordinate field to the motion field.

Furthermore, we leverage an independent input, the in-
terpolation frame time tintp ∈ R, to provide MLP with time
cues and regulate the scene motion output at the interpola-
tion moment relative to the original input spatio-temporal
coordinates. Then, we conduct the point-wise addition of
the interpolation frame motion and the input point cloud to
generate the final output of the neural field, which is the 3D
point cloud coordinate at the interpolation frame moment
xintp ∈ R3. Formally, the neural field Φ is defined as:

Φ (z; Θ) : xintp = x+ FΘ (z) (1)

where z represents the spatial-temporal coordinate input of
point clouds, and FΘ is defined as:

FΘ : R5 → R3, ∆x = FΘ (z) = FΘ (x, t, tintp) (2)

In such a manner, we implicitly construct a 4D, i.e.,
(x, y, z, t) in physical, spatio-temporal neural field to rep-
resent the entire scenarios of sequential point clouds. Even-
tually, we are able to utilize the continuity of the dedicated
neural field to smoothly interpolate the point cloud at an ar-
bitrary in-between moment.

3.3. Multi-frame Nonlinear Integration

In order to integrate multi-frame information, an intu-
itive way is utilizing the existing pair-frame point cloud in-
terpolation algorithm for every two frames among the multi-
frame point cloud input and fuse the predicted results. We
adopt it as a baseline model (see Supplementary Material),
and it turns out that directly fusing multiple intermediate
predictions by random sampling leads to worse results.

Besides, an alternative way is to explicitly model the
nonlinear kinematic equations taking advantage of multi-
frame point clouds. We follow the nonlinear video inter-
polation algorithm [45] and extend it to the 3D domain to
formulate the high order equation of point clouds. Nonethe-
less, the explicit modeling approach is also ineffective in
real-world scenarios with complex motions (see Supple-
mentary Material). Consequently, we integrate multi-frame
point clouds more effectively using spatio-temporal neural
fields.

Our proposed NeuralPCI does not impose a restriction
on the frame number of the input point clouds, and thus
can be naturally expanded to multi-frame point clouds.
When the number of multi-frame inputs is 4, for exam-
ple, the input set containing a point cloud sequence and
corresponding timestamps are S = {P0, P1, P2, P3} and
T = {t0, t1, t2, t3}, respectively. As shown in Fig. 2,
the neural field receives the point cloud P0 and time t0

as input, and the time step for interpolation tintp is ad-
justed to one of {t0, t1, t2, t3} to yield the predicted point
clouds {P̂ t0

0 , P̂ t1
0 , P̂ t2

0 , P̂ t3
0 }. The loss function (described

in Sec. 3.4) is then calculated between the prediction
P̂

tj
i and each of the four input frames of point clouds Pj .

The entire point cloud sequence is traversed through the
same operation, with the spatio-temporal neural field end-
to-end optimized meanwhile.

Each input frame serves as a constraint to supervise op-
timization, allowing us to incorporate the information from
multiple frames of point clouds more elegantly. Owing to
the continuity, smoothness, and excellent fitting ability of
MLP, the derivative of the final spatio-temporal neural field
function with respect to the interpolated frame time tintp
is an implicit higher-order continuous function, which can
better handle complex motion scenes and can yield smooth
interpolation outputs.

3.4. Self-supervised Optimization

NeuralPCI optimizes the weights of the neural field in a
self-supervised manner. As illustrated in Fig. 2, the interpo-
lation time is adjusted as each timestamp of inputs to gener-
ate predictions for all input point cloud frames, and the neu-
ral field back-propagates the gradients to update the sample-
specified parameters by minimizing the following distribu-
tion loss between the input and predicted point clouds.

CD Loss. Chamfer Distance (CD) [9] measures the dis-
tribution difference between two point clouds. We adopt
CD as the main term in the loss function, which can be ex-
pressed as the following equation:

LCD =
1

N

∑
p̂i∈P̂

min
pi∈P

∥p̂i − pi∥22 +
1

N

∑
pi∈P

min
p̂i∈P̂

∥pi − p̂i∥22

(3)

where P and P̂ are the input and predicted point cloud
frames. pi and p̂i represent the points in the respective point
clouds. ∥.∥2 denotes the L2 norm of the spatial coordinate.

EMD Loss. Earth Mover’s Distance (EMD) [34] calcu-
lates the corresponding points by solving the optimal trans-
mission matrix of the two point clouds. We minimize the
EMD loss to encourage the two point clouds to have the
same density distribution, calculated as:

LEMD = min
ϕ:P̂→P

1

N

∑
p̂∈P̂

∥p̂− ϕ (p̂) ∥22 (4)

where ϕ : P̂ → P denotes a bijection from P̂ to P . Due
to its high computational complexity, we only use it in the
loss function for sparse point clouds.

Smoothness Loss. To better regulate the estimated mo-
tion, we introduce the smoothness loss, which facilitates the
interpolation of point clouds for local rigid motions and is
utilized in autonomous driving scenarios.

LS =
∑
pi∈P

1

|N (pi)|
∑

pj∈N(pi)

∥∆xj −∆xi∥22 (5)
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where N(pi) stands for the nearest neighbors of the ith

point pi and |·| denotes the number of points. And ∆xi

denotes the scene flow estimation from point cloud P to P̂
(defined in Eq. (2)) of the ith point pi.

Total Loss Function. We utilize the above three terms
of loss and balance them with separately given weights (de-
fined as α, β, γ in Eq. (6)) to obtain the total loss. We define
multiple input frames and their corresponding timestamps
as the input set. Then, we traverse the input set by assign-
ing each point cloud of input frames as the reference and
generate predictions of all input frames at their correspond-
ing time steps. The overall loss is computed by summing
the losses of every pair of point clouds as Eq. (7).

Ψ = αLCD + βLEMD + γLS (6)

L =
∑
Pi∈S

∑
tj∈T

Ψ
(
Ptj , P̂

tj
i

)
(7)

where S and T are the multiple input frames and their cor-
responding timestamps. Ptj denotes the input frame at time
tj and P̂

tj
i denotes the neural field prediction when Pi is the

reference frame and the interpolation time is tj .

4. Experiments

4.1. Experimental Setup

Datasets. We evaluate NeuralPCI in both indoor and
outdoor datasets. Indoor Dynamic Human Bodies dataset
(DHB) [47] contains point cloud sequences for the non-
rigid deformable 3D human motion with sampled 1024
points. We construct a challenging multi-frame interpo-
lation dataset named Nonliner-Drive (NL-Drive) dataset.
Based on the principle of hard-sample selection and the di-
versity of scenarios, NL-Drive dataset contains point cloud
sequences with large nonlinear movements from three pub-
lic large-scale autonomous driving datasets: KITTI [12],
Argoverse [3] and Nuscenes [2]. More details of NL-Drive
dataset are provided in Supplementary Material.

Baselines. To demonstrate the performance of Neu-
ralPCI, we compare our method with previous SOTA ap-
proaches, namely IDEA-Net [47] and PointINet [22] for
the interpolation task and MoNet [21] for the extrapolation
task. We reproduced the results on DHB Dataset of IDEA-
Net and PointINet using official implementation. Moreover,
we train PointINet and MoNet on NL-Drive dataset accord-
ing to the official training setting (Since the training code
of IDEA-Net has not been released yet, we do not report its
results here). In addition, we utilize state-of-the-art scene
flow estimation methods, i.e., neural-based NSFP [16] and
recurrent-based PV-RAFT [39], with linear interpolation to
produce corresponding results on both DHB and NL-Drive
datasets for comprehensive comparison. Remarkably, we

evaluate all the optimization-based methods directly on the
test set without using the training set.

Metrics. We adopt CD and EMD as quantitative eval-
uation metrics following [21, 22, 47], which are described
in Eqs. (3) and (4), respectively.

4.2. Implementation Details

We implement NeuralPCI with PyTorch [29]. We define
our NeuralPCI as a coordinate-based 8-layer MLP archi-
tecture with 512 units per layer and adopt LeakyReLU as
the activation function. The network weights are randomly
initialized with the Adam [15] optimizer (the lr is 0.001).
For each sample, the maximum optimization step is lim-
ited to 1000 iterations. The spatio-temporal coordinates of
the point clouds are position-encoded by a sinusoidal func-
tion and fed into the MLP, while the interpolation time is
inserted into the penultimate hidden layer to control the fi-
nal output. All experiments were conducted on a single
NVIDIA GeForce RTX 3090 GPU. For more implementa-
tion details, please refer to Supplementary Material.

4.3. Evaluation of Point Cloud Interpolation

Results on DHB dataset. The quantitative comparison
on DHB dataset is displayed in Table 1, where our Neu-
ralPCI outperforms other baseline approaches by a large
margin. In particular, our overall CD is about half that of
other baselines, and our overall EMD is 40% lower than
the suboptimal PV-RAFT [39]. As can be seen, IDEA-
Net [47] does not perform well in all scenarios, but in con-
trast, our method achieves the best results in every single
scene, especially in the Squat scenario. This demonstrates
the flexibility and adaptability of the neural field in various
indoor scenarios. Furthermore, Fig. 3 clearly exhibits the
outcomes of qualitative experiments. The interpolation re-
sults of PointINet [22] and IDEA-Net contain several outlier
noise points and lack lots of detailed information in local ar-
eas, such as hair, hands, and skirt hems. Instead, our method
benefits from the higher-order implicit function of the neu-
ral field, which better handles these complex motions.

Results on NL-Drive dataset. Table 2 shows results on
NL-Drive dataset, where NeuralPCI achieves the best re-
sults on most frames and overall metrics. For instance, our
method reaches comparable EMD error in the intermediate
frames and significantly reduces the CD error, eventually
outperforming SOTA by 24.5% and 4% in the overall re-
sults of CD and EMD metrics, respectively. In the quali-
tative experiments, we show in detail the nonlinear motion
in the outdoor autonomous driving scenario as well as the
interpolation frame comparison results in Fig. 5. This indi-
cates that NeuralPCI is scalable to large dense point clouds.
As noted in the local zoomed-in view, the vehicle edges are
clearer and sharper in the results of our method, while they
are blurrier and noisier in the results of PointINet [22].
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Table 1. Quantitative comparison
(
×10−3

)
with other open-sourced methods on DHB-Dataset [47]. Baseline methods include

IDEA-Net [47], PointINet [22] and the results of linear interpolation of scene flow estimated by NSFP [17] and PV-RAFT [39].

Methods
Longdress Loot Red&Black Soldier Squat Swing Overall

CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD CD ↓ EMD ↓
IDEA-Net 0.89 6.01 0.86 8.62 0.94 10.34 1.63 30.07 0.62 6.68 1.24 6.93 1.02 12.03
PointINet 0.98 10.87 0.85 12.10 0.87 10.68 0.97 12.39 0.90 13.99 1.45 14.81 0.96 12.25

NSFP 1.04 7.45 0.81 7.13 0.97 8.14 0.68 5.25 1.14 7.97 3.09 11.39 1.22 7.81
PV-RAFT 1.03 6.88 0.82 5.99 0.94 7.03 0.91 5.31 0.57 2.81 1.42 10.54 0.92 6.14
NeuralPCI 0.70 4.36 0.61 4.76 0.67 4.79 0.59 4.63 0.03 0.02 0.53 2.22 0.54 3.68

Table 2. Quantitative comparison with other open-sourced methods on NL-Drive Dataset. Type indicates whether the interpolation
results are based on forward, backward, bidirectional flow, or neural field. Frame-1, Frame-2 and Frame-3 refer to the three interpolation
frames located at equal intervals between the two intermediate input frames.

Methods Type
Frame-1 Frame-2 Frame-3 Average

CD EMD CD EMD CD EMD CD ↓ EMD ↓

NSFP
forward flow 0.94 95.18 1.75 132.30 2.55 168.91 1.75 132.13

backward flow 2.53 168.75 1.74 132.19 0.95 95.23 1.74 132.05

PV-RAFT
forward flow 1.36 104.57 1.92 146.87 1.63 169.82 1.64 140.42

backward flow 1.58 173.18 1.85 145.48 1.30 102.71 1.58 140.46
PointINet bi-directional flow 0.93 97.48 1.24 110.22 1.01 95.65 1.06 101.12
NeuralPCI neural field 0.72 89.03 0.94 113.45 0.74 88.61 0.80 97.03

Figure 3. Qualitative results on DHB dataset. Each column rep-
resents one interpolation frame result in the point cloud sequence,
where our method is more consistent with the ground truth and
preserves local details better than previous SOTA methods.

Additional Evaluation. To evaluate the capability of
NeuralPCI under large motions, we conduct additional ex-
periments to observe the robustness of each method with in-
creasing time interval between input frames. As illustrated
in Fig. 4, the results on both datasets show that the perfor-
mance of our method still lies at the optimum under large
motion interpolation.

Figure 4. Quantitative experiments at different intervals. The
CD error increases as the input frame interval grows. Our method
is always optimal at different time intervals and has good robust-
ness under long-distance motion.

4.4. Evaluation of Point Cloud Extrapolation

As a parameterization of continuous point clouds over
space and time, NeuralPCI is generalizable to predict the
near future frame by adjusting the timestamp, making it
more flexible than existing methods. We conduct extrapola-
tion experiments on NL-Drive dataset with the same input
settings as the interpolation task, while the outputs are four
consecutive point cloud frames in the future. According to
recent works about point cloud prediction [21, 23, 40, 41],
we adopt the state-of-the-art method MoNet [21] and also
the linear extrapolation results based on scene flow from
PV-RAFT [39] and NSFP [16] as baseline methods.

A quantitative comparison with baseline methods is
shown in Table 3. Flow-based methods suffer a sharp
growth in error when the time for the future frame increases.
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Figure 5. Qualitative results on NL-Drive dataset. We transform four frames of the input point cloud to the same coordinate system,
and the overall motion of the point cloud sequence is depicted in the first row. The following three rows compare the interpolation results,
demonstrating that our approach is more accurate and robust, whereas interpolation results of PointINet [22] are noisier.

Table 3. Quantitative comparison with other baseline methods
for point cloud extrapolation on NL-Drive dataset. Here we
adopt MoNet [21] and linear extrapolation results based on scene
flow from PV-RAFT [39] and NSFP [16]. Frames 1-4 refer to the
consecutive extrapolation frames after the last input frame.

Methods
Frame 1 Frame 2 Frame 3 Frame 4

CD EMD CD EMD CD EMD CD↓ EMD↓

NSFP 4.70 209.96 5.45 233.33 6.24 254.72 6.61 268.44

PV-RAFT 2.05 206.93 3.90 248.94 6.55 293.27 10.02 377.25

MoNet 0.66 81.90 0.96 108.41 1.28 135.96 1.37 159.20

NeuralPCI 0.78 84.26 1.20 108.43 1.61 135.42 1.87 156.64

Our method surpasses MoNet in terms of EMD error in the
last two frames and achieves suboptimal results in the other
remaining frames. MoNet’s RNN module predicts each
frame recurrently, while our neural field lacks constraints on
the future direction. Despite that, NeuralPCI still achieves
comparable results, indicating its flexibility to accomplish
both inter-/extra-polation in a unified framework.

4.5. Ablation Study

Contributions of key modules in NeuralPCI, namely the
multi-frame integration, NN-intp, EMD loss, smoothness
loss, and network enhancement are shown in Table 4.

Multi-frame and NN-intp. We begin with a simple neu-
ral field with pair-frame input and optimized using only CD
loss. With the multi-frame integration (ID 2&7), NeuralPCI

Table 4. Quantitative results of ablation studies on DHB
dataset [47] (×10−3) and NL-Drive dataset. Methods A∼F
denote CD loss, multi-frame integration, NN-intp, EMD loss,
smoothness loss and network enhancement, respectively.

Datasets ID Methods Metrics
A B C D E F CD ↓ EMD ↓

DHB

1 ✓ 0.65 5.24
2 ✓ ✓ 0.59 5.08
3 ✓ ✓ ✓ 0.57 4.28
4 ✓ ✓ ✓ ✓ 0.56 3.84
5 ✓ ✓ ✓ ✓ ✓ 0.54 3.68

NL-Drive

6 ✓ 0.86 114.31
7 ✓ ✓ 0.84 112.03
8 ✓ ✓ ✓ 0.81 104.71
9 ✓ ✓ ✓ ✓ 0.82 99.25

10 ✓ ✓ ✓ ✓ ✓ 0.80 97.03

gains 9.2% and 3.1% reductions in CD and EMD error on
DHB dataset, and 2.3% and 2.0% on NL-Drive dataset. By
adopting the nearest neighbor in the time domain as the ref-
erence frame (ID 3&8), the long-term error growth is effec-
tively reduced, and another EMD improvement of 15.7%
and 6.5% is achieved on the respective datasets.

EMD and smoothness loss. To prevent the network
from overfitting on a single CD metric, we introduce ad-
ditional loss terms to regulate the output. The extra EMD
loss and smoothness loss help NeuralPCI achieve a signifi-
cant reduction in EMD metric error, namely 10.3% (ID 4)
on DHB dataset and 5.2% (ID 9) on NL-Drive dataset.

915



Figure 6. Visual results of NeuralPCI based auto-labeling. We use NeuralPCI to take the labeled keyframe point clouds as input, output
the interpolation results, and automatically assign labels to the intermediate frames. The second row shows the results of the auto-labeling,
which intuitively achieves high labeling accuracy.

Figure 7. The process of point clouds morphing between the air-
plane and the chair samples in ModelNet40 [42] using NeuralPCI.

Network enhancement. The impact of network struc-
ture is future investigated. Previously, NeuralPCI utilized
an 8-layer 256-hidden-unit MLP with a ReLU activation
function and received the direct spatio-temporal coordinate
as input. Here, we introduce a sinusoidal function-based po-
sition encoding, switch to the LeakyReLU activation func-
tion, and increase the width of the MLP. In the end, the
network enhancement brings another improvement of 3.6%
and 4.2% (ID 5) on DHB dataset and 2.4% and 2.2% (ID
10) on NL-Drive dataset.

4.6. Applications

Auto-labeling. The annotated point clouds with per-
point segmentation GT in Nuscenes [2] are at 2 Hz, only one
tenth of the dataset. Even so, the labeling workload was la-
borious and enormous with a total of 1,400,000,000 points.
Here, we explore the potential of NeuralPCI to generate
keyframe-based interpolation results and assign point-wise
labels to unannotated intermediate frames, which shows re-
markable capability as depicted in Fig. 6. We use four
keyframes as input to predict intermediate point clouds,
so the predicted outputs could inherit the corresponding
keyframe labels in order. Then the kNN algorithm is ap-
plied between the unlabeled intermediate frame and the la-
beled predicted frame to annotate each ground-truth point.

Point cloud morphing. In addition to the conventional
meaning of nonlinear motion under indoor and outdoor
scenes, the transformation relationship across point clouds
with totally different topological shapes is also needed. This
transformation, i.e., point cloud morphing, is of interest for
computer graphics simulation and data enhancement. We
deploy NeuralPCI to output interpolation point clouds be-
tween two different classes of object point clouds under the
ModelNet40 [42] dataset to establish the process of point
cloud morphing. As illustrated in Fig. 7, our method en-
ables a more natural and smooth transformation between
different shapes compared to random sampling.

5. Conclusion
In this paper, we redefine the input domain of the point

cloud interpolation task as multiple consecutive frames in-
stead of the two consecutive frames used in previous works,
which increases the receptive field of the time domain. To
achieve that, we presented NeuralPCI, a 4D spatio-temporal
neural field for 3D point cloud interpolation that is able to
implicitly integrate multi-frame information to handle non-
linear large motions. Our approach achieves state-of-the-art
results in both indoor and outdoor datasets. Since neural-
field-based methods are optimized at runtime, the applica-
tion of our method is limited in terms of real-time efficiency.
Based on NeuralPCI, further development can be consid-
ered in the future by improving its real-time performance
and generalization over unknown samples.
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