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Abstract

Human-object interaction (HOI) has long been plagued

by the conflict between limited supervised data and a vast

number of possible interaction combinations in real life.

Current methods trained from closed-set data predict HOIs

as fixed-dimension logits, which restricts their scalability

to open-set categories. To address this issue, we introduce

OpenCat, a language modeling framework that reformu-

lates HOI prediction as sequence generation. By convert-

ing HOI triplets into a token sequence through a serial-

ization scheme, our model is able to exploit the open-set

vocabulary of the language modeling framework to pre-

dict novel interaction classes with a high degree of free-

dom. In addition, inspired by the great success of vision-

language pre-training, we collect a large amount of weakly-

supervised data related to HOI from image-caption pairs,

and devise several auxiliary proxy tasks, including soft re-

lational matching and human-object relation prediction, to

pre-train our model. Extensive experiments show that our

OpenCat significantly boosts HOI performance, particu-

larly on a broad range of rare and unseen categories.

1. Introduction

Human-object interaction (HOI) task [5, 6], whose out-

put is usually in the format of a triplet: <human, relation,

object>, has drawn increasing attention due to its crucial

role in scene understanding. As humans, we have a rich vo-

cabulary to describe one human-object relation in various

ways (e.g., near, next to, close to). We can also recognize

different combinations of HOI triplets in our real-life sce-

narios. However, current HOI methods have struggled to

achieve such ºopen-categoryº capability for a long time.

We argue that this is primarily due to two deficiencies: in-

flexible prediction manner and insufficient supervised data.

Previous works treat HOI learning as a classification

problem where the class vocabulary must be pre-defined.

*Qin Jin is the corresponding author.

Figure 1. OpenCat reformulates HOI learning as a sequence gener-

ation task, rather than a closed-set classification task. Through the

aid of task-specific pre-training with weak supervision, our model

achieves open-category prediction on a large number of tail and

unseen HOI classes.

This approach involves projecting the input image into

fixed-dimension logits through a classifier, which restricts

the ability to identify new HOI triplets. In contrast, lan-

guage models [51] are more suited to predict free-form

texts, thanks to their extensive token vocabulary. Recently,

other works [9, 62] explore to generate visual outputs using

a single language modeling objective. Inspired by this line

of research, we reformulate HOI learning as a language se-

quence generation problem as illustrated in Figure 1, which

enables our model to leverage an open-set vocabulary, gen-

erating HOI triplets with a high degree of freedom.

Moreover, HOI learning requires abundant labels for ex-

haustive HOI categories. However, due to the high cost of

labeling grounded HOIs and the natural long-tailed distribu-

tion of HOI categories, it is unrealistic to ensure sufficient

instances in each category. In fact, the two most popular

benchmarks so far, HICO-DET [5] and V-COCO [21], con-

tain 117 and 50 relation classes respectively, covering just

a small portion of the HOI categories in reality. Models

trained on such closed-set data fail to handle the large num-

ber of possible combinations of human, relation and object.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Recently, researchers have explored weakly supervised or

even self-supervised vision-language (VL) pre-training to

address data scarcity. These endeavors have achieved great

success, demonstrating their generalization to novel visual

or textual concepts [3, 12, 44]. Inspired by these works,

one intuitive idea is to leverage pre-training to overcome the

problem of insufficient labeled HOI data. However, lever-

aging weakly-supervised or unsupervised data for HOI pre-

training is not trivial. An HOI model must accurately local-

ize the interaction regions in the image and recognize fine-

grained differences among massive human activities (e.g.,

stand on motorcycle vs. sit on motorcycle), which is quite

challenging to learn from merely weak supervision (e.g.,

image-caption pairs). Therefore, the pre-training frame-

work as well as the proxy tasks must be well designed.

In this work, to address the issues of inflexible prediction

manner and insufficient supervised data in human-object

interaction tasks, we propose a novel Open-Category pre-

training framework named OpenCat . Our framework

utilizes a serialization scheme to convert HOI triplets into a

sequence of discrete tokens and incorporates several auxil-

iary proxy tasks to enhance visual representation, including

masked language prediction (MLP), human-object relation

prediction (HRP) and human-object patch jigsaw (HPJ), all

formulated as sequence generation tasks. To enable learn-

ing interaction alignment between human and object with-

out the need for grounded HOI annotations, we further de-

vise an additional proxy task named soft relational matching

(SRM). The SRM task borrows knowledge from a VL pre-

training model [34,50] to create pseudo alignment labels be-

tween detected object regions and HOI triplets parsed from

the caption. With these proxy tasks, our model improves its

generalization to a wide range of novel HOIs.

Our contributions can be outlined as follows:

• We introduce OpenCat, a language modeling frame-

work to effectively model open-category HOIs.

• We collect a large amount of weakly-supervised HOI

pre-training data based sorely on textual supervision

and devise several proxy tasks to train our model.

• By adapting our model to downstream HOI tasks, we

achieve state-of-the-art performance with larger gains

observed under zero-shot and few-shot setups.

2. Related Work

Human-Object Interaction Learning. Recognizing

human-object interactions (HOI) [18, 20, 45] has been

widely studied in recent years. The main challenge of this

task is the co-occurrence of multiple human-object pairs in

an image where their location is not given. To address it,

existing works rely on object [20] or human pose detec-

tion [14], or even bodypart-level annotations [36]. In con-

trast to image-level HOI recognition, instance-level HOI de-

tection [5] aims to accurately localize interactive regions for

each human-object pair and predict their interaction class si-

multaneously. Existing methods can be broadly categorized

into two-stage and one-stage models. Two-stage meth-

ods [19,49,61] first use an off-the-shelf object detector [53]

to ground objects regions offline and then perform HOI pre-

diction. These works primarily focus on second stage to

improve human and object embeddings using graph neu-

ral networks [49, 61] or external information like keypoints

[60, 66]. However, two-stage methods do not consider the

possibility of combining human and object to form a valid

HOI instance, leading to overwhelming negative HOI pro-

posals. One-stage methods [29, 38], on the other hand, per-

form object detection and HOI prediction in parallel to gen-

erate HOI proposals with high quality. For example, Liao et

al. [38] propose a point-based network to heuristically de-

fine the position of HOI triplets. Tamura et al. [57] go a

further step to achieve end-to-end HOI detection based on

a DETR-style transformer [4]. Recently, Zhang et al. [63]

adopt a cascade disentangling decoder to combine the ad-

vantages of two-stage and one-stage methods.

Vision-Language Pre-training. Vision-language pre-

training (VLP) models [10, 43] generally follow two steps:

first, using well-designed proxy tasks [13, 51] to train mod-

els on a vast amounts of data, and then fine-tuning pa-

rameters on downstream tasks. These models demonstrate

impressive results particularly on zero-shot setups. Pre-

vious VLP works haved used task-specific heads [10, 43]

with separate parameters for downstream tasks, but recent

studies [12, 22, 52] propose a unified framework to per-

form different downstream task predictions with the same

input-output format. Inspired by [9], UniTAB [62] learns to

represent both text and box outputs as a discrete token se-

quence using a language-modeling objective, which enables

the model to ground generated texts to object regions and

provide a more interpretable description for the image. This

language-modeling pre-training paradigm is naturally suit-

able for open-category HOI learning, as it allows the model

to avoid closed-set restriction and leverage the rich semantic

knowledge of text supervision to generate diverse HOI com-

binations. Despite its potential, such paradigm remains un-

explored by previous relational pre-training models [11,67].

In this study, we aim to reformulate the HOI model into

a language modeling framework that accepts structured in-

puts (i.e., raw image and language), and auto-regressively

outputs HOI triplets in a sequence of tokens.

3. Method

3.1. Overall Architecture

Figure 2 illustrates the overall architecture of our pro-

posed OpenCat model, which follows a visual-language

encoder-decoder framwork [59]. We choose ResNet-
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Figure 2. Our proposed open-category HOI model, OpenCat , auto-regressively generates HOI triplets as a token sequence. To pretrain

the model, we utilize large-scale weak text supervision and employ four auxiliary proxy tasks: (1) masked language prediction (MLP); (2)

human-object relation prediction (HRP); (3) human-object patch jigsaw (HPJ) and (4) soft relational matching (SRM).

101 [24] and RoBERTa [40] to encode image input v and

text input l respectively. A 6-layer transformer encoder is

used for cross-modal encoding, followed by another 6-layer

transformer decoder for token sequence generation. For

each image, an off-the-shelf object detector [53] is used to

localize N object regions B = {b1, b2, ..., bN} offline. Re-

gion embeddings R of B are then cropped and pooled from

the image based on ROI align [23]. Similar to language

modeling methods [51, 52], our model auto-regressively

outputs HOI triplets as a token sequence conditioned on

the region embeddings. As in language modeling [51], our

model is optimized using a maximum likelihood objective:

LLM (Θ) = −

L∑

j=1

logPΘ(yj |v, l,R, ŷ1:j−1) (1)

where y and ŷ represent the target and input sequence,

while Θ denotes the model parameters and L is the length

of the target sequence. The region embeddings R provide

box-level prior information during target sequence decod-

ing. By treating HOI learning as a sequence generation

task, our model utilizes the semantic knowledge of VL pre-

training methods to generate relation phrases between hu-

mans and objects (e.g., inferring ªreadº conditioned on ªa

man ? bookº), Additoinally, the model can predict new HOI

categories with a free format.

In the following sections, we explain the learning

paradigm of our proposed OpenCat in detail. In Sec 3.2,

we outline the formulation of fundamental HOI tasks as

sequence generation tasks, encompassing HOI recognition

and HOI detection. Sec 3.3 describes how prior knowledge

and weakly-supervised data can be utilized to pre-train the

model through various proxy tasks.

3.2. HOI Learning via Sequence Generation

In order to perform HOI learning, it is necessary to pre-

dict all HOI triplets ϕ = {(h1, r1, o1), (h2, r2, o2), ...} in

an image, where hi, ri, oi refer to the categories of human,

relation and object, respectively. Although a category label

may contain more than one token, we simplify our notation

by using h, r, and o to denote the tokenized category label.

HOI learning comprises two fundamental sub-tasks:

image-level HOI recognition and instance-level HOI detec-

tion. The former involves predicting all HOI categories in

an image, while the latter aims to recognize and localize all

HOI triplets, making it more challenging than image-level

HOI recognition. OpenCat reformulates all HOI learning

tasks as sequence generation tasks. In the following section,

we provide a detailed description of these tasks, with a fo-

cus on how their training target sequences are constructed.

Image-level HOI Recognition. Our model recognizes all

HOI categories in an image and produces a target sequence

in the format of [r1, o1, SEP, r2, o2, SEP, ..., EOS]. Each

(r, o) pair represents an HOI category, and the special token
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[SEP ] denotes the separation between different pairs. This

is necessary to reduce the difficulty of sequence generation,

as the sequence length of (r, o) may vary. The generation

process stops after the [EOS] token is predicted. During

training, we shuffle the HOI triplets of an image in the tar-

get sequence at each step, as they are unordered. During

inference, our model predicts all triplets directly. Unlike

classifying HOI into fixed-dimension logits, our model is

able to predict free-form HOI categories.

Instance-level HOI Detection. The aim of this task is to

detect bounding boxes for each HOI instance (h, r, o) in the

image while also predicting their categories. However, it is

challenging to strike a good balance between human-object

detection and interaction prediction in multi-task training,

as both tasks are difficult to accomplish [63]. To tackle this

issue, we take a different approach from current one-stage

HOI methods [30, 57], by decoupling the two tasks from

a unified framework through offline object detection. Such

decoupling also provides an additional advantage, as we can

leverage newly proposed detectors [65] to obtain more ac-

curate object locations and better visual representations.

Conditioned on the detected object regions, our model

detects HOI instances as serialized tokens. To be specific,

each instance is represented as several discrete tokens such

as [ph, po, r, o], where ph and po are two pointer tokens be-

tween [0,N−1], indicating the indices of the human and ob-

ject bounding boxes that have been detected. As a result,

the target sequence for HOI detection can be expressed as

[ph1
, po1 , r1, o1, ph2

, po2 , r2, o2, ..., EOS]. It’s worth not-

ing that (phi
, poi) and (phj

, poj ), where i ̸= j, may point

to the same (h, o) pair, since relations between human and

object can be multi-label. Unlike traditional two-stage HOI

methods [19, 49] that suffer from an overwhelming number

of negative HOI proposals based only on local region fea-

tures, our model avoids such interference by setting a max-

imum target sequence length to limit the proposal number.

Note that our open-category prediction framework may

generate triplets that are synonymous with groudtruth HOIs

(e.g., the prediction is ªstand above bicycleº while the

groundtruth is ªstand on bicycleº). We thus use Word-

Net [46] to match the possible synonymous triplets with

groundtruth. Details about this process are presented in the

supplementary material.

3.3. HOI Pre-training via Proxy Tasks

As described in above section, we unify all HOI learn-

ing tasks as sequence generation tasks, which allows for the

prediction of new HOI categories in a free-form manner,

and also facilitates the more effective utilization of weakly-

supervised data for HOI learning. To further enhance model

generalization, we design several auxiliary proxy tasks to

assist weakly-supervised pre-training :

Masked Language Prediction (MLP). To obtain the

HOI triplets for each image, we first employ a rule-

based language parser [27] to parse its corresponding im-

age caption. The resulting HOI triplets, denoted as ϕ =
{(h1, r1, o1), (h2, r2, o2), ...}, are then used in the MLP

task. Specifically, this task randomly selects a subset of HOI

triplets from ϕ, and masks either the relation or object to-

kens of the selected triplets using a special token [MASK].
The masked tokens formulate the target sequence y. The

aim of this task is to predict the masked text spans related

to HOI, based on the visual-textual contexts available.

Human-object Relation Prediction (HRP). In this task,

the model is presented with an image and a textual

prompt (e.g., ªa picture ofº) and is required to generate

all possible HOI categories in the image using an auto-

regressive manner. The format of the predicted sequence

is [r1, o1, SEP, r2, o2, ..., EOS]. To increase the diversity

of the generated sequences, we also augment the target se-

quence by randomly shuffling the order of HOI classes.

Human-object Patch Jigsaw (HPJ). Drawing inspiration

from the jigsaw puzzle solving task [47], which helps the

model recognize the key parts of an object, we propose the

human-object patch jigsaw (HPJ) task. Given an image-

caption pair as input, we slice the image into H×W patches

and randomly select a human-object pair (h, o) from the de-

tected object regions. Assuming the human-object pair con-

tains K image patches, we shuffle the order of these patches

and rotate them by an angle k ∈ {0◦, 90◦, 180◦, 270◦},

which means a rotated patch with k requires 360◦-k clock-

wise rotation to restore. The target sequence of the HPJ task

can be denoted as [ys1, y
r
1, y

s
2, y

r
2, ..., y

s
K , yrK , EOS], where

ysi ∈ [0,HW−1] indicates the original location in the im-

age for the i-th region patch, and yri ∈ {0, 1, 2, 3} denotes

the restoring angle type. The HPJ task enables our model

to explore the relative relationships between distinguishable

local information within the human-object pair, leading to a

better understanding of potential interactions between them.

Soft Relational Matching (SRM). To learn the alignment

between humans and objects in a weakly-supervised man-

ner for HOI detection, we propose the soft relational match-

ing task. In this task, our model outputs a token sequence

for each image, similar to the instance-level HOI detec-

tion paradigm described in Sec 3.2. However, since dis-

crete box indices for pointer tokens ph, po are not available,

we create soft pseudo labels by distilling knowledge from

an image-text teacher encoder V and T [34, 50] pre-trained

on billions of image-caption pairs. Specifically, we use an

image teacher encoder V to extract object region embed-

dings V(B) offline and obtain text embeddings T (ϕ) for

HOI triplets ϕ. For each ϕi = (hi, ri, oi) in ϕ, the soft

matching label between ϕi and object regions B is com-

puted as the cosine similarity z(hi) = cos(V(B), T (hi))
and z(oi) = cos(V(B), T (oi)). Then we apply softmax

activation to compute the cross entropy loss:
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Table 1. Our pre-training data vs. fully-supervised HOI datasets. ∗ denotes the object boxes are provided by an off-the-shelf object detector.

ªgrounded HOIº denotes exact alignment annotations between human and object in the image.

Dataset
image

caption

object

bbox

grounded

HOI

clean

HOI label
#image #HOI triplet #bbox #object #relation

MPII [1] × ∗ × ✓ 15,205 - - - 393

HICO [6] × ∗ × ✓ 38,118 - - 80 117

V-COCO [21] × ✓ ✓ ✓ 5,400 24,331 50,759 80 26

HICO-DET [5] × ✓ ✓ ✓ 38,118 70,373 199,733 80 117

ours ✓ * × × 754,001 1,818,071 7,540,010 9731 2516

Lφi
= LCE(z(hi)/τ, phi

) + LCE(z(hi)/τ, poi) (2)

where τ is a scaling temperature. Moreover, we treat

our model Θ as the student model and apply an L1 loss to

minimize the distance between the student and teacher out-

put embeddings: L1 = ||Θ(B),V(B)||1+ ||Θ(ϕ), T (ϕ)||1.

The final objective for SMR is calculated as:

Lsrm = LLM + γ1Lφ + γ2L1 (3)

where LLM denotes the language modeling loss for

SRM task, γ1 and γ2 are re-weighting hyperparameters.

4. Experiments

To demonstrate the open-category and generalization ca-

pabilities of HOI models, we carry out experiments on both

HOI recognition and HOI detection tasks using various

evaluation settings, including many-shot, few-shot, zero-

shot, and weakly-supervised settings.

4.1. Experiment Setup

Pre-training Data. We utilize multiple vision-language

datasets to construct our pre-training data, including Flickr-

30K [48], MS-COCO [39], Visual Genome [31], Open-

Image [33] and ConceptCaption [55]. While these datasets

contain diverse structured annotations, we solely employ

their text supervision. Similar to [67], we adopt a rule-

based language parser [27] proposed by Schuster et al. [54]

to parse HOI triplets from image captions. After pars-

ing, we obtain triplets with lemmatized words of the sub-

ject, relation, and object. We only retain triplets with ºper-

sonº as the subject synset while manually removing triplets

with obvious typos. In total, we collect over 750K im-

ages, including 1.8M HOI triplets that encompass over 2.5K

unique relations and 9.7K object categories. We use Faster-

RCNN [53] trained on the 600-category Open-Image [33]

as the object detector to provide object region candidates

for each pre-training image. As shown in Table. 1, our

weakly-supervised pre-training data outperforms existing

fully-supervised HOI datasets [5,21] in terms of scale, with

at least 20× the size of the image set, 25× the number of

HOI triplets, and 20× the number of relation categories.

By transferring language knowledge from such diverse

text concepts, our model provides prior semantic knowl-

edge for open-set classes (e.g., grab apple, carve sculpture).

Moreover, the model can learn new compositions to pre-

dict novel HOI triplets based on seen verbs and objects (e.g.

leverage ªride horseº & ºfeed donkeyº for ªride donkeyº).

Downstream Datasets. We validate our model on four

datasets: (1) HICO [6], which comprises 47,776 images

with 600 HOI categories, 80 object categories, and 117

unique relations. Each image may contain multiple HOI

categories; (2) MPII [1], which has 15,205 training im-

ages and 5,708 testing images. Unlike HICO, each image

contains only one of 393 interaction classes; (3) HICO-

DET [5], which is an extension of HICO and includes

bounding box annotations for HOI detection; (4) V-COCO

[21], which is created from the MS-COCO dataset and con-

tains 10,346 images with 26 unique interaction categories.

We conduct image-level HOI recognition experiments on

HICO and MPII, and instance-level HOI detection experi-

ments on HICO-DET and V-COCO.

Implementation Details. Our cross-modal encoder and

decoder consist of 6 transformer layers each, with 8 atten-

tion heads and a hidden dimension of 256 in every layer. We

adopt the same scale and crop augmentation in DETR [4]

such that the longest image side is smaller than 1333 pixels

while the shortest side falls between 480 and 800. During

pre-training, we use the AdamW optimizer [42] and expo-

nential moving average [58] with a decay rate of 0.9998.

We pre-train the model for 40 epochs using a batch size of

32. The learning rate is initialized to 1e-4 and 1e-5 for trans-

former layers and backbones, and is initialized to 3e-5 and

1e-5 when fine-tuning on downstream tasks. For each im-

age, we detect N=100 object regions offline. More details

are provided in the supplementary material.

4.2. HOI Recognition

Mean average precision (mAP) is adopted as the evalua-

tion metric for HOI recognition. Figure 3 presents the full-

set results on HICO and MPII. We compare our model with

different methods, such as Mallya et al. [45], Pairwise [14],
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Figure 3. Comparison of many-shot HOI recognition on HICO

and MPII with full-set datasets.

Table 2. Comparison of few-shot HOI recognition on HICO,

where † denotes using external fine-grained bodypart-level labels.

Method Few@1 Few@5 Few@10

Pairwise [14] 13.20 19.79 22.78

HAKE† [35] 25.40 32.48 33.71

OpenCat 37.52 42.45 44.17

HAKE† [35] on HICO, and R*CNN [20], Att.Pool [18],

Pairwise [14] on MPII. Our model outperforms other meth-

ods by at least +9.7% mAP over HAKE† on HICO, and

+11.1% mAP over Pairwise on MPII. It’s important to note

that the improvement isn’t solely attributed to the availabil-

ity of additional data. Despite using only low-cost pre-

training data, OpenCat still surpases another pre-trained

model HAKE†, which relies on bodypart-level annotations.

To validate our model’s effectiveness under the few-shot

setting, we present the results on HICO in Table 2. Few@i
denotes the mAP metric under few-shot circumstances, with

the number of training samples less than i. When i equals to

1, it represents the one-shot problem. Without external fine-

grained labels, our model achieves significant improvement

with +12.12% mAP on 1-shot, +9.97% mAP on 5-shot and

+10.46% mAP on 10-shot compared to HAKE†. These re-

sults indicate that our model can effectively handle the long-

tailed distribution problem in HOI recognition, and can well

adapt to rare interaction classes.

4.3. HOI Detection

For HOI detection, we adopt the same evaluation proto-

col in [5] and use mAP as the evaluation metric. An HOI

prediction is considered as a true positive only if the Inter-

action of Union (IoU) of human and object bounding boxes

is equal to or greater than 0.5, and the interaction label pre-

diction is correct as well. We carry out experiments on two

datasets: (1) HICO-DET, which is divided into three HOI

category subsets [5]: the Full set includes all 600 HOI cate-

gories; the Non-rare subset consists of 462 categories with

10 or more training samples per category; the Rare subset

consists of the remaining 138 categories with less than 10

training samples per category. (2) V-COCO, which includes

Table 3. Comparison of HOI detection on HICO-DET and V-

COCO. ªS1º and ªS2º denotes Scenario 1 and Scenario 2.

H
IC

O
-D

E
T

Method Backbone Full Rare Non-rare

PPDM [38] Hourglass-104 21.73 13.78 24.10

DRG [16] ResNet-50-FPN 24.53 19.47 26.04

AS-Net [8] ResNet-50 28.87 24.25 30.25

QAHOI [7] Swin-B 29.47 22.24 31.63

QPIC [57] ResNet-101 29.90 23.92 31.69

CDN [63] ResNet-101 32.07 27.19 33.53

OpenCat ResNet-101 32.68 28.42 33.75

V
-C

O
C

O

Method Backbone S1 S2

TIN [37] ResNet-50 47.8 -

AS-Net [8] ResNet-50 53.9 -

HOTR [30] ResNet-50 55.2 64.4

DIRV [15] EfficientDet-d3 56.1

QPIC [57] ResNet-101 58.8 61.0

CDN [63] ResNet-101 61.7 63.8

OpenCat ResNet-101 61.9 63.2

Table 4. Comparison of zero-shot HOI detection on HICO-DET.

UC, UO, UR, UA denote unseen combination, unseen object, un-

seen relation and unseen all scenarios, ªrare firstº and ªnon rare

firstº are two HOI class splits provided by [26]

Method Type Unseen Seen Full

VCL [25] UC (rare first) 10.06 24.28 21.43

FCL [26] UC (rare first) 13.16 24.23 22.01

OpenCat UC (rare first) 21.46 33.86 31.38

VCL [25] UC (non rare first) 16.22 18.52 18.06

FCL [26] UC (non rare first) 18.66 19.55 19.37

OpenCat UC (non rare first) 23.25 28.04 27.08

FG [2] UO 11.22 14.36 13.84

ConsNet [41] UO 13.51 14.67 14.48

FCL [26] UO 15.54 20.74 19.87

OpenCat UO 23.84 28.49 27.72

ConsNet [41] UR 12.50 14.72 14.35

OpenCat UR 19.48 29.02 27.43

OpenCat UA 15.82 - -

two scenarios. Scenario 1 is required to detect HOI pairs

even if there is occlusion between them, while Scenario 2

does not require the detection of occluded HOI pairs.

Table 3 presents the comparison of HOI detection re-

sults on HICO-DET and V-COCO. Our model delivers con-

sistent improvement when compared to previous works on

the HICO-DET Full set. Furthermore, it achieves compet-

itive performance on V-COCO compared with state-of-the-

art CDN [63]. Notably, our model achieves 28.42 mAP on

the HICO-DET Rare set, a larger improvement than that on

the Full set, which again demonstrates our model’s capacity

to adapt to rare classes caused by long-tailed distribution.

4.3.1 Zero-shot HOI Detection

The concept of detecting zero-shot interactions, where there

is no corresponding image available during training, is first
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Table 5. Comparison of weakly-supervised HOI detection on

HICO-DET and V-COCO, where ªS1º and ªS2º denotes Scenario

1 and Scenario 2.

HICO-DET V-COCO

Method Full Rare Non-rare S1 S2

PPR-FCN [64] 15.14 10.65 16.48 - -

MX-HOI [32] 16.14 12.06 17.50 - -

Align-Former [28] 20.85 18.23 21.64 15.8 16.3

OpenCat 25.82 24.35 26.19 34.4 36.1

introduced by Shen et al. [56]. In our experiments, we ex-

amine four zero-shot scenarios on HICO-DET [5]:

Unseen Combination (UC). Following [2, 56], we select

120 HOI triplets in HICO-DET as unseen testing set and use

the remaining 480 triplets for training. We ensure each re-

lation or object category in unseen set appears at least once

in the 480 triplets. Experiments are carried out on two class

splits provided by [25]: ªrare firstº, which prefers selecting

the 120 unseen triplets from the tail, and ªnon rare firstº,

which prefers selecting the unseen HOIs from the head.

Unseen Object (UO). We choose 12 object categories as

unseen objects following [26] and identify 100 HOI triplets

containing these objects as unseen HOIs. The remaining

500 HOI triplets are seen during training.

Unseen Relation (UR). Following [41], we select 22 re-

lations out of the 117 relation categories in HICO-DET as

unseen. We remove all training samples containing these

relations for unseen testing.

Unseen All (UA). No supervision is provided. We directly

utilize the pre-trained model to detect HOIs without any

fine-tuning on the downstream dataset.

Table 4 showcases the zero-shot HOI detection per-

formance. Our model significantly outperforms previous

methods by a large margin in UC, UO, and UR scenarios,

demonstrating its ability to detect unseen objects, relations,

and their combinations. Our model also performs well in

the UA scenario without requiring additional modules, even

when all annotations, including bounding box and HOI

alignment labels, are previously unseen. To achieve this,

our model first generates a sequence of HOI categories sim-

ilar to the pre-training procedure of SMR. Then, the model

matches these predicted HOIs with nearest object regions

detected offline based on their embedding similarity. De-

spite not undergoing fine-tuning, our model still achieves

impressive results, reaching 15.82 mAP on HICO-DET.

4.3.2 Weakly-supervised HOI Detection

To further evaluate the robustness of our model, we turn to

weakly-supervised HOI detection, which aims to identify

HOI triplets without the aid of alignment labels between

the human and object in the image. Similar to the UA sce-

Table 6. Ablation of different proxy tasks on HICO, where ª1, 2, 3,

4º denotes the task ids of MLP, HRP, HPJ and SRM respectively.

HICO HICO-DET

Task IDs mAP Full Rare Non-rare

w/o pretrain 43.5 21.25 18.47 21.95

1 45.3 22.13 19.57 22.77

1+2 51.7 24.85 22.28 25.49

1+2+3 53.1 26.12 23.84 26.69

1+2+3+4 56.8 32.68 28.42 33.75

Table 7. Ablation of different teacher encoders of SRM on HICO.

HICO HICO-DET

Task IDs mAP Full Rare Non-rare

w/o SRM 53.1 26.12 23.84 26.69

CLIP w/ Res50 [50] 54.9 29.08 25.26 30.04

CLIP w/ ViT-B/16 [50] 55.7 30.45 26.74 31.38

BLIP w/ ViT-B/16 [34] 56.8 32.68 28.42 33.75

nario mentioned above, our model uses a nearest matching

mechanism to ground object regions of HOI. The evaluation

setting is the same as that for full-set HOI detection.

We present the comparison results with previous works

in Table 5. Our model outperforms Align-Former [28] with

+4.97%, achieving 25.82 mAP on the HICO-DET Full set.

The +6.12% improvement on the Rare set is even more

significant, demonstrating OpenCat is highly robust to rare

classes with limited samples, even under weakly-supervised

training. We achieve larger gains on V-COCO, with +18.6%
in Scenario 1 and +19.8% in Scenario 2. These results un-

derscore the advantage of our model as weak supervision is

much less costly than HOI alignment labels, enabling us to

scale training to a larger number of relations and objects.

4.4. Ablation Study

Ablation of Proxy Tasks. We first validate each proxy

task via a thorough ablation study in Table 6. The HRP task

brings the largest gain of +6.4% for HOI recognition. This

can be attributed to the fact that the HRP task has the most

similar target sequence format to the downstream recogni-

tion task. In addition, a large number of HOI combinations

during pre-training enhance the recognition of HOIs espe-

cially those hard cases. In terms of HOI detection, the SRM

task makes the largest contribution, with +6.56%, +4.58%
and +7.06% mAP improvement on HICO-DET Full, Rare

and Non-Rare sets, respectively. It indicates that the SRM

task can guide our model to reason about the alignment be-

tween human and objects, even without grounded HOI la-

bels. Besides, other proxy tasks also result in stable im-

provements across different benchmarks.

Ablation of Teacher Encoder. The quality of knowl-

edge we borrow in the SRM task depends largely on the
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Figure 4. Ablation of sequence length for performance on HICO.

Table 8. Ablation of different sequence design on HICO. [SEP ]
and [PTR] denote separation and pointer tokens, respectively.

HICO HICO-DET

Sequence Design mAP Full Rare Non-rare

OpenCat 56.8 32.68 28.42 33.75

w/o [SEP ] 49.5 - - -

w/o [PTR] - 30.32 25.84 31.44

teacher encoder we choose, making it critical in the SRM

task. We compare the impact of different teacher encoders

in Table 7. By comparing CLIP [50] with ResNet50 and

ViT-B/16, a more powerful backbone performs better on the

HICO-DET Full set, and BLIP [34] achieves even better

performance. We suggest that BLIP, which is based more

on in-domain data such as MS-COCO and ConceptCaption,

has a smaller gap with our HOI pre-training data compared

to other teacher encoders.

Ablation of Sequence Length. Figure 4 shows the im-

pact of different sequence length on performane. On HICO,

a sequence length of 96 is found to be sufficient for HOI

recognition, while the best performance is achieved with a

sequence length of 160 for HOI detection. Note that the

optimal maximum sequence length varies depending on the

downstream tasks and datasets. For example, since each im-

age in MPII only contains one interaction class, we can use

much shorter sequence length for MPII dataset. In contrast,

for HOI detection, where there could be over 30 HOI in-

stances in an image, longer sequence lengths might be nec-

essary to capture all the relevant information.

Ablation of Sequence Design. We analyze the impact

of sequence design in Table 8. The results show that both

separation token [SEP ] and pointer token [PTR] are effec-

tive in reducing the difficulty of sequence generation. This

indicates the necessity of these tokens in our model design.

5. Qualitative Analysis

Figure 5 provides some qualitative examples of rare cat-

egory prediction. We use iCAN [17] as the baseline. Open-

pour, cup wash, dog

wash, bicycle jump, bicycle milk, cow

text on, cellphone

Figure 5. Qualitative examples of rare HOI category prediction,

where verbs in green are rare categories that our OpenCat is able

to generate while the baseline can not.

Cat is able to predict some challenging HOI cases, such as

ªmilk cowº or ªwash dogº, which are often misclassified as

ªhold cowº or ªhold dogº by the baseline due to the domi-

nant number of ªholdº samples in the dataset. These exam-

ples demonstrate that OpenCat can effectively deal with the

long-tailed distribution problem in HOI datasets.

6. Conclusion

In this paper, we propose OpenCat, an open-category

pre-training model for human-object interaction. OpenCat

adopts a language modeling framework, treating HOI learn-

ing as a sequence generation task to overcome the con-

straints of closed-set prediction for novel HOI categories.

We leverage massive amounts of weakly-supervised data

and propose several proxy tasks for HOI pre-training. As

a result, our model achieves state-of-the-art performance on

HOI tasks across various benchmarks, with significant im-

provements observed on rare and novel categories.

Limitations. Our model auto-regressively generates HOI

triplets, which may lead to a decrease in inference efficiency

due to the long target sequence length. Furthermore, the

limitation on sequence length presents challenges when at-

tempting to merge object detection and HOI prediction into

a unified framework. We intend to address these challenges

in our future work and explore this direction further.
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