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Abstract

Image generation relies on massive training data that
can hardly produce diverse images of an unseen category
according to a few examples. In this paper, we address
this dilemma by projecting sparse few-shot samples into a
continuous latent space that can potentially generate in-
finite unseen samples. The rationale behind is that we
aim to locate a centroid latent position in a conditional
StyleGAN, where the corresponding output image on that
centroid can maximize the similarity with the given sam-
ples. Although the given samples are unseen for the con-
ditional StyleGAN, we assume the neighboring latent sub-
space around the centroid belongs to the novel category,
and therefore introduce two latent subspace optimization
objectives. In the first one we use few-shot samples as pos-
itive anchors of the novel class, and adjust the StyleGAN to
produce the corresponding results with the new class label
condition. The second objective is to govern the genera-
tion process from the other way around, by altering the cen-
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Figure 1. We propose a new image synthesis approach that allows generating diverse unseen results with only 1- or 3-shot samples. Our
key idea is to exploit the continuity of the StyleGAN latent space, and further empower it to generate unseen categories via latent subspace
optimization.

troid and its surrounding latent subspace for a more pre-
cise generation of the novel class. These reciprocal opti-
mization objectives inject a novel class into the StyleGAN
latent subspace, and therefore new unseen samples can be
easily produced by sampling images from it. Extensive ex-
periments demonstrate superior few-shot generation perfor-
mances compared with state-of-the-art methods, especially
in terms of diversity and generation quality. Code is avail-
able at https://github.com/chansey0529/LSO.

1. Introduction

Recent advances in generative models [3,5,8, 11, 19,30]
allow synthesizing of high-quality and realistic images with
diverse styles. However, the success of these models re-
lies heavily on large-scale data. Preparing new data for a
novel class is costly, so it is natural to raise a question, “can
we generate high-quality images with a glance at a few im-
ages?” This leads to the few-shot image generation prob-
lem, where the model is required to generate a novel cate-
gory with only a few images available. Unfortunately, since
the extreme low-shot setting can easily cause catastrophic
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over-fitting, few-shot image generation is still challenging.

Existing methods commonly suppose that the seen mod-
els have implicit generalization ability towards unseen cate-
gories. Based on this assumption, task-specific optimization
is adopted to seek proper initial parameters, which better
generalize to the downstream tasks [0, 25]. Testing phase
generation is another solution, which skips integrating the
information of unseen category into model weights. Never-
theless, the generated images are either with a lot of class-
specific information distortion [7] or fail to restore the de-
tailed features, such as textures [10,44]. The main assump-
tion of this line of research in model generalization ability
is false, and therefore the model trained on seen data can-
not extract out-of-domain unseen-specific features without
adaptation, e.g., generating a spotted dog via glancing on
a golden retriever, which significantly limits their practical
usage in real-world scenarios. As a consequence, a key fac-
tor to the success of few-shot synthesis is to expose the sam-
ples of unseen classes to the model.

One of the major obstacles is the sparsity of the unseen
samples. Traditional generative networks require model-
ing the continuous distribution for generating diverse im-
ages with unseen-specific features. However, the discrete
data points under the few-shot setting make the model ill-
informed about the inner structure of the unseen distribu-
tion. On the other hand, the pretrained latent spaces of
Style-series models [17-19, 43] are shown to be semanti-
cally interpretable and continuous. This property ideally
fits our problem. Once the proper latent locations of unseen
samples are found, we can complement the marginal region
with the hidden semantic information and form a subspace
for the unseen category. In this way, diverse unseen images
can be generated via sampling from the new subspace.

Based on the above insights, we proposed a novel la-
tent subspace optimization framework for few-shot image
generation. The key idea is to search for the optimal sub-
distribution of unseen using latent anchor localization, and
then align the sub-distribution with the input unseen distri-
bution using latent subspace refinement. To obtain an un-
seen correlated semantic region in the latent space, we first
locate the subspace of the unseen category by faithful an-
chor optimization. Specifically, the latent codes of the un-
seen category are served as reliable latent subspace indica-
tors by inverting the available unseen images into the latent
space. Based on these anchors, the coarse centroid of the
unseen distribution is pulled to the hypothetical point using
a subspace localization loss.

Subsequently, due to the semantic deficiency of few-shot
images, distributional shift exists between the resulting dis-
tribution of our subspace and the real unseen distribution.
To mitigate semantic misalignment, we propose to refine
the latent subspace of unseens. We employ an adversar-
ial training scheme to inject the unseen correlated features

into the generator. However, the guidance of the adversar-
ial game easily leads to over-emphasis on transferring the
low-level features, ignoring the learning of unseen seman-
tics (e.g., fails to generate a wolf but a wolf-like dog). Thus,
the generated images may belong to a completely different
semantic category, though they contain similar textures with
the few-shot examples. To preserve the unseen-specific se-
mantic, we further restrict the latent subspace by a semantic
stabilization loss. Once the StyleGAN and its subspace are
properly optimized, our framework is able to generate di-
verse and high-quality unseen images. We compare to state-
of-the-art methods extensively on different datasets, and we
show significant superiority over them.
In summary, the contribution of this paper is fourfold:

* We delve into few-shot image generation from a novel
perspective of exploring the continuity of the latent
space for discovering unseen category.

* We propose a novel latent subspace optimization
framework to model the distribution of unseen sam-
ples, while injecting category-specific features into the
generated images.

* Experimental results show that our approach achieves
state-of-the-art performances on three datasets, largely
reducing the FID scores by 7.58, 4.37, and 0.98 on
Flowers, AnimalFaces, and VGGFaces respectively
while gaining diversity on most datasets.

* We extend our model to other subfields like image edit-
ing and high-resolution image generation with few-
shot setting. Additionally, we explore the potential of
our framework in few-shot incremental generation.

2. Related Work

Few-shot Image Generation. Few-shot Image Genera-
tion aims to generate diverse and high-quality images given
a few novel samples. Prevailing methods are summarized
as optimization-based, fusion-based, and transformation-
based. Optimization-based methods [6, 9, 30] adopt meta-
learning to search a set of initial parameters that generalize
well for different tasks. Fusion-based methods [2, 10, 12,

,44] learn a k-shot fusion strategy for unseen features,
while transformation-based methods [, 7, 13] preserve the
unseen-specific features via intra-category transformations.
However, the generated images suffer from unseen feature
diminishing. WaveGAN [44] adapts Haar wavelet trans-
form to capture high-frequency features to solve this prob-
lem. Yet, even without the high-frequency details, Wave-
GAN still obtains rich details on generating seen samples,
which convinces us that the crux of feature diminishing lies
in the semantic gap between the seen and the unseen.

Conditional GANs. Broadly defined conditional Gen-
erative Adversarial Networks (cGANs) refers to the type
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Figure 2. The overview of the proposed two-stage latent subspace optimization framework. In this figure, we take the 3-shot image

generation as an example. In stage one, the unseen subspace is
W-space. In stage two, adversarial loss and semantic stabilization

of GANSs that use conditional information like image [15],
text [45], and audio [39]. In this paper, we focus on cGANs
that are conditioned on a category label [24,27,28,33, 34,
41]. This type of cGANs commonly requires combining
a category vector and a noise vector as the input of the
generator. Several techniques are investigated by previous
works to enhance categorical restriction of the conditional
discriminator, including input concatenation [27], hidden
concatenation [34], label prediction [33], and projection
head [3, 16,28]. In this way, cGANs implicitly disentan-
gle the category-relevant and category-irrelevant informa-
tion, which fits well with the purpose of few-shot image
generation. By incorporating the class-irrelevant informa-
tion learned by the noise branch, the pretrained cGAN gen-
erator can be effectively optimized for an unseen category,
thus solving the sparsity issues under the few-shot setting.

Few-shot Generative Domain Adaptation. Few-shot
generative domain adaptation [21,40,47,48] aims at trans-
ferring a source pretrained model to a specific target do-
main, with limited target samples. A common approach
is finetuning the pretrained model with the few-shot data.
However, overfitting happens due to the sparsity of samples,
leading to severe mode collapse. Prevailing works apply
data augmentation [ 1 6], partial parameters freezing [29,32],
or contrastive learning [48] to maintain the diversity of gen-
eration. In contrast to the above adaption methods, our goal
is to generate images for a novel category, which empha-
sizes the importance of extracting category-specific infor-
mation rather than adapting the entire feature space.

localized by optimizing the anchor position of each unseen sample in
loss work together to refine the latent subspace of the unseen category.

3. Method
3.1. Preliminaries

3.1.1 Few-shot Image Generation

The goal of few-shot image generation is to generate real-
istic and diverse images with a few template images. The
samples of a given dataset are separated into two subsets,
the seens C* and the unseens C“. In the training stage, suf-
ficient images from C® are used to train the generator G.
During testing, image generation is completed by further
optimizing the model with k images of the same categories
sampled from C".

3.1.2 Structure of Conditional StyleGAN [16]

The generator G : Z,) — X takes a noise z € Z and a
one-hot label y € )Y as input to generate an image & € X,
where Z, ), X represents the noise space, the label space,
and the image space respectively.

Concretely, Z and ) are first projected to the category-
specific feature space C and the latent space YV by an em-
bedding network Gempeq @ YV — C and a fully-connected
network Goqp @ Z2,C — W respectively. Gepmpeq trans-
forms the sparse label y to a dense category centroid ¢ € C,
which is later mapped as the latent code w € W together
with the noise z through G',p. Afterward, a synthesis net-
work Gy, : W — X decodes w to an image &. The whole
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pipeline can be formulated as:

c :Gembed(y)a
w :Gmap(zac)v (1)
T =Gsyn(w).

Training a novel category with a pretrained condi-
tional StyleGAN would have required extra parameters for
Gemped- Nonetheless, we only need a single dense vector ¢
under the few-shot scheme. Thus, we simplify the training
of Gempeq to the procedure of directly optimizing the vector
c. In the following sections, we denote the centroid of the
unseen category as c to represent the category vector in C.

3.2. Latent Subspace Optimization

Under the few-shot setting, the major challenge for im-
age generation comes from the sparsity of the target image
space X. The generator either memorizes the patterns of the
samples or suffers from severe mode collapse. We attribute
the failure of the adversarial training to the model’s poor
capability to represent the intrinsic features of the unseen
categories. The absence of such capability significantly ag-
gravates the few-shot fitting procedure, which requires the
generator to capture the structural information and simulta-
neously extract specific features for the unseen category.

To overcome the above challenges, we propose a novel
latent subspace optimization framework. Initially, we op-
timize the category centroid with anchors to acquire the
coarse latent subspace. Latent codes in the coarse subspace
are capable of generating structural characteristics but fail
to produce unseen-specific features in most cases. Subse-
quently, we refine the latent space with two objectives for
more consistent interaction between the subspace and the
synthesis network. For the first one, an adversarial loss
is utilized to align the distribution of fake samples and the
real unseen samples. For the second, a semantic stabiliza-
tion loss cooperatively enhances unseen semantics from the
view of trainable anchors. In addition, we further apply a
regularization loss to maintain the continuity and semantic
disentanglement of the latent space. The overview of our
method is shown in Fig. 2.

3.2.1 Latent Anchor Localization

Let the conditional StyleGAN pretrained with seen images
be G°, we invert images from a given unseen category X =
{x;}%_| to the latent space W of G* by inversion I(-,").
The set of latent codes is denoted as © = {w;}F_,, 0 C W,
where w; = I(G*,x;). We also define a set of trainable
noise anchors ®,,; = {a;}¥_, C 2.

To locate the approximate unseen region, we first seek a
rough centroid of the unseen category. The procedure can
be modeled as generating k latent codes {w; }¥_; with the
centroid ¢* and the trainable anchor set ®,,;, i.e., W; =

Gmap(a;i, c*), to approximate the target anchors w; € ©.
By jointly optimizing the noise anchor set @,,,; and the cat-
egory centroid c* with the approximation loss:

k
1 .
Lopp = 1 Y105 = will), @

we can obtain a subspace defined by c*. To force the map-
ping network G, focusing on finding the centroid, we
additionally regularize the magnitude of the trainable noise
anchors a; by:

k
1
L?ngt - %Z(HazHQ)v (3)

which avoids the overfitting of anchors during the approxi-
mation. We further allow the mapping network G/, to be
mildly updated to handle the outliers. The overall objective
of latent subspace localization is formulated as:

Eloc = Lapp + £’rngt- (4)

The centroid c* is hauled to the optimal position and
forms a subspace so that the latent codes within the sub-
space can be generated by feeding randomly sampled noises
z ~ N(0, 1) and the centroid ¢* to the mapping network.

3.2.2 Latent Subspace Refinement

The coarse subspace enables us to generate unseen latent
codes with fast noise sampling. However, the subspace is
incapable of generating samples with unseen-specific fea-
tures. The main reason is that the learned unseen centroid
locates in the seen domain, which may be beyond the distri-
bution of the real unseen distribution, yet there is no super-
vision to solve this problem.

To tackle the distributional shift, we propose to align the
subspace distribution with the real one via an adversarial
game. As the generator progressively refines the original
distribution to adapt to the unseen distribution, the genera-
tion quality of the subspace is improved. The conditional
adversarial loss [27] is formulated as:

‘Cad'u :EZL’NPX [lOgDu (.’E, yu)]

5
FEap, llog(1— DG (¢, ™), O

where y“, Px and Pz denote the unseen label, unseen im-
age set, and the normal Gaussian distribution respectively.
G" and D* denote the conditional generator and the dis-
criminator refined with unseen samples.

Under the guidance of the discriminator, the generator
is instructed to learn the features of an unseen category, al-
lowing the subspace to generate samples that conform to the
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Figure 3. Comparison with state-of-the-art methods under 1-shot and 3-shot settings. The left most of each part are the input few-shot
images. The results of our method preserve more category-specific features, while achieving more stable and diverse generation.

real unseen distribution. However, the adversarial supervi-
sion may lead to an excessive focus on low-level features,
such as colors and fur textures, at the expense of preserving
the correct unseen semantics.

To address this issue and avoid the diminishing of unseen
semantics during the adversarial game, we introduce a se-
mantic stabilization loss that leverages the correspondence
between the trainable anchors a; € @, and the real unseen
images z; € X. Specifically, the proposed loss is composed
of a perceptual loss and a magnitude regularization:

ACstb = Epe’rc + ‘cmgt- (6)

To further improve the semantic consistency of the pro-
duced image #; and the unseen image x;, drawing inspira-
tion from [38], we introduce a similarity loss to complement
the vanilla perceptual loss [46]. More precisely, we mini-
mize the cosine similarity between the extracted features of
inputs. The final perceptual loss can be formulated as:

EpeTc = Llpips(-%ivmi) + ||§32 - m’b||2 + Csim(iivmi)a (7)

where z; represents the image produced by the anchor a;
and unseen centroid ¢, i.e., ©; = G*(a;,c*). The mag-
nitude regularization term is defined in Eq. 3. During the
optimization, the centroid c* and the set of noise anchors
D, are jointly optimized with the generator.

By jointly optimizing the adversarial loss and semantic
stabilization loss, we refine the latent subspace of the un-
seen category and elevate the generation capability of the
latent codes. The overall objective in latent subspace re-
finement can be formulated as:

Eref = Estb + Eadv- (8)

Table 1. Category Split: the split of seen categories C* and unseen
categories C*; Image Split in C*: the split of the subset for image
generation S¢.,, and the subset for metrics evaluation S,,; within
an unseen category.

Category Split | Image Split in C“
Datasels  -pofal| € | C* | Tofal | S.,, | S0,

Flowers 102 85 17 40 10 30
AnimalFaces | 149 | 119 | 30 | 100 10 90
VggFaces 2354 | 1802 | 552 | 100 30 70

3.2.3 Regularization with Seen Semantics

One of the premises for latent subspace optimization is to
maintain semantic-meaningful directions within the latent
space. We expect the current latent space not only fits the
unseen distribution but maintains the generation ability to-
ward seen classes. Inspired by [37], we propose to leverage
the pretrained latent space to restrict the optimization of the
unseen subspace. Specifically, we employ the rich-semantic
latent space of seen pretrained StyleGAN as the teacher to
preserve semantics for the current latent space.

Suppose the StyleGAN generator and discriminator are
G*/* and D*/* respectively, with s/u representing seen
pretrained or unseen optimized. The parameters of G* and
D? are frozen during the regularization. We denote the ran-
domly sampled noise and the seen centroid as z and c®.

For latent anchor localization, we force the generated la-
tent codes of the optimized mapping network G7;, ., and the
pretrained Gy, ,, to be similar, using the same z and c*. The
regularization loss can be written as:

Efeg = ||G;Lnap(z?cs) - anap(zﬂcs)”Q' (9)

For latent subspace refinement, the regularization is ap-
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Table 2. Quantitative comparison with existing competitive methods for few-shot image generation.

Methods k-shot Flowers Animal Faces VGG Faces
FID| LPIPST FID] LPIPST FID| LPIPS?T
DAGAN [1] 1 179.59 0.0496 185.54 0.0687 134.28 0.0608
DeltaGAN [13] 1 109.78 0.3912 89.81 0.4418 80.12 0.3146
AGE [7] 1 45.96 0.4305 28.04 0.5575 34.86 0.3294
Ours 1 35.87 0.4338 27.20 0.5382 4.15 0.3834
FIGR [6] 3 190.12 0.0634 211.54 0.0756 139.83 0.0834
DAWSON [25] 3 188.96 0.0583 208.68 0.0642 137.82 0.0769
GMN [2] 3 200.11 0.0743 220.45 0.0868 136.21 0.0902
MatchingGAN [12] 3 143.35 0.1627 148.52 0.1514 118.62 0.1695
F2GAN [14] 3 120.48 0.2172 117.74 0.1831 109.16 0.2125
LoFGAN [10] 3 79.33 0.3862 112.81 0.4964 20.31 0.2869
WaveGAN [44] 3 42.17 0.3868 30.35 0.5076 4.96 0.3255
Ours 3 34.59 0.3914 23.67 0.5198 3.98 0.3344

plied to both the generator and the discriminator. For the
generator, we expect the images produced by G® and G
to be visually consistent and semantically correlated. To
achieve this, we adopt a perceptual loss on the image pair.
For the discriminator, the semantic correlation is preserved
by using an L, regularization loss on the output features of
the last convolution block of D7 . and D¢ . The regu-

larization terms during refinement are summarized as:

LE Lperc(G¥(2,¢%), G*(2, ¢%))

reg —
(i.s) - Dzonv(is)uw

+ ‘ | D?OTL’U
where 2° is the fake image generated by G*.
Final Objective. In conclusion, the losses of our latent
subspace optimization are grouped into two parts. For latent
anchor localization, the overall loss is formulated as:

(10)

L= Aloc‘Cloc + )\L [rL

reg~'reg-

(11)
For latent subspace refinement, the loss are denoted as:

L=NefLres + B LE

reg~reg:*

(12)

4. Experiments
4.1. Implementation Details

For latent anchor localization, the learning rate of the un-
seen centroid c* and the learnable noise anchors @, is set
to 0.05, and the parameters of the mapping network G,
are adjusted with the learning rate of 0.005. \;,. and )\feg
in Eq. 11 are both set to 1.0.

For latent subspace refinement, the synthesis network
Gyn» the centroid ¢* and the noise anchors @, are re-
fined with a learning rate of 0.0025, whereas the mapping
network G, ., requires a smaller rate of 0.00025. A,y and
)\feg in Eq. 12 are set to 1.0 and 0.02.

We use ADAM [20] for optimization in our experiments.

During the training phase and each few-shot optimization

Table 3. Ablation study of the proposed method and its three vari-
ants under 3-shot settings. LAL, LSR and Reg represent latent
anchor localization, latent subspace refinement and regularization,
respectively. We report the cost of time in seconds. Note that the
baseline classification accuracy with only real images is 60.98%.

Conditions Flowers
LAL LSR Reg\FID¢ LPIPST ACCtT TIME|
v v 3794 04173 68.75% 126
v v  |53.13 0.3412 54.68% 11
v v 36.22 0.3884 75.39% 116
v v Vv 3459 39.14% 75.39% 136

procedure, we enable ADA [16] while disabling style mix-
ing regularization [18] and path length regularization [19].
For more details, please refer to the supplementary.

4.2. Datasets and Metrics

We evaluate our method on three commonly used bench-
marks: Flowers [3 1], AnimalFaces [26] and VggFaces [4].
The images in the above datasets are collected with the res-
olution of 128x 128, 128128, and 64 x64, respectively.
Following [10] [44], each dataset is split into two disjoint
parts: the seen categories C° and the unseen categories C*.
The images of each unseen category are further separated
into two subsets Si.,, and S¢,,; for image generation and
metrics evaluation respectively. The train/test split details
of the benchmarks are compared in Tab. 1.

We use FID and LPIPS as the metrics for quantitative
evaluation. FID is a common metric to reveal image quality
in most image generation tasks. Smaller FID indicates a
higher quality of the generated images. LPIPS is widely
used in the image-to-image field, like GAN inversion [35]
and image translation [26], which is required to be low to
maintain consistency between input and output. In contrast,
we adopt LPIPS to measure the diversity of the generated
unseen images in few-shot image generation.
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Figure 4. The statistical evaluation of each variant of our proposed methods with respect to different sampling intensities. The three plots

are of FID, LPIPS, and ACC respectively from the left to the right.

4.3. Quantitative Evaluation

We randomly sample few-shot generation tasks within
the subset Sg.,, and generate a total number of 128 fake
images for each unseen category ¢ € C*. The produced
images are denoted as the synthesis set S;ia re- We calculate
the FID between the union of synthesis sets and evaluation
sets over the unseen categories, i.e., Srake = U ecu Sfare
and Scyai = Upecu S¢yqr- LPIPS is calculated within each
fake set 5%, to reflect the overall diversity.

We verify the performance of our method under both
one-shot and multi-shot settings. The synthesis set under
the one-shot setting is generated using only one unseen im-
age. For the multi-shot experiment, we follow the setting
in [7, 10] and select & = 3 for a fair comparison.

The results are reported in Tab. 2. For the one-shot set-
ting, our method significantly outperforms all the meth-
ods on FID and achieves the highest LPIPS on 2 out of 3
benchmarks. Impressive gains superior to the second best
method [7] are achieved on VGGFaces. Our method also
beats all the methods on the multi-shot generation. With
significant gains on FID and LPIPS, our method is qualified
for stable, high-quality, and diverse image synthesis.

4.4. Qualitative Evaluation

We compare our method with AGE [7] and Wave-
GAN [44] under the one-shot and multi-shot settings re-
spectively. The visualization of synthesis results on Flow-
ers, AnimalFaces, and VGGFaces are presented in Fig. 3.

For one-shot image synthesis, the results are shown in
the left part of Fig. 3, where the leftmost column is the one-
shot input for each method. Compared with the generation
results of AGE [7], the images generated by our method
preserve more details of the unseen category, such as sta-
mens, fur textures, and wrinkles. In addition, our method
can resist the negative impact due to the category gap, i.e.,
the fuzzy artifacts. Moreover, our method better captures
unseen-specific characteristics, such as sunglasses. With
the generated images in various shapes, textures, and poses,
our method shows great generative capability in most cases,
indicating our method’s generative diversity.

Under the multi-shot setting, our method effectively im-

Figure 5. Results of image editing on the unseen image. The re-
sulted images are of resolution 64x64. The edited attributes are
eyes pose, smile, moustache, and illumination from the top to the
bottom. The edit directions are from the left to the right.

proves the diversity of generated images while maintaining
high-quality image synthesis. As shown in the right part
of Fig. 3, different from WaveGAN [44] that fuses high-
frequency features of the given images and tends to gener-
ate homogeneous images, our method can produce diverse
images that have novel attributes. For instance, our method
can synthesize flowers and dogs with diverse appearances
and poses. Also, our method can achieve more visually
pleasing results. For more examples, please refer to the sup-
plementary material.

4.5. Ablation Studies

The ablation studies are conducted on Flowers [31]. La-
tent anchor localization, latent subspace refinement, and the
regularization are denoted as LAL, LSR, and Reg, respec-
tively. We design three variants to verify the effectiveness
of our framework, each without one of the proposed com-
ponents. We then evaluate each variant with FID, LPIPS,
accuracy gain, and the time cost of optimization to demon-
strate the comprehensive performance. The accuracy gain,
denoted by ACC, proves the semantic consistency between
the generated images and the original few-shot category.
Following [12], we estimate the gain of the classification
accuracy brought by augmenting with the generated images.

The statistical results are compared in Tab. 3. We find
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Figure 6. Results of high-quality image generation. On top are the
4-shot examples and the generated images of resolution 512x512
are listed below. Please zoom in for better view.

that the LAL can increase the quality of generated im-
ages, but on the contrary, limit the diversity (w/o LAL vs.
full). The LSR highly contributes to the high-quality, di-
versity, and semantic preservation, but it is relatively time-
consuming (w/o LSR vs. full). Both LAL and LSR obtain a
satisfying gain on the classification task, which shows that
our latent subspace is more closed to the real unseen distri-
bution. The introduced regularization maintains the seman-
tic disentanglement and continuity of the latent subspace,
therefore improving the image quality and generation di-
versity (w/o Reg vs. full).

We also plot the ablation results concerning the inten-
sity of sampling noise in Fig. 4. Generally, the intensity of
noise sampling controls the variance of samples from the
semantic center of the latent subspace. The higher the in-
tensity is, the more disparity of samples we have. As shown
in Fig. 4, our model dominates the performance of FID and
ACC under various sampling intensities, which shows the
stable generation ability of our method. The LPIPS is an
exception since Eq. 3 aggregates the latent anchors to form
a faithful unseen region, thus impairing the diversity. For
more details, please refer to the supplementary material.

4.6. Applications

We further evaluate our method on other image-
generative tasks where only extremely low samples are
available, i.e., image editing, high-resolution image genera-
tion, and few-shot incremental learning.

Image Editing. We manipulate the unseen images with
attribute-relevant channels in the style space S [42] [22]
and visualize the results in Fig. 5. As the figure shows, our

Figure 7. Results of few-shot incremental generation. The left
most column list the incremental categories, which are provided
in a sequential order from the top to the bottom. The incremental
generation results are listed on the right.

method shows well editability on unseen images.

High-quality Image Generation. We extend our model
to high-quality portrait image generation. We adopt the
widely used portrait dataset CelebA-HQ [23] following the
few-shot setting and collect the images with the image res-
olution of 512 x 512. As shown in Fig. 6, our method
can generate portrait images with high-resolution and well-
preserved details under the 4-shot setting. For more exam-
ples, please refer to the supplementary material.

Few-shot Incremental Image Generation. We also
conduct experiments with incremental unseen categories on
Flowers. We sequentially feed our model with different un-
seen categories and optimize the model continuously. As
shown in Fig. 7, our method successfully generates visual-
pleasing results on the new incoming category while pre-
serving the quality of synthesizing the previous categories.
This phenomenon reveals that our method can optimize the
latent subspace with multiple novel categories.

5. Conclusion

In this paper, we delve into few-shot image generation
from a new perspective of latent space continuity. To ob-
tain a proper subspace for the unseen category, we pro-
pose a novel latent subspace optimization, which can inject
category-specific features into unseen generation. Quantita-
tive and qualitative results demonstrate the robustness and
superiority of our method. Our method is also extendable to
image editing, high-resolution image generation, and few-
shot incremental image generation. We hope that this work
will contribute to the community of few-shot image gener-
ation, with practical and valuable usage.
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