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Abstract

Decentralized learning with private data is a cen-
tral problem in machine learning. We propose a novel
distillation-based decentralized learning technique that al-
lows multiple agents with private non-iid data to learn from
each other, without having to share their data, weights or
weight updates. Our approach is communication efficient,
utilizes an unlabeled public dataset and uses multiple aux-
iliary heads for each client, greatly improving training ef-
ficiency in the case of heterogeneous data. This approach
allows individual models to preserve and enhance perfor-
mance on their private tasks while also dramatically im-
proving their performance on the global aggregated data
distribution. We study the effects of data and model archi-
tecture heterogeneity and the impact of the underlying com-
munication graph topology on learning efficiency and show
that our agents can significantly improve their performance
compared to learning in isolation.

1. Introduction

Supervised training of large models historically relied on
access to massive amounts of labeled data. Unfortunately,
since data collection and labeling are very time-consuming,
curating new high-quality datasets remains expensive and
practitioners are frequently forced to get by with a limited
set of available labeled datasets. Recently it has been pro-
posed to circumvent this issue by utilizing the existence of
large amounts of siloed private information. Algorithms ca-
pable of training models on the entire available data with-
out having a direct access to private information have been
developed with Federated Learning approaches [24] taking
the leading role.

While very effective in large-scale distributed environ-
ments, more canonical techniques based on federated av-
eraging, have several noticeable drawbacks. First, gradi-
ent aggregation requires individual models to have fully
compatible weight spaces and thus identical architectures.
While this condition may not be difficult to satisfy for suf-
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Figure 1. Conceptual diagram of a distillation in a distributed
system. Clients use a public dataset to distill knowledge from
other clients, each having their primary private dataset. Individ-
ual clients may have different architectures and different objective
functions.

ficiently small models trained across devices with compat-
ible hardware limitations, this restriction may be disadvan-
tageous in a more general setting, where some participant
hardware can be significantly more powerful than the oth-
ers. Secondly, federated averaging methods are generally
trained in a centralized fashion. Among other things, this
prohibits the use of complex distributed communication
patterns and implies that different groups of clients cannot
generally be trained in isolation from each other for pro-
longed periods of time.

Another branch of learning methods suitable for dis-
tributed model training on private data are those based on
distillation [3, 6, 15]. Instead of synchronizing the inner
states of the models, such methods use outputs or intermedi-
ate representations of the models to exchange the informa-
tion. The source of data for computing exchanged model
predictions is generally assumed to be provided in the form
of publicly available datasets [12] that do not have to be an-
notated since the source of annotation can come from other
models in the ensemble (see Figure 1). One interesting in-
terpretation of model distillation is to view it as a way of us-
ing queries from the public dataset to indirectly gather infor-
mation about the weights of the network (see Appendix A).
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Unlike canonical federated-based techniques, where the en-
tire model state update is communicated, distillation only
reveals activations on specific samples, thus potentially re-
ducing the amount of communicated bits of information. By
the data processing inequality, such reduction, also trans-
lates into additional insulation of the private data used to
train the model from adversaries. However, it is worth not-
ing that there exists multiple secure aggregation protocols
including SecAgg [5] that provide data privacy guarantees
for different Federated Learning techniques.

The family of approaches based on distillation is less
restrictive than canonical federated-based approaches with
respect to the communication pattern, supporting fully dis-
tributed knowledge exchange. It also permits different mod-
els to have entirely different architectures as long as their
outputs or representations are compatible with each other. It
even allows different models to use various data modalities
and be optimizing different objectives, for example mixing
supervised and self-supervised tasks within the same do-
main. Finally, notice that the distillation approaches can
and frequently are used in conjunction with weight aggrega-
tion [21,30,31,37], where some of the participating clients
may in fact be entire ensemble of models with identical ar-
chitectures continuously synchronized using federated ag-
gregation (see Figure 8 in Supplementary).

Our contributions. In this paper, we propose and em-
pirically study a novel distillation-based technique that we
call Multi-Headed Distillation (MHD) for distributed learn-
ing on a large-scale ImageNet [O] dataset. Our approach
is based on two ideas: (a) inspired by self-distillation
[2,10,38] we utilize multiple model heads distilling to each
other (see Figure 2) and (b) during training we simultane-
ously distill client model predictions and intermediate net-
work embeddings to those of a target model. These tech-
niques allow individual clients to effectively absorb more
knowledge from other participants, achieving a much higher
accuracy on a set of all available client tasks compared with
the naive distillation method.

In our experiments, we explore several key properties
of the proposed model including those that are specific to
decentralized distillation-based techniques. First, we anal-
yse the effects of data heterogeneity, studying two scenar-
ios in which individual client tasks are either identical or
very dissimilar. We then investigate the effects of work-
ing with nontrivial communication graphs and using het-
erogeneous model architectures. Studying complex com-
munication patterns, we discover that even if two clients
in the ensemble cannot communicate directly, they can still
learn from each other via a chain of interconnected clients.
This “transitive” property relies in large part on utilization
of multiple auxiliary heads in our method. We also con-
duct experiments with multi-client systems consisting of
both ResNet-18 and ResNet-34 models [14] and demon-

strate that: (a) smaller models benefit from having large
models in the ensemble, (b) large models learning from a
collection of small models can reach higher accuracies than
those achievable with small models only.

2. Related Work

Personalized Federated Learning. While many early
canonical Federated Learning approaches trained a single
global model for all clients [24], it has been quickly re-
alized that non-IID nature of private data in real systems
may pose a problem and requires personalized approaches
[20]. Since then many Personalized Federated Learning ap-
proaches have been developed, many covered in the sur-
veys [18,33].

Federated Distillation. Emergence of Federated Distilla-
tion was motivated by the need to perform learning across
ensembles of heterogeneous models', reducing communi-
cation costs and improving performance on non-IID data.
Existing distillation-based approaches can be categorized
based on the system setup and the types of the messages
passed between participants. A number of approaches in-
cluding [8, 12,21,23,30,31,37,40] combine aggregation
of weight updates with model distillation. They are typi-
cally centralized and frequently involve client-side distilla-
tion, which may restrict the size of the aggregated model. A
different body of work is concentrated on centralized sys-
tems, where only model predictions are communicated be-
tween the clients and the server [11,13,16,19,26,29,32,39].
Another related family of approaches is based on commu-
nicating embedding prototypes [34], or using embeddings
for distillation directly [1,26]. In this paper, we concentrate
on a more general decentralized setup, where there is not
single central authority and all clients exchange knowledge
via distillation [4].

3. Model
3.1. Setup

We consider a system of K clients C = {C1,...,Ck}.
(See Table 9 in Appendix for a summary of notation.) Each
client C; is assumed to possess their own private dataset D;
while training a private model M; that solves a correspond-
ing task 7;. In the following, we assume that all tasks 7; are
supervised.

While using their local dataset D; to train the private
model, each client can also communicate with other clients
to learn from them. At each global training step ¢, we de-
fine a local directed graph G, that determines the pattern of
this communication. While the set of nodes of G; is fixed
to be the set of all clients, the set of edges &£; with the cor-

Inote that multiple existing approaches like [
FedAvg for training heterogeneous model ensembles

] allow using
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responding incidence function can be dynamic and change
every training step.

The local datasets D; are not directly exchanged between
the clients, instead the information exchange occurs via a
shared public source of unlabeled data D,.. We assume that
at training step ¢, each client C; can perform inference on
a set of public samples and request the results of a similar
computation on the same samples from other clients that are
incident to it by directed edges of G;. In other words, each
client C; is optimizing a local objective £; defined as (see
Algorithm | in Appendix):

‘Cl(t) :‘Cl CEJ’_Z]EwND*‘Cdlbt(w ( ) (I)?z) (1)

where L; ce = E(;)~p,Lce(7,y) and Lcg is a cross-
entropy loss optimized locally by each client on their pri-
vate data D;, L, is a collection of different distillation
losses enumerated by « that use some local computation re-
sult ¥ and a remote results 7, (z) = {¢5(z)|j € e:(i)}
computed on the same sample and e;(7) is a set of clients
connected to ¢ via a set of outgoing edges (from G;).

Notice that in contrast with Federated Learning, here we
do not require different models M; to have compatible ar-
chitectures, but instead optimize local and remote sample
representations ¢;(x) and ¢;(x) to be compatible. In the
next section, we discuss several potential choices of the dis-
tillation losses.

In this paper, we are interested in evaluating the im-
pact that the communication and cross-learning between the
clients has on (a) how well these models can be suited for
their original private tasks and (b) how much of the knowl-
edge gets shared and distributed to the other tasks over time.
Notice that if each client has a sufficiently simple model
and enough training data (making the model underfit), the
communication between individual models is not expected
to improve their private task performance, but can only en-
hance their learned representations making them more suit-
able for adapting to other client’s tasks. However, if the pri-
vate training data is scarce (making the model overfit), the
model communication could improve generalization and ul-
timately improve client performance on their private tasks.

3.2. Distillation Losses

Embedding distillation. We utilize the embedding reg-

ularization loss [, 26] in our experiments. If &;(z) is an

intermediate embedding produced for a sample x coming

from the shared public dataset by the model M;, then we

can choose ¢ (z) = &(z), QS‘;fmb () = & () and define
LG (V5 (@), 50 () as

Vemb §

J€et(d)

p (v (x) — 5™ (2)]) )

or simply Vemb Zjeet(i) p (1€ (x) — & (z)|I), where Vem,
is the weighting constant and p(x) € C°° is some monoton-
ically growing function. The choice of this distillation loss
forces compatibility between sample embeddings across the
ensemble. In practice, we noticed that the embedding norms
of different models frequently diverge during training, and
to adapt to that we use normalized embeddings preserv-

ing regularization consistency across the entire duration of

training: ¥ (z) = &(z)/[1&: ().

Prediction distillation. Ability to predict on classes that
are rarely present in private data can be improved by uti-
lizing prediction vector as an additional distillation target.
However, since M, is tasked with fitting ground truth on
a particular dataset D;, distilling this prediction to labels
relevant for another client may be damaging for the model
performance on 7;. Instead, we choose to add another sin-
gle prediction head to M; that is distilled from all existing
tasks thus (a) not polluting the main prediction head of the
model M;, but (b) at the same time forcing the intermedi-
ate representation &;(x) to contain information relevant for
solving all existing tasks {7;]j € 1,..., K}.

Let h;(&;(x)) be the main head of the model M, used
for computing Lcg and b (&;(x)) be the auxiliary head.
Then, the naive prediction distillation loss takes the follow-
ing form:

LEXR A = —vaux > hjloghi™(z), (3)

J€ei(d)

where v,,x is the auxiliary loss weight. Here all the dis-
tillation targets from e, () are essentially treated the same
irrespective of their confidence in their prediction. One way
of integrating the knowledge of the distillation target quality
is to use some confidence metric for their prediction on z.
For example, we could consider the following modification
of the loss (3):

—Vaux Z Q [ ( )

j€er(i)U{i}

HI[h]] x hjlog hi"™*(x), (4)

where A(h(z)) is the confidence of the classifier prediction,
Q is some function of the client confidence and H[h] =
{A(h;)|j € et(i) U {i}} is the information about confi-
dence of all possible distillation targets including the ‘"
client itself. We considered perhaps the simplest choice
for A defining it as arg max,, hg(x). This measure of the
model confidence that we end up using in our method is, of
course, not reliable (see Appendix A) and using a separate
per-client density model p; () for detecting in-distribution
and out-of-distribution samples could potentially improve
model performance (for an alternative approach see [22]).
For (), we only considered perhaps the most obvious choice
of Q[A(h;)] = 1if j'! client has the largest confidence
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Figure 2. A pattern used for distilling multiple auxiliary heads.
Here multiple auxiliary heads of “Client 1” are distilled from other
auxiliary heads of the same model and from auxiliary heads of
other clients (here “Client 2”). Auxiliary head Aux [ is distilled
from the main heads, auxiliary head Aux 2 is distilled from auxil-
iary heads Aux I and so on.

from H and 0 otherwise, effectively selecting the most con-
fident client and using it as the distillation target (see Ap-
pendix A for a detailed discussion).

Self-distillation with multiple auxiliary heads. Self-
distillation is a well-known technique that improves model
performance by repeatedly using the previous iteration of
the model as the distillation target for itself [2, 10,25, 38].
The most direct application of this technique to training
an ensemble of models is to perform multiple cycles of
self-distillation across all available networks. Here, how-
ever, we propose a different approach, where we mod-
ify a conventional training procedure by equipping each
classifier with a collection of multiple auxiliary heads
{p*™1 . R*™S™Y These auxiliary heads distill from
each other by optimizing the following loss:

m
L?{?:é [haux,l7 h] + Z 3114:; [hau)gk7 haux,kfl], (5)
k=2

where L35 [R“), )] is defined according to Eq. (4). In
other words, h*"! distills from h and h*"** distills from
h*F=1 for all 1 < k < m. This approach illustrated in
Figure 2 is one of the core contributions of our paper.

Communication efficiency. In terms of communication
efficiency, this approach could suffer from ineffective com-
munication when the distillation targets are frequently a
poor source of knowledge for a particular sample class. This
problem would ideally require client awareness of the la-
bel distribution on each client that it communicates with.
However, since in practice, prediction distillation (embed-
ding distillation is more costly) only requires a transmis-
sion of several highest-confidence predictions for each sam-
ple, each step with batch size of 512 would require a com-
munication of only a few thousand floating point numbers
(assuming that shared public set images could be uniquely
identified with a small hash). At the same time, a sin-
gle back-and-forth round of FedAvg communication of a
ResNet-34 model would require more than 100 million

floating-point parameters, which would be equivalent to
around 50k prediction distillation steps.

3.3. Dataset

In this work, we study distributed learning in systems
with varying degrees of data heterogeneity: from those
where the distribution of data is the same across all clients,
to more extreme cases where each client specializes on it’s
own unique task. We simulate these scenarios using an un-
derlying labeled dataset D. Let S be the set of all samples
from D. Some fraction of samples 1 (typically around
10%) is treated as a set of unlabeled public samples. The
remaining samples are treated as the source of private data
and are distributed without repetition across all of K clients
as discussed below.

Label assignment. Each client C; is assigned a subset ¢;
of all labels, which are treated as primary labels for C;.
Remaining labels from D not belonging to ¢; are treated
as secondary labels for C;. For each label [, we take all
available samples and randomly distribute them across all
clients. The probability of assigning a sample with label [
to a client C; is chosen to be 1 + s times higher for clients
that have [ as their primary label. We call the parameter s
dataset skewness. As a result, in the iid case with s = 0 all
samples are equally likely to be assigned to any one of the
clients. However, in the non-iid case in the limit of s — oo,
all samples for label [ are only distributed across clients for
which [ is primary.

We considered two choices for selecting the primary la-
bel sets for the clients. One choice (we refer to as even) is
to subdivide the set of all labels in such a way that each
label has exactly m corresponding primary clients. An-
other choice (we refer to as random) is to randomly assign
each client C; a random fixed-size subset of all labels. This
choice creates a variation in the number of primary clients
for different labels, making it a less idealized and more re-
alistic setup even in the limit of s — co. For example, for
ImageNet with 1000 classes, if it is subdivided between 8
clients each receiving 250 random labels: (a) around 100 la-
bels will be distributed evenly across all clients (no primary
clients), (b) around 270 labels will have a single primary
client, (c) around 310 labels will have two primary clients,
(d) around 210 labels will have three primary clients and (e)
around 110 remaining labels will have 4 or more primary
clients.

4. Experiments

4.1. Experimental Framework

In most of our experiments, we used ImageNet dataset
with samples distributed across multiple clients as discussed
in Section 3.3. The public dataset used for distillation was
chosen by selecting v,u, = 10% of all available train-
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ing samples and the remaining 90% were distributed across
clients as private labeled data. We used both random and
even label distribution strategies and considered two cases
of s = 0 and s = 100 corresponding to homogeneous and
heterogeneous task distributions correspondingly. In most
of our experiments, unless indicated otherwise, we used
ResNet-34 models as individual clients, trained & clients
and each was assigned 250 primary labels at random. The
models were typically trained for 60000 or 120 000 steps
with SGD with momentum, batch size of 512, cosine learn-
ing rate decay and the initial learning rate of 0.1 and mo-
mentum 0.9.

Our experimental platform was based on distillation
losses outlined in Section 3.2. However, being restricted
by computational efficiency needed to run numerous exper-
iments, we made several implementation choices that devi-
ated from the general formulation of Section 3.2 (see Algo-
rithm 2 in Appendix). Most importantly, individual clients
do not directly exchange their predictions on the public
dataset, but instead each client C; keeps a rolling pool P;
of Np model checkpoints. In most of our experiments, Np
was chosen to be equal to the total number of clients in the
system. Every step, each client C; picks a A random check-
points from P; and uses them for performing a distillation
step on a new batch. Each pool P; is updated every Sp
steps, when a new checkpoint for one of the other clients is
added into the pool (replacing another random checkpoint).
In most of our experiments, we used a single distillation
client on every step, i.e., A = 1 and e;(7) defined in Sec. 3.1
contains a single element every step t. However, a separate
exploration of the parameter A was also performed. Also,
since in most of our experiments we used Sp = 200, in-
frequent pool updates would typically introduce a time lag
causing the model to distill knowledge from somewhat out-
dated checkpoints.

4.2. Embedding and Multi-Headed Distillation

In this section we start exploring distillation technique in
the simplest scenario with identical model architectures and
a complete graph connectivity, where each model can distill
knowledge from any other existing client.

4.2.1 Evaluating Basic Distillation Approaches

Consider a set of models with identical ResNet-based archi-
tectures learning on their private subsets of ImageNet and
distilling the knowledge from each other assuming a com-
plete connectivity of the communication graph. We com-
pare the efficiency of knowledge transfer for different distil-
lation approaches: (a) distilling sample embeddings preced-
ing the final logits layer (embedding distillation) and (b) dis-
tilling actual model predictions (prediction distillation) (see
Sec. 3.2). We consider two extreme cases of an iid (s = 0)

2See Figs. 10, 11 and 12 in Appendix for alternative visualizations.
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Figure 3. Comparison of private (on the client’s dataset) and
shared accuracies (on a uniform class distribution) for models
trained on datasets with iid and non-iid distributions (see Sec. 3.3)
(a) with s = 0 and (b) s = 100. Both the main head (solid) and
the auxiliary head accuracies (dashed) are shown’. Four values of
Vaux are shown: 0.0 (blue), 1.0 ( ), 3.0 (green), 10.0 (red).
The accuracies are seen to peak for vaux = 3 and Vemn = 3 for
s = 0 and vemp = 1 for s = 100.

and non-iid (s = 100) distributed ImageNet datasets and
study the final performance of individual agents while vary-
ing the strengths of the embedding and the prediction distil-
lation losses, Vemp and v,ux correspondingly.

In our experiments, we study the performance of primary
and auxiliary model heads on two data distributions: (a) pri-
vate dataset defining the primary problem that the client is
tasked with and (b) shared dataset reflecting the uniform la-
bel distribution averaged across all clients. Any technique
improving the private dataset accuracy [,y can be viewed
as successful at learning from other clients and translating
the acquired knowledge into better performance on their
own task. On the other hand, a technique improving the
shared dataset accuracy Sgy, is successful at learning a more
robust representation that can be easily adapted to solving
other possible tasks (seen by other clients). Both of these
potential capabilities can be viewed as positive outcomes
of cross-client communication and learning, but their utility
may be application specific.

Figure 3 summarizes our empirical results (see Appendix
B for raw numbers) showing the measurements of the aver-
age private accuracy Bpriv, that is the accuracy of each client
on their respective dataset D;, and the averaged shared ac-
curacy (s measured on a dataset with a uniform label dis-
tribution identical to that of the original ImageNet. While
Bpriv measures how well a particular client performs on
their own task, Sy is a reflection of the world knowledge
(some may be irrelevant for the private task) that the client
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Figure 4. Private (dot-dashed) and shared (solid) dataset accura-
cies of main and auxiliary heads in ensembles trained with differ-
ent numbers of auxiliary heads: 1 aux head (blue), 2 heads (

), 3 heads (green) and 4 heads (red). For the IID case the
private and shared performance match.

learns from other participants.

Figure 3 contains several interesting findings: (a) while
both regularization techniques are useful for improving
model performance, there is a threshold beyond which they
start deteriorating both accuracies; (b) taken alone predic-
tion distillation seems to have a stronger positive effect than
the embedding distillation, while embedding distillation is
more effective in the s = 0 case; (c) however, the best re-
sults are obtained by combining both distillation techniques.
Furthermore, we see that the distillation techniques gener-
ally improve both 3., and s, simultaneously. Notice that
the positive effect of v,,x suggests that training a separate
auxiliary head has an effect on the model embedding that
leads to an improved performance on the main head trained
with the client’s private dataset alone. Another interesting
observation is that for uniform datasets with a small s, the
auxiliary head ends up having better performance on both
the private and shared tasks (identical for s = 0). At the
same time, in a non-iid dataset with s = 100, auxiliary head
performs much better on the shared dataset, but lags behind
on the private task since it is not trained on it directly.

4.2.2 TImproving Distillation Efficiency

While Figure 3 shows a clear evidence that distillation tech-
niques can be useful for distributed learning even in the case
of heterogeneous client data, there is a room for further im-
provement.

Ignoring poor distillation targets. In some cases, agents
can be distilling knowledge about particular categories from
agents that themselves do not possess accurate information.
It is even possible that the agent’s auxiliary head is already
“more knowledgeable” about the class than the main head
of another agent that it is trying to distill from. As a result,
the performance of the auxiliary head may degrade. One ap-
proach that we study here is to skip distillation on a sample
if the auxiliary head confidence is already higher than that

s=0 Accuracy ‘ s =100 Accuracy
Separate 46.3% Separate 25.1%
MHD (Ours) 59.9% MHD (Ours) 54.5%
MHD+ (Ours) 68.6% MHD+ (Ours) 63.4%
FA, u = 200 70.5% FA, u = 200 68.0%
FA, u = 1000 69.1% FA, u = 1000 65.7%
Supervised 68.9% - -

Table 1. Comparison of the shared accuracies (s, for our tech-
nique and two “upper-bound” baselines trained for 60k steps on
90% of ImageNet: (a) supervised and (b) trained with Federated
Averaging (FA) performed every u steps. MHD+ experiments
were conducted with 180k steps and used the entire ImageNet as
a public dataset (regime of plentiful public data). Separate corre-
sponds to shared dataset performance for clients trained indepen-
dently on their own private data. FA accuracy being higher than
the supervised could be explained by a much larger number of
samples being effectively processed during training (X 8).

of the head it is trying to distill from. In our experiments,
we observed that that this simple idea had virtually no ef-
fect for s = 0, but allowed us to improve the performance of
the auxiliary head for heterogeneous data distributions with
s = 100. Specifically, for 8 clients and s = 100, this tech-
nique improved auxiliary head Sy, from 44.7% to 46.5%,
while having virtually no effect on the private dataset accu-
racy Bpriv Of the main model head, which stayed at 72.2%.
While effective for single auxiliary head, this technique did
not improve results in multiple auxiliary heads scenario (see
Appendix B) that we will discuss next.

Multiple auxiliary heads. Here we empirically study the
multi-head approach inspired by self-distillation and de-
scribed in detail in Section 3.2. Guided by earlier results
from Section 4.2.1, we choose Ve = 1 and vy = 3. We
then train an ensemble of 8 models, each with 250 primary
labels and two choices of dataset skew: s = 0 and s = 100.
For each choice of parameters, we independently trained
models with 1 to 4 auxiliary heads and then measured the
performance of the main and every auxiliary head on the
client’s private dataset and a shared test set with a uniform
label distribution. The results of our experiments are pre-
sented in Figure 4 (see Appendix B for raw numbers). For
a uniform data distribution, i.e., s = 0, we see that dis-
tilling multiple auxiliary heads has a positive impact on all
model heads for up to 3 auxiliary heads, after which perfor-
mance starts to degrade. Among the heads themselves, the
peak performance is seen to be attained by the 2°¢ auxiliary
head. However, we hypothesize that with the increase of the
number of training steps, the final head will end up having
the highest accuracy.

In the case of a non-iid distribution with s = 100, we
observed that increasing the number of auxiliary heads has
a very profound positive affect on the shared dataset per-
formance Sy, of the final auxiliary head. However, it is the
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main head that achieves the highest private dataset accuracy
Bpriv- All consecutive auxiliary heads appear to loose their
private dataset performance 3., by specializing on captur-
ing the overall data distribution.

Dependence on the number of distillation targets A.
We studied the effect of using multiple distillation targets A
at every training step by considering a typical 8-client setup
with s = 100, 4 auxiliary heads, vemp = 1 and vaux = 3.
While increasing A from 1 to 3 had virtually no effect on
the main head private accuracy fSpriv, the shared dataset ac-
curacy Sy, for the last auxiliary head improved from 54.5%
to 56.1% and then to 56.4% as we increased A from 1 to
3. At A = 4, By, appeared to saturate and fell to 56.2%
(within the statistical error of about 0.2%). Overall, earlier
auxiliary heads appeared to be affected by A more strongly.

Choice of the confidence measure. The choice of the
confidence A(h(x)) is central to the distillation technique.
We compared our current choice based on selecting the
most confident head, with a random selection of the dis-
tillation target. In our experiments with 8 clients each with
250 random primary labels, vemp = 1, Vaux = 3, s = 0 and
3 auxiliary heads, we observed that randomizing confidence
caused the main head 3,,;, degradation from 56% to 55.2%
and the last auxiliary head B¢, went down from 59.5% to
58.4%. The degradation of model performance is more sig-
nificant in the case of heterogeneous client data. In experi-
ments with s = 100 and 4 auxiliary heads, we observed the
main head (,,iy degraded from 72.1% to 71.3% and the last
auxiliary head f3,, decreased from 54.5% to 49%.

Dependence on the technique efficiency on the public
dataset size. The efficiency of model distillation depends
on the amount of data used for performing this distillation,
in our case, on the size of the public dataset. In our exper-
iments outlined in Appendix B.2, increasing the size of the
public dataset while fixing the amount of private training
data has a positive impact on the final model performance.

In practice, since unlabeled data is more abundant, one
can expect that the public dataset size will be comparable
or even larger than the total amount of labeled data avail-
able to clients. Being constrained by the ImageNet size and
attempting to keep the amount of private training data unaf-
fected, we simulate the abundance of public data by reusing
the entirety of the ImageNet dataset as an unlabeled public
dataset. This, of course, is not realistic and somewhat bi-
ased given that we reuse the same samples as labeled and
unlabeled, but it allows us to explore the limits of the dis-
tributed training efficiency with distillation.

4.3. Baseline Comparisons

Before comparing our technique with a similar
distillation-based method, we compared its performance
with two strong “upper-bound” baselines (see Table 1): su-
pervised training on all ImageNet and FedAvg algorithm

MHD Base MHD
60.6% 57.0% /1 0.6%

FedMD Base
56.5%

FedMD
50.2% /2.7%

Table 2. Comparison of mean test accuracies (first number) and
their deviations (second number after /) across 10 clients for our
method and FedMD as reported in Ref. [19]. Baselines (Base) are
obtained by training clients with all available private data.

implemented within our framework. A large performance
gap between shared dataset accuracies obtained using our
method and the strong baselines can be viewed as a price
paid for learning via distillation in a decentralized multi-
agent system. At the same time, we see that increasing the
public dataset size and training for a longer period of time,
allowing the information to propagate across all clients
(Our+ results), brings us close to the supervised model per-
formance. Notice that like many other distillation-based
techniques [19, 39], our method reaches higher accuracy in
the homogeneous data scenario.

We compared our method with FedMD [19] a similar,
but centralized distillation-based methods. This compari-
son was carried out by replicating the dataset and 10 model
architectures from the publicly available implementation.
The dataset is based on CIFAR-100 [17] and makes use of
20 coarse labels, while the public dataset is chosen to be
CIFAR-10. Due to the differences in the training process,
our baseline results with individual models trained on all
private data pooled together was higher than that reported
in [19]. At the same time, we observed a much smaller gap
in performance between this upper baseline and the results
obtained using our method than the gap reported in [19] (see
Table 2). Interestingly, we also observe a much smaller per-
formance spread across all 10 models trained with our tech-
nique (deviation of 0.6% compared to 2.7% for FedMD).

4.4. Communication Topology Effects

In order to explore how our approach might scale to
larger systems in which pairwise connections between all
agents are not feasible, we aim to evaluate how the commu-
nication topology affects performance. In particular we are
interested in the question of whether “transitive distillation”
is possible with our approach — that is whether two agents
that are not directly connected to one-another can still learn
from each-other through an intermediary.

To evaluate this and determine how auxiliary heads play
a role in the performance we ran a training sweep with 4

Islands topology

Figure 5. Topologies compared to validate transitive distillation.

Cycle topology

Baseline topology

8059



Other agent dataset performance

Accuracy (%)

Island-in  Island-out  Cycle-1 Cycle-2 Cycle-3 Baseline

Own dataset performance Shared dataset performance
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Figure 6. The performance by topology and distance between dis-
tillation teacher and student. On the shared dataset the blue hori-
zontal lines indicate the upper bound per the embedding quality —
computed by fine tuning a head on the frozen model embeddings.
Note that island embedding accuracy for “Islands” is still worse
than “Cycle”. Best viewed in color.

agents arranged in 3 different topologies (Figure 5) with 3
auxiliary heads each. In all cases we trained for 120k steps,
with 250 primary labels per agent with s = 100. We ob-
serve (Figure 6) that performance on the shared dataset im-
proves significantly between island and cycle topology, with
the baseline performance matching closely the cycle per-
formance. Without transitive distillation we would expect
island and cycle performance to match closely so this pro-
vides strong evidence for transitive distillation. Also note
that this behavior is only present on auxiliary heads and is
more pronounced for later heads.

We further analyze the performance of each agent on
other agents’ private data. Predictably we observe that is-
land topologies perform well on in-island other agents, and
poorly on agents from outside their island. Cycle topology
agents perform best on their direct teacher (Cycle-I), but
auxiliary heads 2 and 3 perform well on the “1-hop” transi-
tive teacher (Cycle-2), and auxiliary head 3 has markedly
improved performance on the ‘“2-hop” transitive teacher
(Cycle-3). We take this as strong evidence that auxiliary
heads enable transitive distillation, and that additional heads
make learning across additional degrees of separation more
efficient.

4.5. Learning in Heterogeneous Systems

In Section 4.2, we conducted experiments with homoge-
neous ensembles of models. However, in many realistic sce-
narios of distributed deep learning, client devices may have
different hardware-defined limitations and it may be desir-
able to train smaller models on some clients, while allowing
other devices to utilize much larger networks. While model
distillation allows one to achieve this, it is reasonable to
ask why would this even be desirable? What do we expect

to gain from having much larger models in the ensemble?
Here we show two positive effects emerging from having
larger models in an ensemble of smaller clients: (a) infor-
mally speaking, small models benefit from having stronger
teachers and (b) large models can gain complex knowledge
by distilling from smaller and simpler models.

Our ImageNet experiments were conducted with 4
clients each assigned 500 primary labels with one client
being a ResNet34 model and the remaining clients being
ResNetl8. Primary label assignment was random across
clients and we trained the model for 240k steps.

First, we observed that the presence of a larger model im-
proved the accuracy of smaller clients suggesting that they
benefited from seeing a stronger teacher holding some of
the relevant data. Specifically, we observed that the pres-
ence of a ResNet34 model instead of ResNetl8 in the en-
semble led to an increase in the average shared accuracy
Bsn of ResNet18 models from 66.2% to 66.7%.

Secondly, if small models achieve high performance on
their limited personalized domains, a large model distill-
ing from such an ensemble can potentially learn a much
more complex picture of the entire dataset than would other-
wise be accessible to any individual small learner. This ob-
servation has already inspired centralized distillation-based
methods like [13]. In our experiments, we witnessed this
by observing that ResNet34 trained in conjunction with
3 ResNetl8 clients reached the shared accuracy [g, of
68.6%, which exceeds the 67.7% accuracy of an ensem-
ble of 4 ResNet18 models trained with FedAvg or 66.0% if
trained with our approach (both with 200 steps between up-
dates). Notice that if the ResNet34 model is isolated from
ResNet18 models, it only reaches Sy, of 39.4%.

5. Discussion and Conclusions

In this paper, we proposed a novel distributed machine
learning technique based on model distillation. The core
idea of our approach lies in using a hierarchy of multi-
ple auxiliary heads distilling knowledge from each other
and across the ensemble. We show that this technique is
much more effective than naive distillation and allows us to
get close to the supervised accuracy on a large ImageNet
dataset given a large public dataset and longer training time
necessary for information to spread across the system. We
also study two key capabilities of a distributed distillation-
based learning technique. Specifically, we demonstrate that
in systems where direct communication between the clients
is limited, multiple auxiliary heads allow information ex-
change across clients that are not directly connected. We
also demonstrate two positive effects of adding larger mod-
els into the system of small models: (a) small models ben-
efit from seeing larger teachers and that (b) large models
learning from a collection of small models can reach higher
accuracies than those achievable with small models only.

8060



References

(1]

[2

—

(3]

[4

—

[5

—

[6

—_

(7]

(8]

Gustavo Aguilar, Yuan Ling, Yu Zhang, Benjamin Yao, Xing
Fan, and Chenlei Guo. Knowledge distillation from inter-
nal representations. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second In-
novative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 7350-7357. AAAI Press,
2020. 2,3

Sungsoo Ahn, Shell Xu Hu, Andreas C. Damianou, Neil D.
Lawrence, and Zhenwen Dai. Variational information distil-
lation for knowledge transfer. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019, pages 9163-9171. Com-
puter Vision Foundation / IEEE, 2019. 2, 4

Jimmy Ba and Rich Caruana. Do deep nets really need to
be deep? In Zoubin Ghahramani, Max Welling, Corinna
Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27: An-
nual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 2654-2662, 2014. 1

Ilai Bistritz, Ariana J. Mann, and Nicholas Bambos. Dis-
tributed distillation for on-device learning.  In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin, editors, Advances in
Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. 2
Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Anto-
nio Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel
Ramage, Aaron Segal, and Karn Seth. Practical secure ag-
gregation for privacy-preserving machine learning. In Bha-
vani Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017, pages
1175-1191. ACM, 2017. 2

Cristian Bucila, Rich Caruana, and Alexandru Niculescu-
Mizil. Model compression. In Tina Eliassi-Rad, Lyle H.
Ungar, Mark Craven, and Dimitrios Gunopulos, editors, Pro-
ceedings of the Twelfth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, Philadel-
phia, PA, USA, August 20-23, 2006, pages 535-541. ACM,
2006. 1

George Cazenavette, Tongzhou Wang, Antonio Torralba,
Alexei A. Efros, and Jun-Yan Zhu. Dataset distillation by
matching training trajectories. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, pages 10708-10717.
IEEE, 2022. 14

Hong-You Chen and Wei-Lun Chao. Fedbe: Making
bayesian model ensemble applicable to federated learning. In
9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. 2

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

8061

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248-255. leee, 2009. 2
Tommaso Furlanello, Zachary Chase Lipton, Michael
Tschannen, Laurent Itti, and Anima Anandkumar. Born-
again neural networks. In Jennifer G. Dy and An-
dreas Krause, editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML 2018, Stock-
holmsmadssan, Stockholm, Sweden, July 10-15, 2018, vol-
ume 80 of Proceedings of Machine Learning Research,
pages 1602-1611. PMLR, 2018. 2, 4

Xuan Gong, Abhishek Sharma, Srikrishna Karanam, Ziyan
Wu, Terrence Chen, David S. Doermann, and Arun In-
nanje. Preserving privacy in federated learning with en-
semble cross-domain knowledge distillation. In Thirty-
Sixth AAAI Conference on Artificial Intelligence, AAAI 2022,
Thirty-Fourth Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2022, The Twelveth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2022
Virtual Event, February 22 - March 1, 2022, pages 11891—
11899. AAAI Press, 2022. 2

Neel Guha, Ameet Talwalkar, and Virginia Smith. One-shot
federated learning. CoRR, abs/1902.11175,2019. 1,2
Chaoyang He, Murali Annavaram, and Salman Avestimehr.
Group knowledge transfer: Federated learning of large cnns
at the edge. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors,
Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. 2,
8

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages
770-778. IEEE Computer Society, 2016. 2

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
Distilling the knowledge in a neural network. CoRR,
abs/1503.02531, 2015. 1

Sohei Itahara, Takayuki Nishio, Yusuke Koda, Masahiro
Morikura, and Koji Yamamoto. Distillation-based semi-
supervised federated learning for communication-efficient
collaborative training with non-iid private data. CoRR,
abs/2008.06180, 2020. 2

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 7

Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. Sur-
vey of personalization techniques for federated learning.
CoRR, abs/2003.08673, 2020. 2

Daliang Li and Junpu Wang. Fedmd: Heterogenous feder-
ated learning via model distillation. CoRR, abs/1910.03581,
2019. 2,7

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi,
Ameet Talwalkar, and Virginia Smith. Federated optimiza-
tion in heterogeneous networks. In Inderjit S. Dhillon, Dim-
itris S. Papailiopoulos, and Vivienne Sze, editors, Proceed-



(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

ings of Machine Learning and Systems 2020, MLSys 2020,
Austin, TX, USA, March 2-4, 2020. mlsys.org, 2020. 2

Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin
Jaggi. Ensemble distillation for robust model fusion in fed-
erated learning. In Hugo Larochelle, Marc’ Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020. 2

Jiaxin Ma, Ryo Yonetani, and Zahid Igbal. Adaptive distilla-
tion for decentralized learning from heterogeneous clients. In
25th International Conference on Pattern Recognition, ICPR
2020, Virtual Event / Milan, Italy, January 10-15, 2021,
pages 7486-7492. IEEE, 2020. 3

Disha Makhija, Xing Han, Nhat Ho, and Joydeep Ghosh. Ar-
chitecture agnostic federated learning for neural networks.
In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato, editors, Interna-
tional Conference on Machine Learning, ICML 2022, 17-
23 July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages 14860—
14870. PMLR, 2022. 2

Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Agiiera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In Aarti Singh and Xiaojin (Jerry) Zhu, editors, Proceed-
ings of the 20th International Conference on Artificial Intel-
ligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort
Lauderdale, FL, USA, volume 54 of Proceedings of Machine
Learning Research, pages 1273-1282. PMLR, 2017. 1, 2

Hossein Mobahi, Mehrdad Farajtabar, and Peter L. Bartlett.
Self-distillation amplifies regularization in hilbert space.
In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Ad-
vances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. 4
Minh N. H. Nguyen, Huy Q. Le, Shashi Raj Pandey, and
Choong Seon Hong. CDKT-FL: cross-device knowledge
transfer using proxy dataset in federated learning. CoRR,
abs/2204.01542, 2022. 2, 3

Timothy Nguyen, Roman Novak, Lechao Xiao, and Jachoon
Lee. Dataset distillation with infinitely wide convolutional
networks. CoRR, abs/2107.13034, 2021. 14

Krishna Pillutla, Kshitiz Malik, Abdelrahman Mohamed,
Michael Rabbat, Maziar Sanjabi, and Lin Xiao. Federated
learning with partial model personalization. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato, editors, International Confer-
ence on Machine Learning, ICML 2022, 17-23 July 2022,
Baltimore, Maryland, USA, volume 162 of Proceedings of
Machine Learning Research, pages 17716-17758. PMLR,
2022. 2

Felix Sattler, Arturo Marbdn, Roman Rischke, and Woj-
ciech Samek. Communication-efficient federated distilla-
tion. CoRR, abs/2012.00632, 2020. 2

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

8062

Tao Shen, Jie Zhang, Xinkang Jia, Fengda Zhang, Gang
Huang, Pan Zhou, Fei Wu, and Chao Wu. Federated mutual
learning. CoRR, abs/2006.16765, 2020. 2

Stefan Pall Sturluson, Samuel Trew, Luis Mufioz-Gonzalez,
Matei Grama, Jonathan Passerat-Palmbach, Daniel Rueck-
ert, and Amir Alansary. Fedrad: Federated robust adaptive
distillation. CoRR, abs/2112.01405, 2021. 2

Lichao Sun and Lingjuan Lyu. Federated model distillation
with noise-free differential privacy. In Zhi-Hua Zhou, edi-
tor, Proceedings of the Thirtieth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2021, Virtual Event /
Montreal, Canada, 19-27 August 2021, pages 1563-1570.
ijcai.org, 2021. 2

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang
Yang. Towards personalized federated learning. CoRR,
abs/2103.00710, 2021. 2

Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua
Lu, Jing Jiang, and Chengqi Zhang. Fedproto: Federated
prototype learning across heterogeneous clients. In Thirty-
Sixth AAAI Conference on Artificial Intelligence, AAAI 2022,
Thirty-Fourth Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2022, The Twelveth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2022
Virtual Event, February 22 - March 1, 2022, pages 8432—
8440. AAAI Press, 2022. 2

Tianchun Wan, Wei Cheng, Dongsheng Luo, Wenchao Yu,
Jingchao Ni, Liang Tong, Haifeng Chen, and Xiang Zhang.
Personalized federated learning via heterogeneous modular
networks. CoRR, abs/2210.14830, 2022. 2

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and
Alexei A. Efros. Dataset distillation. CoRR, abs/1811.10959,
2018. 14

Chuhan Wu, Fangzhao Wu, Ruixuan Liu, Lingjuan Lyu,
Yongfeng Huang, and Xing Xie. Fedkd: Communication ef-
ficient federated learning via knowledge distillation. CoRR,
abs/2108.13323, 2021. 2

Chenglin Yang, Lingxi Xie, Siyuan Qiao, and Alan L. Yuille.
Training deep neural networks in generations: A more tol-
erant teacher educates better students. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019,
pages 5628-5635. AAAI Press, 2019. 2, 4

Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wen-
chao Xu, and Feijie Wu. Parameterized knowledge transfer
for personalized federated learning. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan, editors, Advances in Neu-
ral Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pages 10092-10104,
2021. 2,7

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free
knowledge distillation for heterogeneous federated learning.
In Marina Meila and Tong Zhang, editors, Proceedings of



the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages 12878—
12889. PMLR, 2021. 2

8063



