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Abstract

Depth completion plays a crucial role in autonomous
driving, in which cameras and LiDARs are two complemen-
tary sensors. Recent approaches attempt to exploit spatial
geometric constraints hidden in LiDARs to enhance image-
guided depth completion. However, only low efficiency and
poor generalization can be achieved. In this paper, we pro-
pose BEV@DC, a more efficient and powerful multi-modal
training scheme, to boost the performance of image-guided
depth completion. In practice, the proposed BEV@DC
model comprehensively takes advantage of LiDARs with
rich geometric details in training, employing an enhanced
depth completion manner in inference, which takes only im-
ages (RGB and depth) as input. Specifically, the geometric-
aware LiDAR features are projected onto a unified BEV
space, combining with RGB features to perform BEV com-
pletion. By equipping a newly proposed point-voxel spatial
propagation network (PV-SPN), this auxiliary branch intro-
duces strong guidance to the original image branches via
3D dense supervision and feature consistency. As a result,
our baseline model demonstrates significant improvements
with the sole image inputs. Concretely, it achieves state-of-
the-art on several benchmarks, e.g., ranking Top-1 on the
challenging KITTI depth completion benchmark.

1. Introduction
Dense depth estimation plays an essential role in various

3D vision tasks and self-driving applications, e.g., 3D ob-
ject detection and tracking, simultaneous localization and
mapping (SLAM), and structure-from-motion (SFM) [14,
17,19,33,37]. With the aid of outdoor LiDAR sensors or in-
door RGBD cameras, 3D vision applications acquire depth
maps for further industrial usage. However, the depth sen-
sors cannot provide dense pixel-wise depth maps since their
output is sparse and has numerous blank regions, especially
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Figure 1. BEV assisted training. (a) Previous camera-based
methods that take RGB and depth input. (b) Previous fusion-based
methods introduce extra inputs and computation in both training
and inference. (c) Our method takes additional LiDAR as input
for assisted training. Only the 2D inputs are used during the infer-
ence, which reduces the computational burden.

in outdoor scenes. Therefore, it is necessary to fill the void
areas of the depth maps in practice.

Recent depth completion methods [4, 12, 21, 47] lever-
age the RGB information as guidance since the RGB im-
ages contain scene structures, e.g., textures, and monoc-
ular features, e.g., vanishing points, to provide the cues
for the missing pixels. However, the camera-based meth-
ods apply the 2D convolution on the irregularly distributed
depth values, resulting in an implicit yet ineffective ex-
ploration of underlying 3D geometry, i.e., over-smooth at
the boundary of objects. Considering the deployment of
cameras and LiDAR in commercial cars and the recent
trend of cross-modal learning in the vision community,
some methods [2, 3, 28, 41] introduce explicit 3D represen-
tations, i.e., LiDAR point clouds generated by sparse depth,
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to complement 2D appearance features with 3D structured
priors. Despite the improvements, the fusion-based ap-
proaches still have the following issues: 1) The 3D fea-
ture extraction and fusion are not efficacious, especially
the critical spatial correlations between a depth point and
its neighbors, which significantly affects the completion
performance. 2) Fusion-based methods are computation-
intensive while processing sparse depths, RGB images, and
additional 3D input such as LiDAR information, either oc-
cupying more memory storage or consuming more time in
inference, which hinders real-time applications.

To address the above issues, we seek to boost image-
guided depth completion performance by exploiting 3D
representations via a more efficient and effective cross-
representation training scheme. In training, we design
an auxiliary LiDAR branch consisting of LiDAR encoder,
cross-representation BEV decoder (CRBD) and point-voxel
spatial propagation network (PV-SPN). Initially, we prepro-
cess each LiDAR scan with the assigned voxel cells to al-
leviate the irregularity and sparseness and then extract its
multi-scale features. After that, these features will be pro-
jected onto a unified BEV space. The following CRBD uti-
lizes the above multi-scale BEV features and the ones from
the camera branch to perform BEV fusion and completion.
After that, the BEV completion is interpolated into the 3D
space, and a point-voxel spatial propagation network is pro-
posed to query the nearest neighbors for each coarse voxel
and performs feature aggregation on all the adjacent points
from LiDAR, refining the 3D geometric shapes. Moreover,
to tackle the extra computational burden from the LiDAR
branch, this plug-and-play component is only exploited in
the training phase, enhancing the original camera branch
through feature consistency and end-to-end backpropaga-
tion. Consequently, the trained model is independent of ad-
ditional LiDAR inputs during the inference.

Compared with previous fusion-based methods, our pro-
posed framework has the following advantages: 1) Gener-
ality: Our plug-and-play solution can be incorporated into
several camera-based depth completion models; 2) Flexi-
bility: The processing module for LiDAR representations
only exists during training and is discarded in inference, as
shown in Fig. 1(c), compared with previous camera-based
models (a) and fusion-based models (b). There is no addi-
tional computational burden in the deployment. 3) Effec-
tiveness: It significantly boosts the performance upon the
baseline approach, achieving state-of-the-art results on sev-
eral benchmarks. To sum up, the main contributions are
summarized as follows:

- Bird’s-Eye View Assisted Training for Depth
Completion (BEV@DC) is proposed, which as-
sists camera-based depth completion with LiDAR
representation during the training phase.

- Cross-representation BEV decoder (CRBD) and point-

voxel spatial propagation network (PV-SPN) are pro-
posed to gain fine-grained 3D geometric shapes and
provide strong guidance to the RGB branch.

- Our solution achieves state-of-the-art on both outdoor
KITTI depth completion benchmark and indoor NYU
Depth v2 dataset.

2. Related Work
RGB-Guided Depth Completion. Compared with the un-
guided methods without the RGB inputs [8, 9, 15] , RGB-
guided ones [4, 12, 21, 47] benefit from useful image fea-
tures, e.g., semantics, resulting in superior performances in
the depth completion task. RGB-guided methods can be
divided into two categories. One pattern is to utilize mul-
tiple branches to process the depth and RGB inputs, re-
spectively, then fuse the processed information at different
scales [28, 31, 38, 47, 50]. KBNet [38] presents a calibrated
back-projection module to back-project spatial encodings of
the depth map and RGB image onto 3D space. RigNet [47]
introduces a repetitive design to RGB-guided networks to
recover depth values. Another pattern [4, 5, 21, 25, 42] is
that all the inputs are fed into a simple UNet [29] and then
processed by the spatial propagation network (SPN) [23].
CSPN [5] is the first work that applies the SPN to depth
completion, where the SPN learns spatial correlations be-
tween a depth point and its neighbors via propagation with
the affinity matrix. Compared to the original SPN, CSPN
uses a recursive convolution operation to increase effi-
ciency. CSPN++ [4] further improves the CSPN by learn-
ing the adaptive convolutional kernel sizes and the number
of iterations for SPN. Since CSPN and CSPN++ involve
the unnecessary use of irrelevant local neighbors, non-local
SPN [25] is proposed to handle relevant non-local neighbors
during propagation. Recently, DySPN [21] presents a dy-
namic attention-based SPN that learns an adaptive affinity
matrix by decoupling the neighborhood into parts in terms
of the distances. Though these image-guided approaches
are improved over time, they lack the ability to understand
the 3D geometries and result in over-smooth boundaries.
Fusion-Based Depth Completion. Since 2D convolution
fails to extract the 3D geometric information effectively,
some depth completion methods [2, 3, 28, 41, 50] resort to
explicit 3D representations. 2D-3D FuseNet [3] consists of
two sub-networks that learn 2D and 3D representations via
the multi-scale 2D convolutions and continuous convolu-
tions, respectively and then fuse 2D and 3D representations
into the 2D image space. PwP [41] predicts the surface nor-
mals, coarse depth, and confidence of LiDAR inputs simul-
taneously and feeds them to the diffusion refinement mod-
ule to obtain the final results. DeepLIDAR [28] utilizes the
surface normals as the intermediate representation and fur-
ther effectively fuses the sparse depth and the dense color
image via a modified encoder-decoder structure. ACM-
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Figure 2. Architecture of BEV@DC. (a) There are two branches in the framework, namely camera and LiDAR branches. The former
takes RGB image and sparse depth as input, which first produces a coarse depth completion through a 2D-UNet. Then a refined depth map
is achieved by the assistance of auxiliary 3D completion together with a spatial propagation network (SPN). The LiDAR branch takes the
point cloud as input, aggregates camera features in a BEV plane (refer to (b) for details), and conducts 3D completion through a point-voxel
spatial propagation network (PV-SPN). (b) LiDAR and camera features are projected into a unified BEV space and fused.

Net [50] extracts the observed contextual information in a
graph propagation manner. Recently, GAENet [2] learns
the geometric-aware embedding from sparse LiDARs and
further fuses the embedding with the 2D appearance fea-
tures from RGB images to estimate dense depths. Although
these fusion-based methods improve performance in a cer-
tain aspect, they introduce a huge computational burden at
the same time, which inherently affects their real-world ap-
plications, such as autonomous driving.
LiDAR Representation Learning. The form of LiDAR
data is represented as 3D point clouds, which are sparse
and irregular scatter points in Euclidean space. To cap-
ture the geometric details in LiDAR point clouds, previous
approaches learn the representation in the following man-
ners. 1) Point-based methods: they directly learn 3D geo-
metric details through point-wise MLPs [26, 45, 51], local
aggregations [26, 27, 34], and non-local operators [46, 49].
2) Voxel-based methods transform the point cloud into 3D
voxel grids and apply 3D convolution. To accelerate the
model speeds, the following approaches [11, 43, 44, 52]
exploit sparse convolution that only calculate in the non-
empty voxels. 3) Besides, there are projection-based meth-
ods, they project points onto 2D images by plane projec-
tion [1,18,32], spherical projection [39,40], or BEV projec-
tion [48], and thus the 2D-CNN can play a normal role. In
this paper, we adopt voxel-based architecture in our LiDAR
branch since it better balances effectiveness and efficiency.

3. Method

3.1. Overview

This paper focuses on boosting camera-based depth
completion, which aims to generate dense depth maps with

sparse depth maps and corresponding RGB images. To in-
troduce the 3D geometric guidance to the network, we de-
sign an auxiliary LiDAR branch to boost the performance.

The architecture of our framework is illustrated in
Fig. 2(a). There are two branches in our framework, namely
the camera and LiDAR branches. The camera branch adopts
traditional U-Net [29] architecture to perform coarse depth
completion and refines the results with a spatial propaga-
tion network (SPN) [21]. The LiDAR point cloud, gained
from the sparse depth map, is fed into the LiDAR encoder
and the multi-scale BEV features are obtained. The cross-
representation BEV decoder (CRBD) takes these features as
the input and generates the BEV completion map in a cas-
caded manner by fusing the camera features. To perform a
fine-grained 3D completion, we present a point-voxel spa-
tial propagation network (PV-SPN). The outputs of BEV
and 3D completion parts maintain feature consistency with
that of the camera branch. The auxiliary branch is only ap-
plied in training and can be discarded in inference, which
prevents the extra computational burden.

3.2. Multi-Scale BEV Generation

We obtain the 3D representations by transforming the
sparse depth map to 3D coordinates, i.e., LiDAR point
clouds. To aggregate the camera and LiDAR features into a
unified BEV space, we then transform them into the same
BEV plane.
LiDAR Transformation. Given an input image with a size
of (H,W ) and a sparse depth map D, we first generate the
image coordinates C according to the depth map,

C = {(u, v,Duv)| u ∈ [1,W ], v ∈ [1, H]}. (1)

We then transform the image coordinates C into the 3D
space, utilizing the camera intrinsic and extrinsic matrices
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K ∈ R4×4 and T ∈ R4×4. Specifically, given the i-th im-
age coordinate Ci = (ui, vi, di), its coordinate (xi, yi, zi)
in the world system is calculated as

[xi, yi, zi, 1]
T = T−1 ·K−1 · [ui×di, vi×di, di, 1]

T . (2)

After the transformation, we obtain a LiDAR point cloud
P = {(xi, yi, zi)}Ni=1.
BEV Features. Unlike previous works [2,3] that utilize the
point-based methods to process the LiDAR representations,
we exploit more efficient sparse convolutions [11] to mine
the LiDAR information. Foremost, we transform the orig-
inal LiDAR coordinates to a sparse volumetric representa-
tion. Specifically, all the points are shifted to the local coor-
dinate system with the geometric center as the origin. Then
we normalize the points into a unit sphere by dividing all
the coordinates by max||P ||2, and scaling the points to the
range of [0, 1]. The normalized coordinates are denoted as
P̂ . Subsequently, we transform the normalized point cloud
to a voxel representation with the resolution r:

p∗i = (x∗
i , y

∗
i , z

∗
i ) = (⌊x̂i × r⌋, ⌊ŷi × r⌋, ⌊ẑi × r⌋), (3)

f∗
m =

1

Nm

N∑
i=1

I[x∗
i = x̂m, y∗i = ŷm, z∗i = ẑm] · pi, (4)

where ⌊·⌋ is the floor function, and I(·) is a binary indicator
of whether p∗i belongs to the m-th voxel grid or not. Nm

is the number of points in the m-th voxel, and the origi-
nal point coordinates are averaged as the features of each
voxel. Via the operations in Eqn. (3) and (4), only the
non-empty voxels are preserved (Nm > 0) in a hash ta-
ble. The convolution operation only conducts on the non-
empty voxels. In this way, the point cloud is in a larger
volumetric resolution while maintaining the computational
efficiency. The whole process of transforming depth images
into the sparse voxels representation is referred to as Image-
to-Voxel Transform in Fig. 2(a). The sparse voxels are in-
put to a sparse convolution-based encoder that extracts the
multi-scale features under different encoder scales. We then
perform the average pooling operations in the height dimen-
sion to squeeze the feature maps, producing the multi-scale
BEV features of LiDAR (i.e., {FL

l }Ll=1).
Camera Features. We extract the multi-scale camera fea-
tures from the U-Net decoder and transform them to the 3D
space by Equation (2) and (3), which is shown as Image-to-
BEV Transform in Fig. 2. Another set of the BEV features
(i.e., {FC

l }Ll=1) is obtained by pooling within the height di-
mension.

3.3. Cross-Representation BEV Decoder

The multi-scale camera and LiDAR BEV features are the
inputs of our decoder architecture, performing completion
in the BEV space. We adopt the U-Net decoder to upsample

the features from the last encoder layer step-by-step. As
shown in Fig. 2(b), the feature map FBev

l of the l-th decoder
layer is produced by

FBev
l = A(U(FBev

l−1 );FC
L−l+1;F

L
L−l+1) (5)

where A(·; ...; ·) and U(·) are the fusion and upsampling op-
erations, respectively. The feature map of the first decoder
is skip-connected to the last encoder layer, FBev

1 = FL
L .

The completion results in the BEV space DBev is obtained
by passing the feature map from the last decoder layer to a
linear classifier.

3.4. Propagation for 3D Completion

To provide the camera branch with more fine-grained
guidance, we propose a point-voxel spatial propagation net-
work (PV-SPN) to project the BEV completion results to
3D voxels and refine the dense 3D completion with propa-
gation.
Revisit Spatial Propagation Network. Spatial propaga-
tion network (SPN) [23] is widely used in the previous
sparse-to-dense depth completion methods, which aims at
refining the initial depth prediction in a recursive manner.
With the initial depth completion input, the SPN refines the
depth in several iteration steps, updating each pixel value
via the aggregation of neighboring pixels and the inclusion
of more detailed and accurate structure information. Specif-
ically, the propagation process in the previous SPN is for-
mulated as:

dli,j = A(Dl−1|A(i,j),N (i, j)) (6)

= a(i,j)→(i,j)d
l−1
(i,j) +

∑
N (i,j)

a(i,j)→(p,q)d
l−1
(p,q), (7)

where dli,j ∈ Dl denotes the depth value at pixel (i, j) in
the l-th iteration. A(·) is a fusion function and N (i, j) rep-
resents the neighboring pixels of pixel (i, j). The core com-
ponent of SPN is the affinity matrix A(i,j), whose element
a(i,j)→(p,q) ∈ A(i,j) contains a relational weight between
pixels (i, j) and (p, q). These weights in an affinity ma-
trix is calculated through the ad-hoc relationships [23] or in
a learnable manner [21]. Moreover, the previous methods
search the neighboring pixels N (i, j) by different coordi-
nate shifts, which is further formulated as:

N (i, j) = {(i+m, j + n)|(m,n) ∈ S(D|i, j)}, (8)

where S(·) is a neighborhood searching function based on
the depth map D and pixel (i, j). For instance, the origi-
nal SPN [23] performs propagation in a fixed neighborhood
coordinate set, i.e., {−1, 0, 1}, and thus the S(·) equals to
searching all pixel in a 3× 3 kernel. Further studies exploit
different searching functions, such as searching in different
kernel sizes in parallell [4] or nonlocal neighborhoods [25].
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Figure 3. Point-Voxel Spatial Propagation Network (PV-SPN). It takes BEV completion as input and generates coarse voxels through
height-dimensional (Z-Axis) MLPs. After that, it inflates the initial voxels and gains more nonempty grids. Then, it searches the K-nearest
neighbors from the original LiDAR point cloud. At the end of each propagation, it conducts aggregation to predict the occupation of each
grid. The PV-SPN will iteratively conduct L times.

Point-Voxel Spatial Propagation Network. PV-SPN takes
the coarse voxel grids as input and refines the dense 3D
completion results. As shown in Fig. 3, we first apply MLPs
on the BEV completion DBev along the height dimension
where the original BEV is extended within the height di-
mension, and a coarse dense completion V 3D is obtained.
Subsequently, the goal of PV-SPN is to refine the dense 3D
completion results via the spatial propagation. A naive im-
plementation way is to extend SPN [23] (Eqn. (7) and (8))
to the 3D operation directly, i.e., searching neighborhood
through the 3D kernel and aggregating the neighboring vox-
els. However, such a manner is extremely time-consuming,
since a large proportions of voxels are invalid in the 3D
dense volume. Exploiting the sparse convolution might be
more efficient, but it has poor generalization to generate in-
visible and new voxels.

To address this problem, we attempt to combine voxels
and point cloud representations, conducting 3D completion
via LiDAR guidance, as shown in Fig. 3. Initially, we con-
duct voxel inflation to obtain more nonzero voxels. We
then transform the the coarse 3D completion V 3D to the
LiDAR coordinates, V = Voxel2LiDAR(V 3D). The op-
eration Voxel2LiDAR(·) extracts the nonzero voxel coordi-
nates and converts them to the LiDAR coordinates through
an inversed process in Eqn. (3). The output V is a point
cloud containing the voxel centers. In each iteration, we
search k-nearest neighbors (kNN) for each voxel center
vi ∈ V towards the LiDAR point clouds P ,

N (vi) = {pi = (xi, yi, zi) | pi ∈ S3D(vi, P )}, (9)

where the searching function S3D(·) is defined as kNN.
This way not only prevents the redundant computation in
the invalid voxels but also utilizes the strong geometric
guidance in the LiDAR point cloud. Furthermore, inspired
by the graph convolution [36], a geometric-aware propaga-

tion in l-th iteration is applied between each voxel center
and neighboring points as:

sli = A3D(V l−1|P,N (vi)) (10)

= σ(T2{
∑

pj∈N (vi)

a3Dvi→pj
T1{pj}}), (11)

where sli is a probability score of i-th voxel is nonempty.
The operations T {·} and σ(·) are MLP and sigmoid func-
tion, respectively. Notice that we design a learnable weight
a3Dvi→pj

to aggregate the features adaptively:

a3Dvi→pj
=

exp(T ((vi − pj) || pj))∑
pk∈N (vi)

exp(T ((vi − pk) || pk))
, (12)

where (· || ·) is the concatenation operation. The final out-
put score S = {sli} generates voxels in the l-th iteration
by the truncation on probability with a pre-defined thresh-
old. Compared with the methods (Eqn. 7) that utilizes the
relationships within adjacent pixels, our PV-SPN (Eqn. 11)
fully explores the 3D geometric cues in the 3D LiDARs.

3.5. Training Objective and Inference

Following the previous camera-based approaches, we
adopt the L1 and L2 losses for the camera branch. The
ground truths of BEV and 3D completion are obtained by
merging the consecutive frames of LiDAR sequences and
the subsequent voxelization, which are aligned with the 2D
ground truths. Notice that the voxels which cannot be ob-
served in any LiDAR scan are labeled as ‘ignored’. We
then apply the Focal loss [20] in training and enable the
network to focus on the nonempty grids. Moreover, the pre-
dictions of the camera and LiDAR branches are aligned to
provide stronger guidance to the camera network, as shown
in Fig. 2(a). In details, we extract the last feature from the
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Table 1. Quantitative evaluation on KITTI DC benchmark. The upper part illustrates the results of camera-based methods and the middle
part are those of fusion-based approaches. ‘M’, ‘T’ and ‘C’ denote ‘modality’, ‘3D representation’ and ‘camera’, respectively. Only
approaches published before 11/11/2022 are compared. The lower the metric values are, the better the estimation results are.

Method M-train M-test RMSE (mm) ↓ MAE (mm) ↓ iRMSE (1/km) ↓ iMAE (1/km) ↓ Reference (year)
CSPN [5] C C 1019.64 279.46 2.93 1.15 ECCV 2018
FusionNet [10] C C 772.87 215.02 2.19 0.93 MVA 2019
S2D [12] C C 814.73 249.95 2.80 1.21 TCI 2020
DSPN [42] C C 766.74 220.36 2.47 1.03 ICIP 2020
CSPN++ [4] C C 743.69 209.28 2.07 0.90 AAAI 2020
NLSPN [25] C C 741.68 199.59 1.99 0.84 ECCV2020
TWISE [16] C C 840.20 195.58 2.08 0.82 CVPR 2021
GuideNet [31] C C 736.24 218.83 2.25 0.99 TIP 2021
FCFRNet [22] C C 735.81 217.15 2.20 0.98 AAAI 2021
PENet [13] C C 730.08 210.55 2.17 0.94 ICRA 2021
RigNet [47] C C 712.66 203.25 2.08 0.90 ECCV 2022
DySPN [21] C C 709.12 192.71 1.88 0.82 AAAI 2022
DepthNormal [41] T+C T+C 777.05 235.17 2.42 1.13 ICCV 2019
DeepLiDAR [28] T+C T+C 758.38 226.50 2.56 1.15 CVPR 2019
FuseNet [3] T+C T+C 752.88 221.19 2.34 1.14 ICCV 2019
ACMNet [50] T+C T+C 744.91 206.09 2.08 0.90 TIP 2021
GraphCSPN [24] T+C T+C 738.41 199.31 1.96 0.84 ECCV 2022
BEV@DC (ours) T+C C 697.44 189.44 1.83 0.82 CVPR2023

camera decoder, transform it to the BEV space, and align
it with the last BEV feature. We also align the results of
two SPNs by performing Image-to-Voxel Transform for the
refined depth maps and guarantee their consistency with 3D
completion results. Since the camera stream regresses the
depth map while the LiDAR stream predicts the occupa-
tion states, it receives a direct alignment and only offers a
hard constraint to each other. Therefore, we apply an ad-
ditional classifier in the camera stream, which divides the
depth value into several ranges, and then project the proba-
bilities in each range into 3D voxels via Eqn. (3), which is
aligned with the predictions of the LiDAR stream later. The
L1 loss is applied to constrain the consistency.

In training, since the camera features are fused into the
LiDAR stream, which is supervised by BEV and 3D com-
pletion labels, the prior knowledge in 3D geometric shapes
can inherently enhance the camera network through end-
to-end backpropagation. Moreover, two feature constraints
also boost knowledge transfer. After training, the enhanced
camera stream can be independently deployed due to the
unidirectional data flow. Our framework effectively im-
proves performance while preventing the extra computa-
tional burden.

4. Experiments
This section describes the datasets, metrics, and imple-

mentation details in our experiments. We also demonstrate
the effectiveness of our method by performing quantitative
and qualitative analysis with the existing approaches. More-
over, the ablation studies show the effectiveness of the indi-

vidual components of our method. Implementation details
are provided in supplementary material.

4.1. Datasets and metrics

Dataset. KITTI Dataset is one of the largest real-world
autonomous driving datasets [35], which contains over
90k RGB images with the corresponding LiDAR projected
sparse depth measurements. It is split into 86k for train-
ing, 7k for validation, and 1k for testing by the official. The
challenge of KITTI Depth Completion1 lies in the sparsity
of the input and ground truth depth, where only 5% pixels
have valid depth values in the input and the 16% sparsity
ground truths are annotated by accumulating 11 consecu-
tive frames. The resolution of the image pairs is top cropped
and center cropped to 1216×256 since there are nearly no
LiDAR projections for the top 100 pixels.

NYUv2 Dataset [30] consists of paired color images and
depth map captured from 464 indoor scenes by the Mi-
crosoft Kinect. We follow the previous works [5,21,25] that
sample a subset of about 50k pairs from the official train
split. The original images are downsampled to 320×240
and then center cropped to 304×228. We use the official
test split, which contains 654 images for our evaluation.
Metrics. For KITTI depth completion dataset, we adopt
the same evaluation metrics as the KITTI depth completion
benchmark where root mean square error (RMSE), mean
absolute error (MAE), inverse RMSE (iRMSE) and inverse
MAE (iMAE) are utilized. While for NYUv2 dataset,
RMSE, REL, and the percentage of pixels satisfying δτ are

1KITTI Depth Completion Evaluation Benchmark
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RGB Image ACMNet RigNet GraphCSPN Ours

Figure 4. Qualitative results of BEV@DC on the KITTI DC benchmark. RigNet [47], ACMNet [50], and GraphCSPN [24] are selected
for comparison. The zoom-in views’ show closer details of the estimated depth maps and error maps (where darker is better). Our method
is able to achieve clearer object boundaries and more fine-grained details with the help of introducing BEV level and 3D level alignment.

chosen for the evaluation metrics.

4.2. Comparison with State-of-the-arts

KITTI Benchmark. We evaluate our proposed BEV@DC
on KITTI depth completion online benchmark where
RMSE is adopted as the major evaluation metric to rank
all the methods. The upper part of Tab. 1 illustrates the
results of camera-based methods and the middle part are
those of fusion-based approaches. Among all approaches,
BEV@DC outperforms all the peer-reviewed methods in
all evaluation metrics, including RMSE, MAE, iRMSE,
and iMAE by the time of submission. In details, our pro-
posed method obtains 697.44 mm in RMSE, which is sig-
nificantly lower than that of the second-best method by
11.68 mm. Note that our model also outperforms other
fusion-based models considerably [10, 28, 41]. Besides,
Fusion-Net [10] employs an additional semantic segmen-
tation network that is pre-trained on Cityscapes dataset [6],
and DeepLiDAR [28] utilized the additional synthetic data
produced by CARLA simulator [7]. In contrast, our method
is solely trained on the KITTI dataset while achieving
much better results, indicating that the proposed multi-
modal training scheme can utilize the geometric-aware Li-
DAR features more effectively. We present the visualiza-
tion results in Fig. 4, where RigNet [47], ACMNet [50],
and GraphCSPN [24] are selected for comparison.
NYUv2 Dataset. Though our BEV@DC is proposed for
outdoor scenarios, we also evaluate its generalization abil-
ity in indoor scenes. Tab. 2 displays the comparisons of the
state-of-the-art on the NYUv2 dataset. The upper part of
Tab. 2 illustrates the results of camera-based methods, and
the middle part is those of fusion-based approaches. Our

Table 2. Quantitative evaluation on NYUv2 dataset. The upper
part illustrates the results of camera-based methods, and the mid-
dle part is those of fusion-based approaches.

Method RMSE REL δ1.25 δ1.252 δ1.253
(m) ↓ (m) ↓ ↑ ↑ ↑

S2D [12] 0.230 0.044 97.1 99.4 99.8
CSPN [5] 0.117 0.016 99.2 99.9 100.0
CSPN++ [4] 0.116 - - - -
FCFRNet [22] 0.106 0.015 99.5 99.9 100.0
GuideNet [31] 0.101 0.015 99.5 99.9 100.0
TWISE [16] 0.097 0.013 99.6 99.9 100.0
NLSPN [25] 0.092 0.012 99.6 99.9 100.0
RigNet [47] 0.090 0.012 99.6 99.9 100.0
DySPN [21] 0.090 0.012 99.6 99.9 100.0
DepthNormal [41] 0.112 0.018 99.5 99.9 100.0
DeepLiDAR [28] 0.115 0.022 99.3 99.9 100.0
ACMNet [50] 0.105 0.015 99.4 99.9 100.0
GraphCSPN [24] 0.090 0.012 99.6 99.9 100.0
BEV@DC (ours) 0.089 0.012 99.6 99.9 100.0

BEV@DC surpasses all the existing works, spanning cam-
era and fusion-based approaches.

4.3. Ablation Studies

Design Analysis. Tab. 3 presents the ablation study on the
KITTI validation set. The table shows that our baseline
only achieves a poor result of 762.21 RMSE. Simply us-
ing BEV completion without feature alignment (model A)
cannot effectively improve the result, where the metric of
RMSE is only decreased to 757.66. After exploiting fea-
ture alignment between the camera and LiDAR branches
(model B), there is a significant improvement of RMSE to
736.57. This improvement mainly comes from the geo-
metric prior provided by BEV fusion and completion. Fi-
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Table 3. Ablation study on the KITTI DC validation set. The ‘camera stream’ denotes the architecture that only uses camera-based depth
completion. The ‘BEV Completion’ means only conducting BEV completion without feature alignment. The lower the metric values are,
the better the estimation results are.

Method Camera Stream BEV Completion Alignment PV-SPN RMSE ↓ MAE ↓ iRMSE ↓ iMAE ↓
baseline ✓ 762.21 197.85 2.06 0.86
model A ✓ ✓ 757.66 195.26 2.06 0.85
model B ✓ ✓ ✓ 736.57 191.28 1.95 0.82
full model ✓ ✓ ✓ ✓ 719.62 187.14 1.88 0.80

1 2 3 4 5 6
Number of propagation iterations

720

722

724

726

728

730

732

RM
SE

 (M
M

)

16 neighbours
8 neighbours
4 neighbours

Figure 5. Impact of the number of propagation steps and neighbors
on the prediction RMSE on KITTI validation set.

nally, PV-SPN greatly improves the performance to 719.62,
which provides the fine-grained geometric details through
3D dense voxels, and inherently affects the results of SPN
through consistency criterion. All of our proposed compo-
nents manifest a positive effect to the camera-based model.
Number of Neighborhoods and Iterations. There are two
important factors in the point-voxel spatial propagation net-
work: the number of neighbors and iteration steps. To ex-
plore the impact of those factors on performance, we set the
iteration steps from 1 to 6 and the number of neighbors to
4, 8, 16. The results are illustrated in Fig. 5. Exploiting
limited iteration steps, i.e., 1 or 2, disables the network to
aggregate enough information, only achieving poor RMSE
of 726.25 or 721.51, respectively. Also, we find out that
the performance hits a bottleneck when the number of iter-
ations is larger than 3. As for the neighborhood numbers,
PV-SPN has a higher RMSE result when it equals to 4, and
the lowest value while using 16 neighborhoods. To balance
the efficiency and effectiveness, we finally set the number
of neighbors and iterations as 16 and 3, respectively.

4.4. Training and Inference Speed

To demonstrate the superiority of our BEV-assisted train-
ing strategy, we show the comparison of training and infer-
ence speed with the previous fusion-based method [50]. As

Table 4. The cost of training and inference on KITTI validation
set. Both methods are tested with the metric of ‘sample/s’.

Method Training Inference
ACMNet [50] 2.72 FPS 4.20 FPS
BEV@DC (ours) 3.01 FPS 7.87 FPS

shown in Tab. 4, the proposed method not only achieves
slightly faster speed than ACMNet in training. Moreover, it
is much faster than ACMNet in inference, i.e., 7.87 FPS v.s.
4.20 FPS. The reason is that our proposed components (i.e.,
LiDAR stream) are fully discarded in inference and thus do
not introduce any extra computational burden.

5. Conclusions
This work proposes the BEV-assisted training for depth

completion (i.e., BEV@DC), a general training scheme, to
boost the performance of image-guided depth completion
via a 3D prior-related training scheme. By leveraging an
auxiliary BEV fusion and 3D dense completion with fea-
ture consistency, BEV@DC acquires structural information
from the LiDAR, effectively enhancing the performance of
a pure camera network. Eventually, it achieves state-of-the-
art on two large-scale benchmarks (i.e., KITTI DC bench-
mark and NYUv2 dataset). We believe that our work can be
applied to a wider range of other scenarios in the future.
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