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Abstract

Planes are generally used in 3D reconstruction for depth
sensors, such as RGB-D cameras and LiDARs. This paper
focuses on the problem of estimating the optimal planes and
sensor poses to minimize the point-to-plane distance. The
resulting least-squares problem is referred to as plane ad-
justment (PA) in the literature, which is the counterpart of
bundle adjustment (BA) in visual reconstruction. Iterative
methods are adopted to solve these least-squares problems.
Typically, Newton’s method is rarely used for a large-scale
least-squares problem, due to the high computational com-
plexity of the Hessian matrix. Instead, methods using an ap-
proximation of the Hessian matrix, such as the Levenberg-
Marquardt (LM) method, are generally adopted. This pa-
per adopts the Newton’s method to efficiently solve the PA
problem. Specifically, given poses, the optimal plane have
a close-form solution. Thus we can eliminate planes from
the cost function, which significantly reduces the number
of variables. Furthermore, as the optimal planes are func-
tions of poses, this method actually ensures that the optimal
planes for the current estimated poses can be obtained at
each iteration, which benefits the convergence. The diffi-
culty lies in how to efficiently compute the Hessian matrix
and the gradient of the resulting cost. This paper provides
an efficient solution. Empirical evaluation shows that our
algorithm outperforms the state-of-the-art algorithms.

1. Introduction
Planes ubiquitously exist in man-made environments, as

demonstrated in Fig. 1. Thus they are generally used in
simultaneous localization and mapping (SLAM) systems
for depth sensors, such as RGB-D cameras [6, 9, 12–14]
and LiDARs [16, 21, 22, 24, 26]. Just as bundle adjust-
ment (BA) [3, 8, 20, 25] is important for visual reconstruc-
tion [1,5,18,19], jointly optimizing planes and depth sensor
poses, which is called plane adjustment (PA) [24,26], is crit-
ical for 3D reconstruction using depth sensors. This paper
focuses on efficiently solving the large-scale PA problem.

The BA and PA problems both involve jointly optimiz-

Figure 1. We use Gaussian noises to perturb the poses of dataset
D in Fig. 3. The standard deviations for rotation and translation
are 3◦ and 0.3m, respectively. The resulting point cloud (a) is in a
mess. Fig. (b) shows the result from our algorithm. Our algorithm
can quickly align the planes, as shown in Fig. 5.

ing 3D structures and sensor poses. As the two problems are
similar, it is straightforward to apply the well-studied solu-
tions for BA to PA, as done in [23, 26]. However, planes
in PA can be eliminated, so that the cost function of the PA
problem only depends on sensor poses, which significantly
reduces the number of variables. This property provides
a promising direction to efficiently solve the PA problem.
However, it is difficult to compute the Hessian matrix and
the gradient vector of the resulting cost. Although this prob-
lem was studied in several previous works [10, 16], no effi-
cient solution has been proposed. This paper seeks to solve
this problem.

The main contribution of this paper is an efficient PA
solution using Newton’s method. We derive a closed-form
solution for the Hessian matrix and the gradient vector for
the PA problem whose computational complexity is inde-
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pendent of the number of points on the planes. Our experi-
mental results show that the proposed algorithm converges
faster than the state-of-the-art algorithms.

2. Related Work
The PA problem is closely related to the BA problem. In

BA, points and camera poses are jointly optimized to min-
imize the reprojection error. Schur complement [3, 20, 25]
or the square root method [7, 8] is generally used to solve
the linear system of the iterative methods. The keypoint is
to generate a reduced camera system (RCS) which only re-
lates to camera poses.

In PA, planes and poses are jointly optimized. Planes
are the counterparts of points in BA. Thus, the well-known
solutions for the BA problem can be applied to the PA prob-
lem [23, 24]. In the literature, two cost functions are used
to formulate the PA problem. The first one is the plane-to-
plane distance which measures the difference between two
plane parameters [12, 13]. The value of the plane-to-plane
distance is related to the choice of the global coordinate sys-
tem, which means the selection of the global coordinate sys-
tem will affect the accuracy of the results. The second one
is the point-to-plane distance, whose value is invariant to
the choice of the global coordinate system. The solutions of
different choices of the global coordinate system are equiv-
alent up to a rigid transformation. Zhou et al. [23] show that
the point-to-plane distance can converge faster and lead to
a more accurate result. But unlike BA where each 3D point
has only one 2D observation at a pose, a plane can gener-
ate many points at a pose as demonstrated in Fig. 2. This
means the point-to-plane distance probably leads to a very
large-scale least-squares problem. Directly adopting the BA
solutions is computationally infeasible for a large-scale PA
problem. Zhou et al. [23] propose to use the QR decompo-
sition to accelerate the computation.

For a general least-squares problem with M variables,
the computational complexity of the Hessian matrix is
O(M2). Thus, in the computer vision community, it is
ingrained that Newton’s method is infeasible for a large-
scale optimization problem, as calculating the Hessian ma-
trix is computationally demanding. Instead, Gauss-Newton-
based iterative methods are generally adopted. Suppose
that J is the Jacobian matrix of the residuals. The Gauss-
Newton method actually approximates the Hessian matrix
by H ≈ JTJ. In theory, Newton’s method can lead to a
better quadratic approximation to the original cost function,
which means the Newton’s step probably yields a better re-
sult. This in turn may reduce the number of iterations.

The PA problem has a special property that the optimal
plane parameters are determined by the poses. That is to
say the point-to-plane cost actually only depends on the
poses. This property is attractive, as it significantly reduces
the number of variables, which makes using the Newton’s

Figure 2. A schematic of the PA problem and the planes detected
in a LiDAR scan. Unlike BA where each 3D point only has one
observation, many points can be captured from a plane in PA.
Assume that N points are captured from a plane. The compu-
tational complexity of the Hessian matrix related to these points
using BALM [16] is O(N2). Thus, this method is infeasible for a
large-scale problem. In contrast, the computational complexity of
our algorithm is independent of N .

method possible. In traditional iterative methods, the cor-
relation between the plane parameters and the poses are ig-
nored. Thus, after one iteration, there is no guarantee that
the new plane parameters are optimal for the new poses.
Using the property of the PA, it is possible to overcome this
drawback, which may lead to faster convergence. Several
previous works seek to exploit this property of PA. Fer-
rer [10] explored an algebraic point-to-plane distance and
provided a closed-form gradient for the resulting cost. The
algebraic cost may result in a suboptimal solution [4], and
the first-order optimization generally leads to slow conver-
gence [20]. Liu et al. [16] provided analytic forms of the
Hessian matrix and the gradient of the genuine point-to-
plane cost. Assume that N points are captured from a plane.
The computational complexity of the Hessian matrix related
to these points is O(N2). Since N can be large as shown
in Fig. 2, this algorithm is computationally demanding and
infeasible for a large-scale problem.

In summary, the potential benefits of the special property
of the PA problem have not been manifested in previous
works. The bottleneck is how to efficiently compute the
Hessian matrix and the gradient vector. This paper focuses
on solving this problem.

3. Problem Formulation
In this paper we use italic, boldfaced lowercase and bold-

faced uppercase letters to represent scalars, vectors and ma-
trices, respectively.

3.1. Notations

Planes and Poses A plane can be represented by a four-
dimensional vector π = [n; d]. We denote the rotational
and translational components from a depth sensor coordi-
nate system to the global coordinate system as R ∈ SO(3)

13114



and t ∈ R3, respectively. To simplify the notation in the fol-
lowing description, we also use the following two matrices
to represent a pose:

X =

[
R, t
0, 1

]
∈ SE(3) and T =

[
R, t

]
. (1)

As R ∈ SO(3), a certain parameterization is usually
adopted in the optimization [20]. In this paper, we use
the Cayley-Gibbs-Rodriguez (CGR) parameterization [11]
to represent R

R =
R̄

1 + sTs
, R̄ =

(
1− sTs

)
I3 + 2[s]× + 2ssT , (2)

where s = [s1; s2; s3] is a three-dimensional vector. We
adopt the CGR parameterization as it is a minimal repre-
sentation for R. Furthermore, unlike the angle-axis param-
eterization that is singular at I3, the CGR parameterization
is well-defined at I3, and equals to [0; 0; 0] which can ac-
celerate the computation, as described in Section 4.3. We
parameterize X as a six-dimensional vector x = [s; t].

Newton’s method This paper adopts the damped New-
ton’s method in the optimization. For a cost function f(z),
the damped Newton’s method seeks to find its minimizer
from an initial point. Assume that zn is the solution at the
nth iteration. Given the Hessian matrix Hf (zn) and the
gradient gf (zn) at zn, zn is updated by zn+1 = zn +∆z.
Here ∆z is from

(Hf (zn) + µI))∆z = −gf (zn), (3)

where µ is adjusted at each iteration to make the value of
f(z) reduce, as done in the Levenberg-Marquardt (LM) al-
gorithm [17].

Matrix Calculus In the following derivation, we
will use vector-by-vector, vector-by-scalar, scalar-by-vector
derivatives. Here we provide their definitions.

Assume a = [a1; · · · ; aN ] ∈ RN is a vector function of
b = [b1, · · · , bM ] ∈ RM . The first-order partial derivatives
of vector-by-vector ∂a

∂b , vector-by-scalar ∂a
∂bj

, and scalar-by-

vector ∂ai

∂b are defined as

∂a

∂b
=


∂a1

∂b1
· · · ∂aN

∂b1
...

. . .
...

∂a1

∂bM
· · · ∂aN

∂bM

 ,
∂a

∂bj
=


∂a1

∂bj
...

∂aN

∂bj

 ,
∂ai
∂b

=


∂ai

∂b1
...

∂ai

∂bM


(4)

where ∂a
∂b is an M × N matrix with ∂aj

∂bi
as the ith row jth

column element, ∂a
∂bj

is an N -dimensional vector whose ith

term is ∂ai

∂bj
, and ∂ai

∂b is an M -dimensional vector whose ith

term is ∂ai

∂bi
.

3.2. Optimal Plane Estimation

Given a set of K points {pi}, the optimal plane π̂ can be
estimated by minimizing the sum of squared point-to-plane
distances

π̂ = argmin
π

K∑
i

(
nTpi + d

)2
, s.t. ∥n∥22 = 1. (5)

There is a closed-form solution for π̂. Let us define

M =

K∑
i=1

(pi − p̄) (pi − p̄)T = S−Kp̄p̄T , (6)

where S =
∑K

i=1 pip
T
i and p̄ = 1

K

∑K
i pi. Assume that

λ3(M) and ξ3(M) are the smallest eigenvalue of M and the
corresponding eigenvector, respectively. Using these nota-
tions, we can write the optimal plane π̂ = [n̂; d̂] as

n̂ = ξ3(M), d̂ = −n̂T p̄. (7)

Furthermore, the cost of (5) at π̂ equals to λ3(M), i.e.,

λ3(M) =

K∑
i=1

(
n̂pi + d̂

)2

= min
π

K∑
i=1

(npi + d)
2
. (8)

The above property will be used to eliminate planes in PA.

3.3. Plane Adjustment

Assume that there are M planes and N poses. Accord-
ing to section 3.1, the ith plane can be represented by a
four-dimensional vector πi = [ni; di]. The jth pose is de-
noted as xj . The observation of πi at xj is a set of Nij

points Qij = {pijk ∈ R3}Nij

k=1. For a 3D point pijk, we use
p̃ijk = [pijk; 1] to represent the homogeneous coordinates
of pijk. Then, the transformation from the local coordinate
system at xj to the global coordinate system can be repre-
sented as

pg
ijk = Rjpijk + tj = Tj p̃ijk, (9)

where Tj is defined in (1). Then the distance dijk from pijk

to πi has the form

dijk(πi,xj) = nT
i (Rjpijk + tj) + di

= nT
i Tj p̃ijk + dj = πT

i p̃
g
ijk.

(10)

The PA problem is to jointly adjust the M planes {πi} and
the N sensor poses {xj} to minimize the sum of squared
point-to-plane distances. Specifically, using (10), we can
formulate the cost function of the PA problem as

min
{πi},{xj}

M∑
i=1

∑
j∈obs(πi)

Nij∑
k=1

d2ijk(πi,xj)︸ ︷︷ ︸
Ci(πi,Xi), Xi={xj |j∈obs(πi)}

= min
{πi},{xj}

M∑
i=1

Ci (πi,Xi) .

(11)
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where obs(πi) represents the indexes of poses where πi can
be observed, and Ci(πi,Xi) accumulates the errors from
Ni =

∑
j∈obs(πi)

Nij points captured at the poses in Xi.
According to (6) and (9), we get

Mi(Xi) =
∑

j∈obs(πi)

Sij −Nip̄ip̄
T
i , (12)

where p̄i = 1
Ni

∑
j∈obs(πi)

∑Nij

k=1 p
g
ijk and Sij =∑Nij

k=1 p
g
ijk

(
pg
ijk

)T

. Here the elements in Mi, Sij and p̄i

in (12) are all functions of the poses in Xi. Substituting pg
ijk

in (9) into Sij and p̄i in (12), we have

Sij = Tj

Nij∑
k=1

p̃ijkp̃
T
ijk︸ ︷︷ ︸

Uij

TT
j = TjUijT

T
j ,

p̄i =
1

Ni

∑
j∈obs(πi)

Tj

Nij∑
k=1

p̃ijk︸ ︷︷ ︸
p̃ij

=
1

Ni

∑
j∈obs(πi)

Tj p̃ij .

(13)

Here Uij and p̃ij in (13) are constants. We only need to
compute them once, and reuse them in the iteration.

According to (7), given poses in Xi, the optimal solution
for πi has a closed-form expression π̂i = [n̂i; d̂i], where
n̂i = ξ3(Mi(Xi)) and d̂i = −n̂p̄i. As Mi and p̄i are
functions of the poses in Xi, π̂i is also a function of the
poses in Xi. That is to say π̂i is completely determined by
the poses in Xi. To simplify the notation, let us define

λi,3(Xi) = λ3(Mi(Xi)), (14)

which represents the smallest eigenvalue of Mi(Xi).
Substituting the optimal plane estimation π̂i into

Ci(πi,Xi) in (11) and using (8), we have

λi,3(Xi) = Ci (π̂i,Xi) . (15)

Using (15), we can formulate the PA problem in (11) as

{x̂j} = arg min
{Xj}

τ , τ =

M∑
i=1

λi,3(Xi). (16)

Table 1 summarizes the notations for PA.
The cost function (16) only depends on poses, which sig-

nificantly reduces the number of variables. However, as it is
the sum of squared point-to-plane distances, we cannot ap-
ply the Gauss-Newton-based methods to minimize it, where
the Jacobian matrix of residuals are required. Here we adopt
the Newton’s method to solve it. The crux for applying the
Newton’s method to minimize (16) is how to compute the
gradient and the Hessian matrix of (16) efficiently. In the
following sections, we provide a closed-form solution for
them. Note that we can assign a weight to each point to

Notation Description

πi The ith plane.
obs(πi) The set of indexes of poses which can see πi.
Xi The set of poses which can see πi.
Mi The scatter matrix for πi.
λ3,i The smallest eigenvalue of Mi.
xj , xk The jth and kth poses.
xjm, xkn The mth and nth elements of xj and xk.
Pj The set of planes that are visible to xj .
Pjk The set of planes that are visible to xj and xk.

Table 1. Table of notations.

punish outliers, which also has a close-form solution for
planes using the weighted PCA. Our algorithm can be ex-
tended to this situation. To simplify the notation, we omit
the variables of functions in the following description (e.g.,
λi,3(Xi) → λi,3).

4. Newton’s Iteration for Plane Adjustment
Let us denote the gradient and the Hessian matrix of τ

in (16) as g and H, and denote the 6-dimensional gradient
vector for xj as gj and the 6 × 6 Hessian matrix block for
xj and xk as Hjk (note that here j can equal to k). Then g
and H can be written in the block form as g = (gj) ∈ R6N

and H = (Hjk) ∈ R6N×6N .
The ith plane πi is observed by the poses in Xi. Assume

xj ∈ Xi and xk ∈ Xi. Let us define

gi
j =

∂λi,3

∂xj
, Hi

jk =
∂2λi,3

∂xj∂xk
. (17)

According to (16), we have

gj =
∑
i∈Pj

gi
j , Hjk =

∑
i∈Pjk

Hi
jk, (18)

where Pj is the set of planes observed by xj , and Pjk is
the set of planes observed by xj and xk simultaneously. If
j = k, here Pjk equals to Pj . From (18), we know that the
key point to get g and H is to compute gi

j and Hi
jk in (17).

4.1. Partial Derivatives of Eigenvalue

According to (15), λi,3 is a function of poses in Xi. As-
sume that xjm and xkn are the mth and nth elements of
xj and xk, respectively. We consider the first- and second-

order partial derivation ∂λi,3

∂xjm
and ∂2λi,3

∂xjm∂xkn
, respectively.

λi,3 is a root of the equation |Mi(Xi)−λiI3| = 0, where
| · | denotes the determinant of a matrix. Assume mef is the
eth row f th column term of Mi(Xi). |Mi(Xi)− λiI3| = 0
is a cubic equation with the following form

− λ3
i,3 + aiλ

2
i,3 + biλi,3 + ci = 0, (19)
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where ai = m11 +m22 +m33, bi = m2
12 +m2

13 +m2
23 −

m11m22 − m11m33 − m22m33, and ci = −m33m
2
12 +

2m12m13m23 −m22m
2
13 −m11m

2
23 +m11m22m33. Here

ai, bi and ci are all functions of the poses in Xi. It is known
that the root of a cubic equation has a closed form. One
solution to compute ∂λi,3

∂xjm
and ∂2λi,3

∂xjm∂xkn
is to directly dif-

ferentiate the root. However, the formula of the root is too
complicated. Here we introduce a simple way to compute
them. Briefly, we employ the implicit function theorem [15]
to compute them. Let us define

χi =

λ2
i,3

λi,3

1

 , ηi =

aibi
ci

κi =

−3
2ai
bi

 , δijm =
∂ηi

∂xjm
.

(20)
Using the above notations, we present ∂λi,3

∂xjm
and ∂2λi,3

∂xjm∂xkn

in Lemma 1 and 2. The proofs of the following lemmas and
theorems are in the supplementary material.

Lemma 1 Using the notations in (20), we have

∂λi,3

∂xjm
= −φiδ

i
jm · χi, (21)

where · represents the dot product and φi = (κi · χi)
−1.

Lemma 2 Using the notations in (20) and (21), we have

∂2λi,3

∂xjm∂xkn
= −φi

(
δi
jm · ∂χi

∂xkn
+ χi ·

∂δi
jm

∂xkn
− ∂λi,3

∂xjm

∂φ−1
i

∂xkn

)
.

(22)

Let us define

αi
j =

∂ai

∂xj
,βi

j =
∂bi
∂xj

,γi
j =

∂ci
∂xj

,∆i
j = [αi

j ,β
i
j ,γ

i
j ],

αi
k =

∂ai

∂xk
,βi

k =
∂bi
∂xk

,γi
k =

∂ci
∂xk

,∆i
k = [αi

k,β
i
k,γ

i
k],

Hai
jk =

∂2ai

∂xj∂xk
,Hbi

jk =
∂2bi

∂xj∂xk
,Hci

jk =
∂2ci

∂xj∂xk
.

(23)

Using the above lemmas and notations, we can derive gi
j

and Hi
jk.

Theorem 1 Using the notations in (20), (21) and (23), gi
j

and Hi
jk have the forms

gi
j = −φi∆

i
jχi,

Hi
jk = φi

(
Ki

jk − λ2
3,iH

ai

jk − λ3,iH
bi
jk −Hci

jk

)
,

(24)

where Ki
jk = gi

ju
T −v(gi

k)
T , u = 2λi,3α

i
k +βi

k +(2a−
6λi,3)g

i
k, and v = 2λi,3α

i
j + βi

j , and similar to gi
j , gi

k =

−φi∆
i
kχi is the gradient block for xk.

The formula of Hi
jk in (24) is applicable to the case that

j = k. From Theorem 1, we know that the key point to get
gi
j and Hi

jk is to get the derivatives of ai, bi and ci in (23).

4.2. Partial Derivatives of ai, bi and ci

According to (19), ai, bi and ci are functions of the el-
ements in Mi. Using this relationship, we can easily de-
rive the partial derivatives in (23). For instance, as ai =
m11 +m22 +m33, we have

∂ai
∂xj

=
∂m11

∂xj
+

∂m22

∂xj
+

∂m33

∂xj
. (25)

Thus, to get the first- and second-order partial derivatives of
ai, bi and ci with respect to xj and xk in (23), we need to
derive the form of Mi with respect to xj and xk.

Lemma 3 In terms of xj and xk, p̄i in (13) has the form

p̄i(xj ,xk) = Tjqij +Tkqik + cijk, (26)

where qij = 1
Ni

p̃ij , qik = 1
Ni

p̃ik, and cijk =
1
Ni

∑
n∈Ojk

Tnp̃in. Here Ojk = obs(πi) − {j, k} repre-
sents the set of indexes of the poses that can observe πi,
excluding the jth and kth poses.

In terms of xj , p̄i has the form

p̄i(xj) = Tjqij + cij , (27)

where cij = Tkqik + cijk.

Using Lemma 3, we can have the following theorem for
Mi in (12).

Theorem 2 In terms of xj , Mi in (12) can be written as

Mi(xj) = TjQ
i
jT

T
j +TjK

i
j + (Ki

j)
TTT

j +Ci
j , (28)

where Qi
j = Uij −Njqijq

T
ij and Ki

j = −Niqijc
T
ij . Here

Uij and qij are defined in (13) and (26), respectively.
In terms of xj and xk, Mi can be written as

Mi(xj ,xk) = TjO
i
jkT

T
k +Tk(O

i
jk)

T
TT

j +Ci
jk. (29)

where Oi
jk = −Niqijq

T
ik.

Here we do not provide the detailed formulas for Ci
j and

Ci
jk, as they will be eliminated in the partial derivative. Ac-

tually, only Qi
j , Ki

j , and Oi
jk are required to compute the

partial derivatives in (23). Equation (28) is used to compute
the first- and second-order partial derivatives of ai, bi and
ci with respect to xj . Equation (29) is used to compute the
second-order partial derivatives of ai, bi and ci with respect
to xj and xk.

4.3. Efficient Iteration

From Theorem 2, we can easily derive the elements of
Mi(xj) and Mi(xj ,xi). Assume a(xj) and b(xj ,xk) are
one of the elements in Mi(xj) and Mi(xj ,xk), respec-
tively. Substituting Tj and Tk defined in (1) into (28) and
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(29) and expanding them, we can obtain that a(xj) and
b(xj ,xk) are second-order polynomials in terms of the el-
ements in Tj and Tk. Using the CGB parameterization in
(2), we can write a(xj) and b(xj ,xk) as

a(xj) = c · h(xj) + c0,

b(xj ,xk) = d · g(xj ,xk) + d0,
(30)

where c is determined by Qi
j and Ki

j in (28), d is deter-
mined by Oi

jk in (29), h(xj) and g(xj ,xk) are two vector
functions, c0 and d0 are two scalars independent on xj and
xk. Let us first consider the first-order partial derivative of
a(xj) with respect to xj . It has the form

∂a(xj)

∂xj
=

∂h(xj)

∂xj
c, (31)

where the vector-by-vector derivative ∂h(xj)
∂xj

is defined in
(4). To efficiently compute (31), we consider a special pose
T0 = [R0, t0] where R0 = I3 and t0 = [0; 0; 0]. Let us de-
note the parameterization of T0 as x0. As the CGR param-
eterization for I3 is [0; 0; 0], we have x0 = [0; 0; 0; 0; 0; 0].
For xj = x0, the matrix ∂h(xj)

∂xj
can be easily computed.

Similarly, the second-order partial derivatives of h(xj) and
g(xj ,xk) at xj = x0 and xk = x0 are also simple.
As h(xj) and g(xj ,xk) only depend on xj and xk, we
can compute the partial derivatives at x0 once, and then
reuse them in the following iterations. Here we introduce
a method to make the iteration stay at x0 for each pose.

Assume that {Xn
j } are the poses after the nth iteration.

Then we can update Uij and p̃ij in (13) by

Un+1
ij = Xn

j Uij(X
n
j )

T and p̃n+1
ij = Xn

j p̃ij . (32)

Substituting Un+1
ij and p̃n+1

ij into (12), we get a new matrix
Mi(Xi)

n+1, which can finally lead to a new cost τn+1 in
(16). As the points have been transformed by {Xn

j }, each
pose should start with X0 for τn+1. Assume that ∆xn+1

j

is the result from the (n + 1)th iteration for the jth pose.
We can compute the corresponding transformation matrix
∆Xn+1

j using (1) and (2). Then we can update Xn
j by

Xn+1
j = ∆Xn+1

j Xn
j . (33)

Furthermore, the update steps in (32) will not introduce ad-
ditional computation. This is because the damped Newton’s
method requires to compute the cost τ in (16) to adjust µ in
(3) after each iteration, which requires to perform the com-
putation in (32).

4.4. Algorithm Summary

We first construct H and g. For each plane πi, we solve
the cubic equation (19), and select the smallest root λi,3.

For xj , we construct M(xj) in (28), and calculate the par-
tial derivatives of ai, bi and ci with respect to xj in (23).
Then, we use (24) to compute gi

j and Hi
jj and use (18) to

update gj and Hjj . For xj and xk, Mi(xj ,xk) is gener-
ated, and then the partial derivatives of ai, bi and ci with
respect to xj and xj in (23) are computed. Then, Hi

jk can
be easily obtained from (24), and Hjk in (18) is computed
accordingly. Using H and g, we conduct the damped New-
ton’s step in (3). After each iteration, Uij and p̃ij are up-
dated by (32). The proposed algorithm is summarized in
Algorithm 1. Let us denote the mean and variance of the
number of observations per plane as K̄ and σ2, respectively.
According to [8], the computational complexity of the Hes-
sian matrix is O(M(K̄2 + σ2)), which is of the same order
as the Schur complement trick.

Algorithm 1: Second-order plane adjustment for
N poses and M planes

while not converge do
H = zeros(6N, 6N), g = zeros(6N, 1);
for i ∈ [1,M ] do

/* Compute g and the diagonal

terms of H. */

for j ∈ obs(πi) do
Compute Mi(xj) using (28);
Compute αi

j , βi
j , γi

j , Hai
jj , Hbi

jj , Hci
jj

using (23);
Compute Hi

jj and gi
j using (24);

Hjj = Hjj +Hi
jj , gj = gj + gi

j ;

/* Compute other terms of H. */

for j ∈ obs(πi) do
for k ∈ obs(πi) and k > j do

Compute Hi
jk using (24);

Hjk = Hjk +Hi
jk;

Hkj = Hkj + (Hi
jk)

T ;

Conduct the damped Newton’s step in (3) ;
Update Uij and p̃ij using (32);

5. Experiments
5.1. Setup

In this section, we compare our algorithm with EF [10],
BALM [16] and the LM solution [23] with plane fitting af-
ter a successful LM step (named LM+PF). Our damped
Newton’s method was implemented according to the LM
algorithm in Ceres [2]. The damped Newton’s method and
the LM algorithm are with the same parameters. Specifi-
cally, the initial value of the damping factor µ in (3) is set
to 10−4. The early stopping tolerances (such as the cost
value change and the norm of gradient) are set to 10−7. The
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Figure 3. The four datasets used in this paper. There are 4.5× 106, 16.6× 106, 16.7× 106, and 10.5× 106 points in the 4 datasets. The
4 datasets have 339, 369, 856, and 589 planes, and 472, 1355, 1606, 1184 poses, respectively. Roofs are removed to show the trajectories.

Figure 4. The point clouds of dataset C after the poses were per-
turbs by the four noise levels.

maximum number of iterations is set to 200 for our algo-
rithm, BALM, and LM+PF, and 105 for EF, as EF uses the
first-order minimization which requires more iterations to
converge. All the experiments were conducted on a desktop
with an Intel i7 cpu and 64G memory.

5.2. Datasets

We collected four datasets using a VLP-16 LiDAR.
We used the LiDAR SLAM algorithm [24] to detect the
planes and establish the plane association. Fig. 3 shows
the four datasets. Similar to the evaluation of BA algo-
rithms [3, 8, 25], we perturb the pose, and compare the PA
cost in (11) for different algorithms. Specifically, we di-
rectly add Gaussian noises to the translation, and randomly
generate an angle-axis vector from a Gaussian distribution
to perturb the rotation. After the poses are perturb, we use
(7) to get the initial plane parameters for LM+PF.

We evaluate the performance of different algorithms un-
der different noise levels. Let us denote the standard devia-
tion (std) of the Gaussian noises for rotation and translation
as σR and σt, respectively. We consider four noise levels:
σR = 0.1◦ and σt = 0.01m, σR = 1◦ and σt = 0.1m,
σR = 2◦ and σt = 0.2m, and σR = 3◦ and σt = 0.3m.
Fig. 4 demonstrates the point clouds of dataset C after the
poses are perturbed by the four noise levels. To evaluate
the performance of different algorithms suffering from large
measurement noises, we also test the case that additional
Gaussian noises with the std σpt = 0.05m are added to the
LiDAR point cloud, and the poses are perturbed by Gaus-
sian noises with σR = 3◦ and σt = 0.3m.

5.3. Results

Fig. 5 and Fig. 6 illustrates the results. It is clear that our
algorithm converges faster than other algorithms. LM+PF
works well at small noises (such as σR = 0.1◦ and σt =
0.01m). As the noise level increases, LM+PF tends to con-
verge slower. Constructing H and g using BALM [16] is
computationally demanding. For efficiency, BALM only
keeps the centroid of each plane observation (i.e., only 1
point is kept), which results in bad performance. In Fig. 5
and Fig. 6, all points are used to compute the cost in (11) af-
ter an iteration of BALM. BALM generally converges slow,
as it minimizes a reduced PA problem. EF [10] adopts the
first-order optimization method as it only provides a method
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Figure 5. The results of different algorithms using different initial noise levels. It is clear that our algorithm converges significantly faster
than other algorithms. The y-axis represents the logarithmic scale of the cost in (11).

Figure 6. The results of different algorithms for point clouds perturbed by Gaussian noise with std σpt = 0.05m. The rotations and
translations of the poses are perturbed by Gaussian noise with stdσR = 3◦ and σt = 0.3m, respectively.

to compute the gradient, which results in slow convergence.

6. Conclusion
In the computer vision community, Newton’s method is

generally considered too expensive for a large-scale least-
squares problem. This paper adopts the Newton’s method
to efficiently solve the PA problem. Our algorithm takes
advantage of the fact that the optimal planes are determined

by the poses, so that the number of unknowns can be sig-
nificantly reduced. Furthermore, this property can ensure to
obtain the optimal planes when we update the poses. The
difficulty lies in how to efficiently compute the Hessian ma-
trix and the gradient vector. The key contribution of this
paper is to provide a closed-form solution for them. The
experimental results show that our algorithm outperforms
the state-of-the-art algorithms.
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