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Abstract

Recent developments of the application of Contrastive
Learning in Semi-Supervised Learning (SSL) have demon-
strated significant advancements, as a result of its ex-
ceptional ability to learn class-aware cluster representa-
tions and the full exploitation of massive unlabeled data.
However, mismatched instance pairs caused by inaccurate
pseudo labels would assign an unlabeled instance to the
incorrect class in feature space, hence exacerbating SSL’s
renowned confirmation bias. To address this issue, we intro-
duced a novel SSL approach, HyperMatch, which is a plug-
in to several SSL designs enabling noise-tolerant utilization
of unlabeled data. In particular, confidence predictions are
combined with semantic similarities to generate a more ob-
jective class distribution, followed by a Gaussian Mixture
Model to divide pseudo labels into a ’confident’ and a ’less
confident’ subset. Then, we introduce Relaxed Contrastive
Loss by assigning the ’less-confident’ samples to a hyper-
class, i.e. the union of top-K nearest classes, which effec-
tively regularizes the interference of incorrect pseudo la-
bels and even increases the probability of pulling a ’less
confident’ sample close to its true class. Experiments and
in-depth studies demonstrate that HyperMatch delivers re-
markable state-of-the-art performance, outperforming Fix-
Match on CIFAR100 with 400 and 2500 labeled samples by
11.86% and 4.88%, respectively.

1. Introduction
Semi-supervised learning (SSL) [2, 3, 5, 20, 21, 26, 29,

38, 39, 42] has become a promising solution for leverag-
ing unlabeled data to save the expensive annotation cost
and simultaneously improve model performance, especially
in applications where large amounts of annotated data are
required to obtain a model with high performance [4, 18].
Modern SSL algorithms generally fall into two categories:
the Pseudo Label-based [22, 30, 38] focuses on generating
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Figure 1. Illustration of our ideas. (a) Pseudo-label-based assign-
ment: the instance is pulled close to the wrong pseudo label class
and pushed away from ground-truth class (green pentagon). (b)
Hyper-class assignment: the instance is assigned to its hyper-class
(the union of top-K nearest classes), which includes the ground
truth class. (c) Top-K accuracy for clean and noisy pseudo labels
(divided by our Gaussian Mixture Model) in CIFAR100@400 ex-
periment. As K grows, noisy labels benefit more than clean labels.

reliable pseudo labels for unlabeled data, whereas the Con-
sistency Regularization-based [2, 3, 20, 29] constrains the
model to make consistent predictions on perturbed samples.

Recently, a prominent advance is the combination of
Contrastive Learning [6, 8, 11, 13] with SSL techniques
[19, 21, 24, 25, 39, 42], which sets the remarkable state-of-
the-art performance. The naive Self-supervised Contrastive
Learning [6, 13] in pre-training tasks pushes instance-level
features away, thereby potentially driving samples within
the same class apart, its class-agnostic nature has been
proved to conflict with the class-clustering property of
SSL [24, 39], hence most recent studies [21, 24, 39] turn to
Class-Aware Contrastive Learning [16]. The general rou-
tine is to first assign each unlabeled instance to the top-1
nearest class based on their pseudo labels, then two unla-
beled instances from the same class are randomly selected
to form a positive pair, followed by a class-aware con-
trastive loss to compel instances from positive pairs to share
similar features while pushing away the representations of
different classes.

The precision of pseudo labels has a direct impact on the
class assignment of the aforementioned methods. By con-
fidence threshold, unlabeled data can be roughly grouped
into ’confident’ and ’less confident’ [39]. For ’confident’
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data that tends to yield accurate pseudo labels for class as-
signment, contrastive loss could constrain the model to ac-
quire better clustered feature representations for each class,
hence facilitating SSL learning. But for ’less confident’ data
with a much higher probability to provide incorrect pseudo
labels, mismatched instance pairs tends to be induced and
the contrastive constraint will pull the features of differ-
ent classes closer while pushing the features from the same
class further apart, which will inevitably degrade the learn-
ing. As shown in Fig. 1 (a), the ’less confident’ instance
could be drawn close to a false class (i.e. the red circle)
while being pushed away from the true class, represented
by green pentagons. For convenience, we also refer to the
two kinds of unlabeled data as ’clean’ and ’noisy’ data.

To mitigate the detrimental effects of ’less confident’
(i.e., noisy) data, existing studies can be generally cat-
egorized into two categories: (1) Discarding low-quality
pseudo labels [21, 24] with a low threshold, leaving some
unlabeled data unused; (2) Adopting re-weighting strate-
gies [39, 42] to lessen the effect of noisy labels. How-
ever, these approaches continue to closely adhere to the
the paradigm of assigning noisy data to a single error-prone
class, therefore they can only reduce the errors to a limited
amount. Also, the accuracy of pseudo labels suffers from
confirmation bias [1] in SSL, which is the accumulation of
false predictions during training.

The aforesaid interference of ’less confident’ data is
caused by the inaccurate class assignment, it is more ef-
fective to devise a class assignment approach that can resist
the distraction of wrong pseudo labels in order to mitigate
their effects. In light of this, we propose to relax the conven-
tional class assignment. Instead of assigning a noisy sam-
ple to a single class, we relax the assignment by grouping it
into a ’hyper-class’, which is the union of top-K (K > 1)
nearest classes. As depicted in Fig. 1 (b), the chance of
the ground-truth class slipping into the hyper-class is dra-
matically enhanced by implementing the relaxation (as K
steadily grows). It’s also worth noting that the marginal gain
brought by relaxation for noisy data is significantly greater
than that for clean data, as the top-1 pseudo label accuracy
of clean data is already adequate. This suggests that the
relaxation is more suitable for applying on noisy data.

In conjunction with the hyper-class assignment, a Re-
laxed Contrastive Loss is intended to restrain the feature
of noisy samples being close to their corresponding hyper-
class while increasing the distantce from the remaining
classes. The simple yet effective relaxing has two bene-
fits: (1) the likelihood of ’less confident’ data being pushed
away from its ground truth class can be lowered, and (2) the
likelihood of data being pulled close to its ground truth class
can be successfully raised. As seen in Fig. 1 (b), the ground
truth class for the noisy unlabeled instance falls within the
hyper-class, thus its feature will no longer be driven away

from the actual class, but rather drawn close to it.
In order to manage the effective exploitation of bother

clean and noisy unlabeled data, we proposed HyperMatch.
First, predicted class probabilities are integrated with se-
mantic similarities to produce unbiased per-sample class
distributions. Next, a Gaussian Mixture Model (GMM)
model is fitted on the calibrated distribution to separate
clean unlabeled data from the noisy ones. The common
class-aware contrastive loss is applied to clean data to con-
strain their features to approach the corresponding class.
For noisy unlabeled data, a Relaxed Contrastive Loss is
carefully developed to drive the noisy unlabeled data falling
into their corresponding hyper-class. In summary, we con-
tribute in three ways:

• We propose an enhanced contrastive learning method,
HyperMatch, to handle the effective separation and ex-
ploitation of both clean and noisy pseudo labels for
learning better-clustered feature representations. It is
a plug-in that can be used to various SSL architectures
to increase resilience while utilizing noisy data.

• Unlike previous studies that assign a ’less confident’
sample to an error-prone class, we relax the assignment
by categorizing the noisy sample into a hyper-class (a
union of top-K nearest classes), followed by the pro-
posed Relaxed Contrastive Loss, which is effective at
mitigating the problematic confirmation bias.

• With thorough experiments on SSL benchmarks, our
HyperMatch demonstrates competitive performance
and establishes the new state-of-the-art on multiple
benchmarks. In-depth investigation reveals its effec-
tiveness in handling the noisy pseudo labels.

2. Related Work
2.1. Semi-Supervised Learning

Semi-supervised learning (SSL) methods can be roughly
categorized into two groups: pseudo label based and con-
sistency regularization based. Pseudo label approaches
[22, 36, 38], also referred as self-training, generate pseudo
labels through a classification model trained on labeled data.
The predictions of randomly augmented unlabeled data are
utilized to minimize the classification loss [38]. However,
they suffer from the insufficient use of unlabeled data as the
predictions are constant throughout training.

Consistency regularization based methods [2,29,34] aim
to regularize the model to output consistent predictions for
different perturbations of the same input. Essential pertur-
bations consist of network regularization techniques [31],
adversarial training [26] and domain-specific data augmen-
tations [29]. Mean Teacher [34] employs an exponential
moving average (EMA) model for more accurate forecasts.
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MixMatch [3] sharpens the averaged predictions of mul-
tiple strongly augmented views. ReMixMatch [2] further
introduces augmentation anchoring by adopting RandAug-
ment [10] and aligns distributions between labeled and un-
labeled predictions. FixMatch [29] achieves state-of-the-art
performance by integrating the highlights of above meth-
ods. The key idea is to regularize the predictions of the
strongly-augmented view to match the one-hot pseudo la-
bel generated on the weakly-augmented view only when the
confidence exceeds a given threshold.

2.2. Contrastive Learning Based SSL

With the development of unsupervised pre-training
tasks, Self-Supervised Learning [6, 7, 13, 35, 37] has been
in the limelight, bringing Contrastive Learning to the fore-
front. Self-supervised contrastive learning [37], which clas-
sifies different augmented views of the same instance as
a positive pair and views of different instances as a neg-
ative pair, can provide useful visual representations for
subsequent tasks. SimCLRv2 [7] utilizes the pre-trained
model and validates that the SSL task can also benefit from
the self-supervised pre-training in a two-stage framework.
A comprehensive discussion of self-supervised contrastive
learning methods can be found in [15].

Recently, works have been devoted to integrating con-
trastive learning with SSL in a unified framework [16, 24,
39, 42] and set the state-of-the-art. While a classification
model aims to group intra-class samples together and learns
class-level clustered features, self-supervised contrastive
loss tends to separate each instance from others, thus will
separate samples within the same class apart. To overcome
this problem, pseudo labels are incorporated in represen-
tation learning to provide class-level priors, which can be
referred as class-aware contrastive learning. Lee et.al. [21]
adopt supervised contrastive learning loss [16] using filtered
pseudo labels as groud truth annotations with FixMatch.
CoMatch [24] combines memory-smoothed pseudo labels
with the graph-based contrastive learning using a large size
of memory bank. CCSSL [39] improves class-wise cluster-
ing on in-distribution data with pseudo labels.

Despite the recent progress of class-aware contrastive
learning, the mismatched instance pairs brought by wrong
pseudo labels of noisy data still limit their performance.
Lee et.al [21] and Li et.al [24] only apply the class-aware
constrative loss on samples above a given threshold, but
this leaves a certain proportion of unlabeled data unused.
In [39], self-supervised contrastive loss is imposed on the
samples with the lowest confidence, but this conflicts with
the class-clustering nature of SSL task. Yang et.al [39] and
Zheng et.al [42] design re-weighting strategies to reduce the
impact of mismatched pairs by assigning a smaller weight,
which could only relieve the errors to some extent. All the
above strategies strictly follow the paradigm of assigning

the unlabeled instance to a single cluster, even when the as-
signment is error-prone. Instead, we relax the class assign-
ment constraint by categorizing noisy unlabeled samples to
a hyper-class, which proves to be more effective for regu-
larizing the bias induced by wrong pseudo labels.

3. Method
3.1. Overview

In a standard semi-supervised classification task, a train-
ing batch consists of labeled instances X = {(xi, yi)}Bi=1

and unlabeled instances U = {ui}μBi=1, where μ is a hyper-
parameter controlling the relative ratio of U to X . Inputs xi

and yi represent the i-th image and its one-hot label.
Data Augmentations. We use both weak and strong

augmentations as is typical in current SSL methods [29, 39,
41]. For a labeled image xi, a weak transformation function
Aw(·) is applied for supervised training. For an unlabeled
instance ui, we generate one weak augmentation view with
Aw(·) and two strong augmentation views with As(·). The
weak augmentation is fed to generate a reliable pseudo label
while strong augmentations are used both for consistency
regularization and contrastive learning.

Architecture. A convolutional neural network F(·) is
used to extract the feature, i.e., h = F(A(x)). Then, a lin-
ear classification head φcls(·) generates the class probabil-
ity p = φcls(h). Another 2-layer projection head φproj(·)
is adopted to map embedding h into a lower-dimensional
feature z, i.e., z = φproj(h), which is l2 normalized.

HyperMatch jointly optimizes a combination of three
losses: 1) a supervised classification loss Lcls on labeled
data, 2) a consistency regularization loss Lreg on unla-
beled data and 3) our proposed relaxed contrastive loss
Lrel. The supervised classification loss Lcls is directly
imposed on the weakly augmented labeled samples, i.e.,
Lcls = 1

B

∑B
i=1 H(yi, φcls(F(Aw(xi)))), where H indi-

cates the cross entropy loss.
For unlabeled samples, pseudo labels are first generated

from their weakly augmented views. Then the consistency
regularization loss Lreg is implemented following the gen-
eral form in FixMatch [29], which is the cross entropy loss
between the filtered pseudo labels and the predictions of
corresponding strongly perturbed samples:

Lreg =
1

μB

μB∑
i=1

�(max(pi) ≥ τu)H(ŷi, φcls(F(As(ui)))

(1)
where pi = φcls(F(Aw(ui))) represents the model’s pre-
diction on the weakly augmented sample ui and the pseudo
label ŷi = argmax(pi) is the class with maximum proba-
bility. A fixed high-confidence threshold τu is used to filter
low-quality pseudo labels, which however ignores a large
proportion of unlabeled data.

The overall training objective is defined as:
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Figure 2. The framework of HyperMatch. (a) Pseudo label partition by sorting calibrated class distribution then fitting GMM on it; (b)
Relaxed contrastive loss is imposed on noisy data by assigning them to the hyper-class (union of top K nearest classes). By setting K = 1,
it becomes naive class-aware contrastive loss, which is applied on clean data.

L = Lcls + λ1Lreg + λ2Lrel (2)

where λ1 and λ2 are hyper-parameters to control the weight
of corresponding loss. The proposed relaxed contrastive
loss Lrel will be detailed in the following sections.

3.2. Pseudo Label Partition

To handle the noisy data, we first have to divide them
from the clean ones. In [21, 24], a naive strategy that di-
rectly compares the maximum class probability with a fixed
threshold is adopted to separate the clean labels from noisy
ones. On the other hand, DivideMix [23] learn with noisy
labels and fits a two-component Gaussian Mixture Model
(GMM) based on the per-sample loss distribution to divide
training data by setting a threshold. However, in a semi-
supervised task, model’s obsession with incorrect labels
would lead to an over-confident class probability distribu-
tion and small losses even for noisy data, making it harder
for a GMM to distinguish the clean instances from noisy
ones if solely referring to the predicted probabilities.

Class Distribution Calibration. While the predicted
classification probabilities may be biased towards certain
categories, the semantic similarities usually exhibit a more
uniform distribution [12, 27]. Hence to remedy the bias of
predicted probabilities, we integrate semantic similarities to
calibrate the class distributions.

First, we build a memory buffer to keep a set of class pro-
totypes {T k}Mk=1 from labeled data, where M is the num-
ber of classes. In detail, we update the prototypes with
the projection embeddings of labeled samples in a train-
ing batch using exponential moving average (EMA), i.e.,
T k = ρT k + (1 − ρ) 1

mk

∑mk

l=1 zl, where mk is the num-
ber of k-th class labeled samples in the batch. Instead of
maintaining a memory queue [12, 27], this implementation
requires less GPU memory usage and computation time.

The class-wise semantic distribution qi = [q1i , ..., q
M
i ]

for an unlabeled instance ui can be measures as:

qi = Norm([sim(zi, T 1), . . . , sim(zi, T M )]) (3)

where sim(·, ·) is the cosine similarity metric and Norm
denotes l1 normalization. We further blend the semantic
similarities qi with probabilities pi by:

p̂i = Norm(pi ◦ qi) (4)

to obtain more unbiased class distributions p̂i =
[p̂1i , ..., p̂

M
i ], where ◦ is element-wise multiplication.

GMM Noise Modeling. We rearrange the calibrated
class distribution p̂ by sorting each class’s probabilities in
a descending order, as in Fig. 2 (a), then fit the sorted distri-
bution sort(p̂) with a two-component GMM model on the
entire unlabeled dataset.

It can be easily observed that clean pseudo labels exhibit
a more sharp class distribution than noisy ones as they are
more confident in their decisions. Thus we first compute
the variance of each mixture component’s mean distribu-
tion, then choose the one with larger variance to represent
the clean data and the other component to model noisy data,
denoted as gclean and gnoisy . On top of that, by compar-
ing the posterior probability p(gclean|sort(p̂)) of the clean
GMM component with a threshold τg , we obtain the clean
subset Uclean by:

Uclean = {ui|ui ∈ U , p(gclean|sort(p̂i)) > τg}, (5)

and Unoisy = U \Uclean. In such a way, we reduce the neg-
ative effect of confirmation bias caused by over-confident
prediction probabilities by incorporating more uniform se-
mantic similarity distributions. It’s noteworthy that our al-
gorithm is quite insensitive to the selection of τg , as is fur-
ther discussed in Section 4.4.

3.3. Relaxed Contrastive Loss

After the partition, we assign a hyper-class for each in-
stance ui from Unoisy , then apply our Relaxed Contrastive
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Loss for representation learning. First, we review two popu-
lar forms of contrastive loss, then introduce our new design.

Self-supervised Contrastive Loss. For an unlabeled im-
age ui from a training batch containing N = μB unlabeled
images, a stochastic strong augmentation function As(·) is
applied to generate two augmented views, resulting in 2N
samples. We define an affinity matrix S ∈ ���×�� where
each element represents the dot product of embeddings with
a temperature factor τ :

sij = exp(zi · zj/τ) (6)

The self-supervised contrastive loss InfoNCE [6, 13] for
a positive pair of samples (i, j) is generally formulated as:

LInfoNCE
i = −log

exp(zi · z∗j /τ)∑2N
b=1 �[b �=i]exp(zi · zb/τ)

(7)

where z∗j is from the other augmented view of the same
image as zi, �[b �=i] ∈ {0, 1} is an indicator function that
equals 1 if b �= i. Here a positive pair is defined as the
two augmented views of the same instance and a negative
pair consists of any two views originating from different in-
stances. The loss is similar to minimizing the cross entropy
loss between the l1-normalized affinity matrix S and a tar-
get contrastive matrix W self ∈ �

2N×2N [24, 39], where
each element in W self is defined as:

wself
ij =

{
1, if zi and zj are from the same sample
0, otherwise

(8)

The goal of self-supervised contrastive loss is to pull
the features of one sample’s two augmented views close
and push the embeddings of different samples apart, re-
gardless of whether samples belong to the same category.
Hence the formulation contradicts the classification task as
it requires well-clustered feature representations for each
class [24,39]. A visualization of W self is given in Fig. 3 (a),
where the connection between two views from the same im-
age indicates a positive pair.

Class-Aware Contrastive Loss. To address this issue,
Class-Aware Class Assignment is commonly adopted in ex-
isting methods [19, 21, 39, 42], inspired by supervised con-
trastive learning [16]. The contrastive matrix W self indicat-
ing positive and negative pair sampling turns into W class:

wclass
ij =

{
wre

i,j , if ŷi = ŷj

0, otherwise
(9)

where ŷi and ŷj represent the pseudo label for the i-th and
j-th unlabeled sample, and wre

i,j is the re-weighted learning
target that considers both samples’ prediction confidence,
i.e., wre

i,j = max(pi)∗max(pj). A clear illustration is given
in Fig. 3 (b). By minimizing the difference between affin-
ity matrix S and W class, two unlabeled instances with the
same pseudo label are restrained to approach each other in

the feature space, while instances with different pseudo la-
bels are pushed to drift apart. This leads to better-clustered
feature representations for each class.

Although showing appealing improvements, when the
quality of the pseudo label is poor, the class-aware con-
trastive loss still suffers from the confirmation bias and per-
formance degradation, which we show in Section 4.5. It
will pull instances from two different classes close under
the guidance of incorrect pseudo labels and deteriorate the
representation learning.

Relaxed Contrastive Loss. To alleviate the negative im-
pact of incorrect pseudo labels, we introduce the Relaxed
Contrastive Loss. Instead of assigning a noisy unlabeled in-
stance to its untrustworthy pseudo label class, we loose the
assignment by categorizing it into a more reliable hyper-
class, which is the union of top-K nearest classes.

Take an unlabeled instance ui from Unoisy for exam-
ple, by referring to its sorted class distribution sort(p̂i),
we select the first K classes that own the largest proba-
bilities to represent its nearest K classes, denoted as ci =
{ci,1, ..., ci,K}. Then the hyper-class set is constructed as
HSi = Si,1 ∪ ...Si,K , where Si,k includes all samples
whose calibrated pseudo label argmax(p̂) == ci,k. Sam-
ples from HSi are chosen to form positive pairs with ui,
and our relaxed contrastive matrix W relax is defined as:

wrelax
ij =

{
p̂
ci,k
i ∗ p̂ci,kj , if uj ∈ HSi

0, otherwise
(10)

where ci,k = argmax(p̂j). A re-weight strategy is adopted
to comprehensively consider the unbiased semantic rela-
tions between two instances by combing the calibrated
probability of ui and uj being classified into the class ci,k.
The larger probability indicates stronger semantic relations
within the pair, hence the corresponding weight in W relax

increases. A comparison between the relaxed target matrix
with previous variants is shown in Fig. 3 (c).

By bridging the gap between affinity matrix S and
W relax, we obtain the relaxed contrastive loss:

Lrel,i = −
∑

uj∈HSi

wrelax
ij ∗ log exp(zi · zj/τ)∑2N

b=1 �[b �=i]exp(zi · zb/τ)
(11)

We anticipate the embedding of a noisy sample to fall
into the top-K nearest classes instead of a single mis-
matched class. On one hand, this improves the chance that
two noisy instances from the same ground truth class are
matched as a positive pair, thereby their embedding can be
restrained to be similar. Besides, confirmation bias induced
by incorrect pseudo labels can be regularized as we propose
a partially different learning target compared to the consis-
tency regularization in Eq. 1. For samples from clean subset
Uclean, we directly set K = 1 and relaxed contrastive loss
degenerates to the naive class-aware cotrastive loss.
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Figure 3. Illustrations of positive pairs in different contrastive loss. Pseudo label class is marked in different colors, arrows indicate positive
pairs and CL stands for contrastive loss. (a) Only two views of the same image are considered as a positive pair in Self-Supervised CL.
(b) Any two views with same pseudo label comparise a positive pair in Class-Aware CL. (c) The triangle containing two colors indicates a
noisy sample matched with 2 nearest classes as positive pairs. Relaxed contrastive loss builds more positive pairs and increases the chance
of finding the correct positive pair, meanwhile regularizing the overfitting to a single mismatched pair.

3.4. Discussion of Top-K Selection

Top-K is the most crucial hyper-parameter as it deter-
mines the covered range of a hyper-class. A larger choice of
K would increase the probabilities of an unlabeled instance
matching with its groud-truth class, while at the same time,
it would also add additional noise induced by those mis-
matched instance pairs. Thus, the selection of K is a trade-
off between the class clustering and noise resistance. We
give detailed analysis in Section 4.4 about its selection.

4. Experiments

4.1. Experimental Setup

We first evaluate our method on mainstream SSL bench-
marks including CIFAR10/CIFAR100 [17] and STL-10 [9]
dataset, under different settings where the amount of labeled
data varies. The best performance of an EMA model with a
decay rate 0.999 is reported in every single run [29], 5 runs
for each dataset are conducted with different random seeds.

Datasets. CIFAR10 and CIFAR100 consist of 50K train
and 10K test images from 10 and 100 classes, respectively.
Following the widely used setting [29] on CIFAR10, we
conduct experiments on 40, 250, 4000 randomly selected la-
beled images in a class-balanced way and use all training
samples as the unlabeled set. For CIFAR100, we randomly
select 400, 2500, 10000 images as labeled data. STL10 con-
tains 5K labeled images (10 predefined folds) of size 96×96
from 10 classes and 100K unlabeled images. We use the
first 5 predefined folds following [29].

Implementation Detail. As for model architectures, we
use a Wide ResNet-28-2 [40] for CIFAR10 and WRN-28-
8 for CIFAR100. A ResNet-18 network [14] is used for
STL10 following [24]. We build a 2-layer MLP projec-
tion head to compute 64-dimensional embeddings for fea-
ture alignment. SGD optimizer with a momentum of 0.9 is
used. Instead of setting training epochs to 1024 in [29], we
train for only 512 epochs with an initial learning rate 0.03
and a cosine decay schedule to show our efficiency in con-
vergence. By default, we set K = 2, τu = 0.95, τg = 0.6,
μ = 7, B = 64, λ1 = λ2 = 1 while only λ2 = 5 in STL10.

Baseline Methods. We include current state-of-the-

art methods adopting the consistency regularization tech-
nique such as FixMatch [29], MixMatch [3], and ReMix-
Match [2]. Also, comparisons with previous methods that
also combine contrastive learning like CoMatch [24], CC-
SSL [39], and SimMatch [42] is also given, to verify the
improvements of HyperMatch.

4.2. Main Results

Performance of HyperMatch on different SSL bench-
marks is reported in Tab. 1. On CIFAR10, our performance
is on par with other state-of-the-art methods and we assume
that the potential of semi-supervised learning has reached
its accuracy upper bound, which makes it hard to be distin-
guished from existing works. Meanwhile, on the more com-
plicated CIFAR100, HyperMatch significantly outperforms
other methods, achieving 11.86%, 4.74%, 3.69% gain over
FixMatch with 400, 2500, and 10000 labeled samples and
surpassing previous best results. The performance gains in-
crease with fewer labeled samples as HyperMatch can ef-
fectively handle the unreliable pseudo labels.

STL10 contains unlabeled data drawn from a similar but
different distribution from labeled data, making it a more
practical challenge. HyperMatch achieves 2.97% accuracy
gains over the current best result of CCSSL and shows the
adaptation ability to varied distributions of unlabeled data.
To sum up, HyperMatch can remarkably boost the perfor-
mance of existing SSL techniques, especially when the task
is challenging and the pseudo labels are unreliable.

4.3. Semi-iNat 2021

Furthermore, we test HyperMatch on the more complex
Semi-iNat 2021 [32], a complex real-world dataset where
tough challenges like imbalanced distribution, domain mis-
match and out-of-distribution classes exists. The labeled
training set contains 9721 images from part of 810 species
and validation set contains 4050 images, while the unla-
beled set has 313248 images. We follow the settings in [39].
Images are resized to 224 × 224 and we use a ResNet-50
backbone with a 2-layer projection head. The same setting
of τu = 0.6, B = 64, μ = 7, λ1 = 1, λ2 = 2 as in [39] is
used. For other parameters in HyperMatch, we keep K = 2
and τg = 0.6 as on other datasets.
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Method CIFAR10 CIFAR100 STL10
40 250 4000 400 2500 10000

MixMatch [3] 52.46± 11.5 88.95± 0.86 93.58± 0.10 32.39± 1.32 60.06± 0.37 71.69± 0.33 38.02± 8.29
ReMixMatch [2] 80.90± 9.64 94.56± 0.05 95.28± 0.13 55.72± 2.06 72.57± 0.31 76.97± 0.56 -

SSWPL [33] - - - - 73.48± 0.45 79.12± 0.85 -
LaplaceNet [28] - - 95.35± 0.07 - 68.36± 0.02 73.40± 0.23 -

FixMatch(RA) [29] 86.19± 3.37 94.93± 0.65 95.74± 0.05 51.15± 1.75 71.71± 0.11 77.40± 0.12 65.38± 0.42
CoMatch [24] 93.09± 1.39 95.09± 0.33 95.44± 0.20 58.11± 2.34 71.63± 0.35 79.14± 0.36 79.80± 0.38
SimMatch [42] 94.40± 1.37 95.16± 0.39 96.04± 0.01 62.19± 2.21 74.93± 0.32 79.42± 0.11 -

CCSSL [39] 90.83± 2.78 94.86± 0.55 95.54± 0.20 61.19± 1.65 75.7± 0.63 80.68± 0.16 80.01± 1.39
HyperMatch 93.92± 1.10 95.01± 0.23 96.05± 0.12 63.01± 0.57 76.45± 0.35 81.09± 0.28 82.98± 0.37

Table 1. Top-1 accuracy comparisons with other methods on CIFAR10, CIFAR100 and STL10 dataset with varied labeled samples.

Method Semi-iNat 2021
From Scratch Moco Pretrain

Supervised 19.09 34.96
CoMatch [24] 20.94 38.94
FixMatch [29] 21.41 40.3

CCSSL (CoMatch) [39] 24.12 39.85
CCSSL (FixMatch) [39] 31.21 41.28
HyperMatch (FixMatch) 33.47 42.57

Table 2. Comparisons on Semi-iNat 2021. When training from
MoCo [13], the first three blocks are freezed.

SS-CL CA-CL R-CL re-weight GMM
Partition

CIFAR100
400 2500

57.73 72.85
� 56.62 72.43

� 60.76 75.45
� � 61.69 75.82

� 61.92 76.12
� � 62.35 76.63
� � � 63.22 77.01

Table 3. Different combinations of our algorithms on CIFAR100.

See Tab. 2, although without tuning any hyper-
parameters in relaxed contrastive loss, we still achieve bet-
ter results than CCSSL that requires tuing the threshold for
separating out-of-distribution data. We improve by 2.26%
and 0.87% over CCSSL on training from scratch and from
MoCo [13] pretrained weights. This verifies the robustness
of HyperMatch even handling out-of-distribution data.

4.4. Ablation Study

Analysis of Each Technique. We investigate each tech-
nique in our work and results are given in Tab. 3. For sim-
plicity, self-supervised, class-aware and relaxed contrastive
loss are referred as SS-CL, CA-CL and R-CL, respectively.

SS-CL deteriorates the performance as it pushes away
instances within the same class as discussed above. By in-
troducing pseudo labels as priors, CA-CL helps learn well-
clustered features and improves overall accuracy. Also,
note that CA-CL combined with re-weighting is equiva-
lent to CCSSL [39] on in-distribution data. Directly apply-
ing our R-CL already outperforms other losses and using a
re-weighting strategy further improves the results slightly.

τg CIFAR10@250 CIFAR100@400

0 94.62 61.2
0.2 94.81 62.34
0.4 95.06 62.23
0.6 95.14 62.84
0.8 95.11 62.44
1.0 94.89 61.8

Table 4. Different thresholds τg on CIFAR datasets.

Top-K 1 2 3 5

CIFAR100@400 60.51 62.84 61.24 60.67
CIFAR100@2500 75.87 76.62 76.73 75.86

Table 5. Experiments of using different K in relaxed contrastive
loss. When K = 1, it turns into class-aware contrastive loss.

Moreover, by adding GMM to split the clean and noisy
pseudo labels and then only applying R-CL on noisy data,
we obtain the best results. This proves each technique con-
tributes to the final advantage of our method.

GMM Threshold. We analyze the effect of varied
thresholds τg for the pseudo label partition in Tab. 4. τg con-
trols the relative ratio of the clean subset to the noisy subset.
When τg = 0, the relaxed contrastive loss becomes class-
aware contrastive loss as all unlabeled samples are divided
into the clean subset. τg = 1 indicates that all instances fall
into the noisy set. Setting τg > 0 consistently improves the
accuracy compared to τg = 0, which proves our algorithm
is robust with the selection of threshold τg .

Top-K Selections. We also test different choices of K
in relaxed contrastive loss in Tab. 5. K = 1 indicates the
class-aware contrastive loss. Intuitively, a large K increases
the potential for an unreliable instance to find its ground-
truth class while also adding noise to the loss through mis-
matched instance pairs. K = 2 or 3 achieves the best ac-
curacy on CIFAR100 with 400 or 2500 labeled data, and
further increasing K leads to a performance drop as ex-
pected. Note that the performance (60.67%) of a relatively
large K = 5 is still on par with the performance (60.51%)
of K = 1, which indicates the under-exploitation of class
relationships in class-aware contrastive loss.
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Figure 4. Qualitative Analysis of HyperMatch. (a) Top-1 test accuracy curve of different methods on CIFAR100@400; (b) Top-1 accuracy
of pseudo labels above the predefined confidence threshold τu = 0.95 on CIFAR100@400; (c) Class distributions of pseudo label numbers
on the training set of CIFAR100 sorted in a descending order.

Method w/o q w/ q
Pseudo Label Acc of Uclean 65.32 68.13
Pseudo Label Acc of Unoisy 32.48 33.33

Table 6. Remove distribution calibration on CIFAR100@400.

Method CIFAR100
400 2500

CoMatch 58.11 71.63
CoMatch + CCSSL [39] 59.21 73.52
CoMatch + HyperMatch 60.85 75.2

Table 7. Deploy relaxed contrastive loss to CoMatch.

Distribution Calibration. To validate the effect of dis-
tribution calibration by integrating semantic similarities, we
remove the calibration and report pseudo label accuracy of
Uclean and Unoisy in Tab. 6. Adding semantic similarity
achieves larger accuracy gap between two sets, which im-
plies correct and wrong pseudo labels are better separated.

Deployment to different SSL architectures. As a vari-
ant of contrastive loss, relaxed contrastive loss can also
be conveniently plugged into other SSL techniques. We
further deploy on CoMatch to verify its generalization,
shown in Tab. 7. Adding relaxed contrastive loss im-
proves 2.74%, 3.27% over CoMatch on CIFAR100@400
and CIFAR100@2500 settings and outperfroms CCSSL us-
ing naive class-aware contrastive loss.

4.5. Qualitative Analaysis

Convergence Speed. It’s validated in previous works
[21,24,39,42] that class-aware contrastive loss learns well-
clustered feature representations and improves the conver-
gence. Shown in Fig. 4 (a), HyperMatch shares the attribute
of fast convergence as CCSSL [39] and reaches the higher
accuracy of 63.22% at epoch 300, while FixMatch [29]
needs more iterations and ends up with inferior result.

Pseudo Label Accuracy. We compare the accuracy of
pseudo labels above the confidence threshold τu = 0.95 of
HyperMatch with CCSSL [39] in Fig. 4 (b). It is evident

that in the late training stage, HyperMatch still maintains
better accuration of pseudo labels than CCSSL and the ac-
curacy drops by only 9.28% from the best one while CCSSL
significantly drops by 15.4% in Fig. 4 (b), which implies the
better alleviation of confirmation bias.

Mitigation of Imbalanced Distributions. As men-
tioned in [43], a disparate impact exists in SSL methods
that a class with a higher baseline accuracy would benefit
more from SSL. Here we claim the same behaviour by plot-
ting the class distributions of pseudo labels sorted in de-
scending order on 50K training images in Fig. 4 (c). Fix-
Match exhibits an obvious long-tailed pattern, which ex-
acerbates confirmation bias as more predictions from head
classes are added as pseudo labels. HyperMatch alleviates
this imbalance by associating unlabeled data with multiple
nearest classes as pseudo labels. This partially explains the
improvement of HyperMatch on final performance.

4.6. Limitations

HyperMatch shows significant improvements with noisy
pseudo labels and limited labeled samples. When pseudo
label predictions are already accurate enough, the gains be-
come smaller. Meanwhile, with only a fraction of labeled
samples, training fluctuations could affect the results such
as in CIFAR10@40 experiment. Averaging results over dif-
ferent runs would mitigate the problem.

5. Conclusion
Here, we proposed a novel SSL method, HyperMatch,

to effectively handle the utilization of noisy unlabeled data
while resisting the inference of wrong pseudo labels. The
core of our design is to relax the previously error-prone
class assignment by categorizing noisy data into the hyper-
class, which is the union of top-K nearest classes. Accom-
panied by the calibrated class distribution to find noisy data,
HyperMatch achieves the state-of-the-art, and further anal-
ysis also gives insight to its intrinsic noise-tolerant abilities.
In future, we’ll explore HyperMatch under extreme long-
tailed distributions and on out-of-distribution data.
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[35] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. ArXiv,
abs/1807.03748, 2018. 3

[36] Chen Wei, Kihyuk Sohn, Clayton Mellina, Alan Loddon
Yuille, and Fan Yang. Crest: A class-rebalancing self-
training framework for imbalanced semi-supervised learn-
ing. 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 10852–10861, 2021. 2

[37] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3733–3742, 2018. 3

[38] Qizhe Xie, Eduard H. Hovy, Minh-Thang Luong, and
Quoc V. Le. Self-training with noisy student improves im-
agenet classification. 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 10684–
10695, 2020. 1, 2

[39] Fan Yang, Kaixing Wu, Shuyi Zhang, Guannan Jiang, Yong
Liu, Feng Zheng, Wei Zhang, Chengjie Wang, and Long
Zeng. Class-aware contrastive semi-supervised learning.
ArXiv, abs/2203.02261, 2022. 1, 2, 3, 5, 6, 7, 8

[40] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. ArXiv, abs/1605.07146, 2016. 6

[41] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jin-
dong Wang, Manabu Okumura, and Takahiro Shinozaki.
Flexmatch: Boosting semi-supervised learning with curricu-
lum pseudo labeling. In NeurIPS, 2021. 3

[42] Mingkai Zheng, Shan You, Lang Huang, Fei Wang, Chen
Qian, and Chang Xu. Simmatch: Semi-supervised learning
with similarity matching. ArXiv, abs/2203.06915, 2022. 1,
2, 3, 5, 6, 7, 8

[43] Zhaowei Zhu, Tianyi Luo, and Yang Liu. The rich get
richer: Disparate impact of semi-supervised learning. ArXiv,
abs/2110.06282, 2022. 8

24026


