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Abstract

The task of weakly supervised temporal action localiza-
tion targets at generating temporal boundaries for actions
of interest, meanwhile the action category should also be
classified. Pseudo-label-based methods, which serve as
an effective solution, have been widely studied recently.
However, existing methods generate pseudo labels during
training and make predictions during testing under differ-
ent pipelines or settings, resulting in a gap between train-
ing and testing. In this paper, we propose to generate
high-quality pseudo labels from the predicted action bound-
aries. Nevertheless, we note that existing post-processing,
like NMS, would lead to information loss, which is insuf-
ficient to generate high-quality action boundaries. More
importantly, transforming action boundaries into pseudo
labels is quite challenging, since the predicted action in-
stances are generally overlapped and have different confi-
dence scores. Besides, the generated pseudo-labels can be
fluctuating and inaccurate at the early stage of training. It
might repeatedly strengthen the false predictions if there is
no mechanism to conduct self-correction. To tackle these
issues, we come up with an effective pipeline for learn-
ing better pseudo labels. Firstly, we propose a Gaussian
weighted fusion module to preserve information of action
instances and obtain high-quality action boundaries. Sec-
ond, we formulate the pseudo-label generation as an opti-
mization problem under the constraints in terms of the con-
fidence scores of action instances. Finally, we introduce
the idea of ∆ pseudo labels, which enables the model with
the ability of self-correction. Our method achieves supe-
rior performance to existing methods on two benchmarks,
THUMOS14 and ActivityNet1.3, achieving gains of 1.9%
on THUMOS14 and 3.7% on ActivityNet1.3 in terms of av-
erage mAP. Our code is available at https://github.

*Corresponding author.

com/zhou745/GauFuse_WSTAL.git.

1. Introduction
The task of temporal action localization seeks to iden-

tify the action boundaries and to recognize action categories
that are performed in the video. Action localization can
contribute to video understanding, editing, etc. Previous
works [3, 19, 20, 43, 51] mainly solved this task in the fully
supervised setting, which requires both video-level labels
and frame-wise annotations. However, frame-wisely anno-
tating videos is labor-intensive and time-consuming. To re-
duce the annotation cost, researchers start to focus on the
weakly supervised setting. Considering the rich video re-
sources from various video websites and apps, weakly su-
pervised setting would save tremendous annotation efforts.

Unlike its supervised counterpart, the weakly supervised
temporal action localization task only requires video-level
category labels. The existing works mainly follow the
localization-by-classification pipeline [40,50], which trains
a video-level classifier with category labels [32], and ap-
plies the trained classifier to each video snippet1. However,
due to the lack of fine-grained annotations, the model may
assign high confidence to incorrect snippets such as the con-
textual background, which typically has a high correlation
with the video-level labels, or only focus on the salient snip-
pets, leading to incomplete localization results. There are
many studies [21, 23, 25] that tried to address this discrep-
ancy between classification and localization, and one of the
promising solutions is to generate and utilize pseudo labels.

The advantage of using pseudo labels is that snippets
are supervised with snippet-wise labels instead of video-
level labels. Existing works [28,36,46,47] achieve remark-
able results by introducing pseudo labels into this prob-

1We view snippets as the smallest granularity since the high-level fea-
tures of consecutive frames vary smoothly over time [12,42]. In our work,
we treat every 16 frames as a snippet
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lem. A commonly used strategy for generating pseudo la-
bels is to directly utilize the temporal class activation map
(TCAM) generated in previous training iterations. Never-
theless, we would like to argue that the TCAMs are not
desirable pseudo labels. During testing, our goal is to ob-
tain the action boundaries, employing the TCAMs as train-
ing targets arise the discrepancy between training and test-
ing because they are quite different from the actual action
boundaries. An intuitive way to address this issue is to
leverage the predicted action boundaries as pseudo labels.
However, it is non-trivial to achieve this goal. First, cur-
rent post-processing schemes, such as NMS, would induce
a large amount of information loss and are not sufficient to
obtain high-quality action boundaries for generating effec-
tive pseudo labels. Second, the predicted action instances
are usually overlapped with each other and have different
confidence scores, it is hard to assign the action categories
and confidence scores for each snippet.

To address the above issues, we propose the following
two modules. First, we propose a Gaussian Weighted
Instance Fusion module to preserve information on the
boundary distributions and produce high-quality action
boundaries. Specifically, this module weightedly fuses the
information of overlapped action instances. Each candi-
date action instance is treated as an instance sampled from
a Gaussian distribution. The confidence score of each ac-
tion instance is viewed as its probability of being sampled.
Accordingly, we can obtain the most possible action bound-
aries and their confidence scores by estimating the means
of Gaussians from those candidate action instances. In this
way, we can produce better action boundaries, which in re-
turn help to generate more reasonable pseudo labels.

After generating high-quality action boundaries, we need
to convert them into snippet-wise pseudo labels. To han-
dle the overlapped action instances and assign snippets with
proper confidence scores, we propose a LinPro Pseudo La-
bel Generation module to formulate the process of pseudo-
label generation as a ℓ1-minimization problem. First, we
restrict that the average score of snippets within an action
boundary should be equal to the confidence score of this ac-
tion instance. This constraint guarantees that we can main-
tain the information of confidence scores in the generated
pseudo labels. Second, snippets within an action instance
might be equivalent in terms of their contribution to the con-
fidence score. Thus we require snippet-wise scores within
each action instance to be uniform. Based on the two con-
straints, we formulate the pseudo label generation as an op-
timization problem and solve it to obtain pseudo labels that
are consistent with our predicted action boundaries.

Furthermore, there is still one problem regarding to the
use of pseudo labels. Since the generated pseudo labels can
be fluctuating and inaccurate at early stage of training, with-
out a proper self-correction mechanism, the model would
keep generating wrong pseudo labels of high confidences at
later training stages. To address this issue, we propose to
utilize the ∆ pseudo labels, instead of the original pseudo
labels, as our training targets. We calculate the difference

between the pseudo labels of consecutive training epochs as
the ∆ pseudo labels. In general, the model would provide
more accurate predictions along with the training. In this
way, the model will update its predictions toward the class
with the confidence increasing instead of the class with the
largest pseudo label value, and thus empowers the model
with the ability of self-correction.

The contribution of this paper is four-fold. (a) We pro-
pose a Gaussian Weighted Instance Fusion module, which
can effectively generate high-quality action boundaries. (b)
We propose a novel LinPro Pseudo Label Generation strat-
egy by transforming the process of pseudo-label generation
into a ℓ1-minimization problem. (c) We propose to utilize
∆ pseudo labels to enable model with self-correction ability
for the generated pseudo labels. (d) Compared with state-
of-the-art methods, the proposed framework yields signifi-
cant improvements of 1.9% and 3.7% in terms of average
mAP on THUMOS14 and ActivityNet1.3, respectively.

2. Related Work
For the task of weakly supervised temporal action local-

ization, the discrepancy between classification and localiza-
tion has been observed by many researchers [21,31,32]. To
alleviate this problem, many efforts have been made. We di-
vide these methods into the following four categories: met-
ric learning-based methods, erasing-based methods, multi-
branch methods, and pseudo-label-based methods.

For the metric learning-based methods, previous works
like W-TALC [37], 3C-Net [33], RPN [7] and A2CL-PT
[30] utilize the center loss [41], clustering loss [45] and
triplet loss [38]. In general, these methods [7,37] tend to ob-
tain video-level features from the most discriminative snip-
pets features. Therefore, these methods failed to capture
snippets of less-discriminative features. Although several
methods like RSKP [10] have tried to address this issue by
propagating the knowledge of representative snippets, this
method is also a double-edge sward. The knowledge prop-
agation is a bi-lateral process, while we are passing infor-
mation from discriminative snippets to less-discriminative
ones, the transverse also takes place, which may hinder the
model from learning high confidence snippets.

Another category is the erasing-based methods. These
methods [30, 52] embrace the idea of exploring less-
discriminative features from erasing discriminative ones.
Originated from the adversarial complementary learning
[49], these methods repeatedly find the most discriminative
snippets and erase them. However, it is difficult to set proper
thresholds for different classes with different complexities.

The third category mainly adopts the multi-branch archi-
tecture. These methods [9, 11, 21, 23, 25] share the similar
idea as the erasing-based methods, while they differ from
those methods by parallel processing. Likewise, it shares
the same problem with the erasing-based methods.

The last category is the pseudo-label-based methods.
These methods originated from Refine-Loc [36], which
generates snippet-level hard pseudo labels. Then vari-
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ous works follow this idea and try to generate more ac-
curate pseudo labels. For example, works like EM-MIL
[28], RSKP [10] fit the pseudo-label generation into an
expectation-maximization framework. UGCT [46] uses an
uncertainty-guided collaborative training strategy. How-
ever, most of these methods utilize the TCAM or variants
of TCAM as the pseudo label, leading to discrepancy be-
tween training and testing. Besides, these methods cannot
address the problem that pseudo labels can be inaccurate
at the early training stage. And the inaccurate pseudo la-
bels will keep generating wrong pseudo labels without the
self-correction mechanism. In contrast to existing pseudo-
label-based methods, we propose to generate pseudo labels
from action boundaries, alleviating the discrepancy between
training and testing. Besides, the introduction of ∆ pseudo
labels enables the model with the ability of self-correction.

3. Method
In this section, we detail the proposed method. An over-

all illustration of the pipeline is demonstrated in Figure 1.

Problem definition. Given N training videos {Vi}Ni=1,
during training, we can only access their action categories
{yi}Ni=1, where yi is a binary vector indicating the pres-
ence/absence of each of K action classes. During inference,
for a video, our target is to predict a set of action instances
{(c, q, s, e)}, where c denotes the predicted action class, q
is the confidence score, s and e represent the start time and
end time of the action instance.

Overview. Our target is to narrow down the gap between
training and testing by generating pseudo labels from the
predicted action boundaries. First, we propose a Gaussian
Weighted Instance Fusion module to obtain high-quality
action boundaries. This module serves as an effective al-
ternative to the non-maximum suppression (NMS), which
weightedly fuses action instances that are overlapped with
each other, rather than filtering low-confident instances.

After generating the high-quality action instances, we
need to transfer them into snippet-wise pseudo labels. The
key idea is generating pseudo labels that can preserve the
confidence score within each action instance and make the
scores within an action instance as uniform as possible.
Therefore, we formulate it as a linear programming prob-
lem with the above two constraints to obtain the optimal
snippet-wise pseudo labels.

Lastly, we propose the idea of ∆ pseudo labels for better
utilization of the generated pseudo labels. Instead of naively
using the generated pseudo labels as training target, we take
the differences of pseudo labels between two consecutive
epochs as the final pseudo labels. In this way, we can cap-
ture the confidence change of the model for the pseudo
labels, which represents the pseudo labels’ reliability, and
thus enable the model with the ability of self-correction.

Feature extraction and network design. Following pre-
vious works [34, 37], for each video Vi, every 16 consecu-
tive frames is processed into a snippet-level feature. In our

case, the Inflated 3D (I3D) [2] pre-trained on the Kinetics-
400 dataset [14] is used to encode the video snippets. The
output snippet-level features are in R2048, thus we convert
the video of l snippets into a feature matrix of F ∈ Rl×2048.
As a plug-in method, our method can be applied to most of
the existing approaches. Here, we adopt RSKP [10] as the
backbone to obtain the temporal class activation map.

In the sections below, we first describe how to fuse can-
didate action instances to obtain high-quality action bound-
aries, then we elaborate on the generation of pseudo labels,
and finally, we introduce our ∆ pseudo labels.

3.1. Gaussian Weighted Instance Fusion
The classification head predicts labels for each indi-

vidual snippet, it results in temporal class activate map
(TCAM) L ∈ Rl×K , where l is the length of a given video
and K is the number of classes. There are multiple ways
of transforming the TCAM into action instances of inter-
est. A commonly used way is employing multiple thresh-
olds [8, 9, 16] to obtain redundant action instances and then
resort to the non-maximum suppression (NMS) for dupli-
cating highly-overlapped instances.

Traditional NMS is designed to only pick out the pre-
dicted action instances with high confidence scores, while
throwing away those low-confident action instances. How-
ever, due to the weakly supervised setting, the confidence
score lacks explicit supervision by snippet-level annota-
tions. It is unwise to just trust the predictions with the high
confidence scores and suppress other predictions with low
confidence scores. Moreover, those suppressed action in-
stances indicates different level of confidence at different lo-
cations. Thus large amount of information is lost due to the
NMS procedure. To address the above issues, we present a
novel Gaussian weighted fusion module to aggregate all the
action instances who were suppressed by NMS.

Suppose for a class c, we have M candidate action in-
stances A = {a1, · · · , aM}. Each action instance is of the
ai = (ci, qi, si, ei) where ci is the predicted class, qi is the
confidence score, and si, ei are the boundaries. We collect
all the prediction instances, whose IoUs are greater than a
predefined threshold hfuse to the most confident predicted
instance a∗ in set A. The index set of these prediction seg-
ments are denoted as I∗

I∗ = {k|IoU(ak, a∗) > hfuse}. (1)

Assuming the confidence scores {qi}, start points {si} and
end points {ei} of the collected instances in index set I∗
satisfy independent Gaussian distribution, whose probabil-
ity density function (PDF) can be formulated as:

N(▲) =
1

σ▲
√
2π

exp(− (▲− µ▲)
2

2σ2
▲

), (2)

where ▲ ∈ {q, s, e}. Now we tend to match the template
Gaussian distribution as close as to our sampled predictions.
Note that each action instance has a confidence score, if we
regard the confidence scores as the un-normalized logits of
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Figure 1. The overview of our method. We first feed the video into a weakly supervised action localization model to generate the
temporal class activation map (TCAM). The obtained TCAM is transformed into action boundaries using multiple thresholds. We utilize
the Gaussian Weighted Instance Fusion module to merge the candidate action instances into high-quality action boundaries. Then, we
transform the action boundaries into snippet-wise pseudo labels by solving a linear programming problem. To enable the model with the
ability of self-correction, we utilize the ∆ pseudo labels, which are the differences between two pseudo labels generated at consecutive
epochs, as the final pseudo labels. Note that, all the original losses of the weakly supervised localization model are preserved.

action instances, then we can compute the probability of
sampling the k-th action instance as:

gk =
exp (qk/T )∑
i∈I∗

exp (qi/T )
, (3)

where T is a temperature hyper-parameter. By minimizing
the cross-entropy between N(▲) and {gk} we have:

µ▲ =
∑
i∈I∗

▲igi, (4)

where ▲ stands for {q, s, e}. Therefore, we can obtain the
weightedly fused value µq , µs and µe, which are taken as
the confidence score, start point and end point for the fused
action instance. Then we delete all action instances of in-
terest from I∗ in A, and repeat the above process until A is
empty. Here we also tried some other distribution templates,
such as exponential distribution, the Gaussian distribution
achieves the best performance among them.

3.2. LinPro Pseudo Label Generation
After generating the high-quality action boundaries, we

propose to transform them into snippet-wise pseudo labels.
In this way, the video snippets are directly supervised by the
final targets, i.e., action boundaries, instead of the TCAM,
and thus close up the gap between testing and training. A
naive approach to achieve this is to directly assign a hard
label to each snippet within the post-processed action in-
stance. However, this naive approach suffers from several

drawbacks. First, snippets from different action instances
may have different confidence scores, assigning them with
the same hard label brutally ignores this difference. Sec-
ond, using hard labels actually overlooks the importance of
the predicted confidence scores, which could represent the
instances’ quality measured by the model to some extent.
Third, even after post-processing, some predicted instances
are still overlapped, this naive approach will simply merge
them together and result in false predictions.

To address the above issues, we propose an optimization-
based method to generate desirable pseudo-labels. Since the
confidence score are important information action instances
carry on, we intend to find the pseudo label which can char-
acterize the property of the confidence score of each action
instance. To this end, we formulate this optimization prob-
lem based on two constraints: (1) the generated pseudo la-
bel should preserve the confidence score of each action in-
stance. (2) The scores of the generated pseudo labels should
be uniform. The first constraint is easy to comprehend be-
cause we intend to maintain the confidence score of each ac-
tion instance. As for the second constraint, it follows from
the fact that most of the snippets within an action instance
should be equivalent for classification and localization.

To address the first constraint, we convert each action
instance into a linear constraint. Specifically, given the n
action instances of the class c, we first construct n weighting
vectors {Wj ∈ Rl|j = 1 . . . n}, where l is the length of
the video, each of which serves as the constraint for the
corresponding action instance. Here, we follow Inner-Outer
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Contrast score [16, 39] to construct the weighting vectors,
by dividing the whole video into the inner areas, outer areas,
and background. In specific, for Wj , we set its i-th element
Wj,i as 1 if the i-th snippet is in the inner area of action
instance j, i.e., sj ≤ i ≤ ej . Likewise, we set it as −1 if
it lies in the outer area, i.e., sj − α(ej − sj) ≤ i < sj or
ej ≤ i < ej + α(ej − sj)), otherwise 0 for background.
This process is detailedly shown in Figure 2. From such a
construction, we have the following linear equations for the
n action instances:

qc,1 = WT
1 gc,

...

qc,n = WT
n gc,

(5)

where gc ∈ Rl is the pseudo label to be generated for the
class c, and qc,i is the confidence score of class c for the
i-th action instance. To this end, we constrain the gen-
erated pseudo label to maintain the Inner-Outer Contrast
scores of action instances. Besides, the larger the value of∑n

j=1 Wj,i, the more important the i-th snippet is. It rep-
resents the i-th snippet lies in more inner areas and fewer
outer areas. Intuitively, we want to generate the pseudo la-
bel, which has a larger value at more important snippets. To
achieve this, we minimize the ℓ1-norm of the pseudo-label
gc. The optimization problem can be finally formulated as:

ĝc = argmin∥gc∥1
s.t. qc = WT gc

gc ≥ 0,

(6)

where qc = (qc,1, . . . , qc,n) and W = [W1; . . . ;Wn] ∈
Rl×n. Even though, the above optimization target can
achieve minimizing ℓ1-norm of gc, it does not guarantee
a uniform-shaped pseudo label. To satisfy the second con-
straint, we first collect the snippets, which are equivalent for
the optimization problem. Here, we define the two snippets
i, j as equivalent, if the i-th and the j-th rows of W are the
same, which means they fall on the same inner area/outer
area/background area, or the same overlapped area. For
those equivalent snippets, we average their scores in the
solved pseudo label ĝc of Eq. (6), and re-assign them with
the average value. In this way, we transform the pseudo
label ĝc into a more uniform form while satisfying the opti-
mization target of Eq. (6).

For each of the K classes, we conduct the above proce-
dure to obtain its pseudo label. After that, we concatenate
all the pseudo labels of K classes together into the final
pseudo label G ∈ Rl×K for the input video.

3.3. ∆ Pseudo Label
Although the generated pseudo labels can capture the

boundaries of predicted action instances and preserve the
information of confidence scores, they still have certain
drawbacks when used directly. If we apply our pseudo la-
bel G directly to the TCAM L with cross-entropy (CE) loss,

0 5 10 15 20 25 30
snippet id

GT

W0

W1

W2

W3

gc

qc

: Gt : 1 : 0 : -1

Figure 2. Illustration of the process of pseudo label generation.
GT is the ground truth snippet-wise label, where the blue snippet
denotes the action locations. W0,W1,W2,W3 are four constraints
generated from four action instances. The yellow, white, and red
snippets denote the constraints weights of 1, 0,−1 respectively. qc
is the predicted snippet-wise score, and gc is the generated pseudo
label. The snippets in each dashed rectangle are equivalent.

i.e., Lce =
∑

CE(softmax(Lj), Gj), where j denotes the
j-th snippet, the negative gradient of the CE loss with re-
spect to the snippet j and the class c is:

− ∂Lce

∂Pj,c
= Gj,c(1− Pj,c), (7)

where Pj = softmax(Lj). Since (1 − Pj,c) is always pos-
itive, this negative gradient indicates that we are pushing
the TCAM towards the direction of Gj,c, which is also al-
ways positive. What’s worse, at the early stage of training,
the generated pseudo labels are usually fluctuating and in-
accurate, it would force the model to keep generating wrong
pseudo labels of high confidence at later training stages.

To alleviate this issue, we propose to utilize the ∆ pseudo
labels. In specific, we take the difference of two pseudo
labels, which are collected at two consecutive epochs of
pseudo label generation, as the ∆ pseudo label, which can
be obtained as:

∆Gt = Gt −Gt−1, (8)

where upper-script t stands for the pseudo label generated
at the t-th time. Now, applying the cross entropy loss, the
negative gradient turns into:

− ∂Lce

∂Pj,c
= ∆Gt

j,c(1− Pj,c). (9)

In this way, the training loss is driving the TCAM to the di-
rection of ∆Gt

j,c, which could be either positive or negative.
Since the model in general tends to provide more accurate
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predictions when the training goes on, it can be expected
that when the snippet j is a part of the action category i,
its ∆Gt

j,c could be positive. In contrast, if the snippet j
does not belong to the class i, its ∆Gt

j,c could be nega-
tive since the model is prone to lower its score. Therefore,
this mechanism mitigates the issue of generating inaccurate
pseudo labels at the early stage of training, by considering
the relative changes of pseudo labels rather than the abso-
lute values, and thus empowers the model with the ability
of self-correction, so as to obtain better performance.

4. Experiments
4.1. Datasets
THUMOS14 [13]. THUMOS14 is a dataset with 20
classes of actions. In our experiments, we consider of sub-
set of THUMOS14 which has frame-wise annotations for
all 20 classes of actions. We train our model on the 200 val-
idation video and evaluate it on the 212 testing video. Note
that we do not use the frame-wise label at training stage.
ActivityNet1.3 [1]. ActivityNet1.3 is a dataset that con-
tains 200 daily activities. This dataset provides 10,024
videos for training, 4,926 validation videos and 5,044 test-
ing ones. Our model is trained on the training set and tested
on the validation set.

4.2. Implementation Details
Model details. We pre-process each video into snippets,
which are extracted into 2048-d features by the I3D model
pre-trained on Kinetics-400 [2]. Then we strictly follow the
network design of [10] for model designing.
Training details. Our method is trained with a mini-
batch size of 10 and 128 with Adam [15] optimizer for
THUMOS14 and ActivityNet1.3, respectively. The hyper-
parameter of temperature T for Gaussian weighted fusion
is set as 0.1. At the early training stage, the model is in-
sufficient to generate high quality pseudo labels, thus we
start to generate pseudo labels from epoch 200, and renew
the pseudo label at epochs 215, 230, 245, 270 and 290. The
training procedure stops at 350 epochs with the learning rate
5×10−5. Unless state otherwise, this is our default training
setting in the following experiments.
Testing details. The whole sequence of a video is used
as testing input. Our model produces snippet-level predic-
tions, and we simply up-sample the predictions to match the
original frame rate. Following [16], we use a set of thresh-
olds to obtain the predicted action instances. After that, we
apply our Gaussian weighted fusion strategy instead of non-
maximum suppression to generate the more accurate action
instances. During testing, the hyper-parameter of tempera-
ture T for Gaussian weighted fusion is set as 0.03.

4.3. Comparison with State-of-the-art Methods
In this section, we compare our method with state-of-

the-art weakly supervised methods. Meanwhile, we also
compare it several fully supervised methods. The results
are shown in Table 1 and Table 2. On the THUMOS14 [13]

Table 1. Results on ActivityNet1.3 validation set. AVG indicates
the average mAP at IoU thresholds 0.5:0.05:0.95.

Method mAP @ IoU
0.5 0.75 0.95 AVG

TAL-Net [3] 38.2 18.3 1.3 20.2
BSN [20] 46.5 30.0 8.0 30.0
GTAN [26] 52.6 34.1 8.9 34.3
BaS-Net (I3D) [16] 34.5 22.5 4.9 22.2
A2CL-PT (I3D) [30] 36.8 22.0 5.2 22.5
ACM-BANet (I3D) [31] 37.6 24.7 6.5 24.4
TSCN (I3D) [47] 35.3 21.4 5.3 21.7
WUM (I3D) [17] 37.0 23.9 5.7 23.7
TS-PCA (I3D) [22] 37.4 23.5 5.9 23.7
UGCT (I3D) [46] 39.1 22.4 5.8 23.8
AUMN (I3D) [27] 38.3 23.5 5.2 23.5
FAC-Net (I3D) [9] 37.6 24.2 6.0 24.0
RSKP (I3D) [10] 40.6 24.6 5.9 25.0
ASM-Loc (I3D) [5] 41.0 24.9 6.2 25.1
Ours 43.4 28.8 9.9 28.8

benchmark, our method largely outperforms the previous
weak-supervised approaches in almost every metric. Be-
sides, on the important criterions: average mAP (0.1:0.5),
average mAP (0.3:0.7), average mAP (0.1:0.7), we surpass
the state-of-the-art method, DELU [4], by 3.2%, 1.5% and
1.9%, respectively. Most excitingly, our method even out-
performs some recent fully-supervised methods on the mAP
(0.1:0.5) and average mAP (0.3:0.7) metrics. Some other
weakly supervised methods (i.e., Weak † in Table 2) utilize
additional weak supervisions, such as action frequency, our
method still outperforms these methods.

On the larger ActivityNet1.3 [1] dataset, our method out-
performs all existing weakly supervised methods by a sig-
nificant margin. Compared with previous methods, we con-
sistently achieve a gain about 3.0% on every metric. In
terms of the average mAP, our method obtains a 3.7% gain.

4.4. Ablation Study
Our ablation studies are conducted on the THUMOS14

benchmark. Unless explicitly stated, we follow our default
setting in Sec. 4.2.

Gaussian Weighted Instance Fusion As the initiative
procedure in our pipeline, the Gaussian Weighted Instance
Fusion module is of great importance. As pointed out previ-
ously, besides the Gaussian distribution, other distributions
are also suitable for our fusion strategy.

In Table 3, we conduct several experiments to verify
the effectiveness of our fusion strategy during the train-
ing stage. There are four different distributions: Gaus-
sian distribution, Uniform distribution, Exponential distri-
bution, and T-distribution to be considered. All these exper-
iments are conducted with the same set of candidate action
instances. Meanwhile, the LinPro Pseudo Label Genera-
tion module and ∆ pseudo-label is turned off. We use the
non-maximum suppression (NMS) approach as our baseline
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Table 2. Comparisons of detection performance on THUMOS14. UNT and I3D represent UntrimmedNet features and I3D features,
respectively. † means that the method utilizes additional weak supervisions, e.g., action frequency.

Supervision Method Feature mAP @ IoU (%) AVG
(0.1:0.5)

AVG
(0.3:0.7)

AVG
(0.1:0.7)0.1 0.2 0.3 0.4 0.5 0.6 0.7

Full
SSN [51] (ICCV’17) - 60.3 56.2 50.6 40.8 29.1 - - 49.6 - -
BSN [20] (ECCV’18) - - - 53.5 45.0 36.9 28.4 20.0 - 36.8 -
GTAN [26] (CVPR’19) - 69.1 63.7 57.8 47.2 38.8 - - 55.3 - -

Weak † STAR [44] (AAAI’19) I3D 68.8 60.0 48.7 34.7 23.0 - - 47.0 - -
3C-Net [33] (ICCV’19) I3D 59.1 53.5 44.2 34.1 26.6 - 8.1 43.5 - -

Weak

CleanNet [24] (ICCV’19) UNT - - 37.0 30.9 23.9 13.9 7.1 - 22.6 -
TSCN [47] (ECCV’20) I3D 63.4 57.6 47.8 37.7 28.7 19.4 10.2 47.0 28.8 37.8
EM-MIL [28] (ECCV’20) I3D 59.1 52.7 45.5 36.8 30.5 22.7 16.4 45.0 30.4 37.7
A2CL-PT [30] (ECCV’20) I3D 61.2 56.1 48.1 39.0 30.1 19.2 10.6 46.9 29.4 37.8
HAM-Net [11] (AAAI’21) I3D 65.4 59.0 50.3 41.1 31.0 20.7 11.1 49.4 30.8 39.8
WUM [17] (AAAI’21) I3D 67.5 61.2 52.3 43.4 33.7 22.9 12.1 51.6 32.9 41.9
AUMN [27] (CVPR’21) I3D 66.2 61.9 54.9 44.4 33.3 20.5 9.0 52.1 32.4 41.5
CoLA [48] (CVPR’21) I3D 66.2 59.5 51.5 41.9 32.2 22.0 13.1 50.3 32.1 40.9
TS-PCA [22] (CVPR’21) I3D 67.6 61.1 53.4 43.4 34.3 24.7 13.7 52.0 33.9 42.6
UGCT [46] (CVPR’21) I3D 69.2 62.9 55.5 46.5 35.9 23.8 11.4 54.0 34.6 43.6
ASL [29] (CVPR’21) I3D 67.0 - 51.8 - 31.1 - 11.4 - - -
CO2-Net [6] (MM’21) I3D 70.1 63.6 54.5 45.7 38.3 26.4 13.4 54.4 35.6 44.6
D2-Net [32] (ICCV’21) I3D 65.7 60.2 52.3 43.4 36.0 - - 51.5 - -
FAC-Net [9] (ICCV’21) I3D 67.6 62.1 52.6 44.3 33.4 22.5 12.7 52.0 33.1 42.2
RSKP [10] (CVPR’22) I3D 71.3 65.3 55.8 47.5 38.2 25.4 12.5 55.6 35.9 45.1
ASM-Loc [5] (CVPR’22) I3D 71.2 65.5 57.1 46.8 36.6 25.2 13.4 55.4 35.8 45.1
Li et al. [18] (MM’22) I3D 69.7 64.5 58.1 49.9 39.6 27.3 14.2 56.3 37.8 46.1
DELU [4] (ECCV’22) I3D 71.5 66.2 56.5 47.7 40.5 27.4 15.3 56.5 37.4 46.4
Ours I3D 74.0 69.4 60.7 51.8 42.7 26.2 13.1 59.7 38.9 48.3

Table 3. Localization results of using different distributions for
action instance fusion during training and testing. The non-
maximum suppression (NMS) is used as baseline method.

Distribution
mAP @ IoU

Training Testing
0.5 0.7 AVG 0.5 0.7 AVG

Baseline 36.2 12.2 44.9 36.6 11.1 44.9
Uniform 24.2 8.1 31.2 33.8 9.7 41.5
Exponential 36.2 12.3 45.3 41.1 12.4 47.1
t-distribution 36.7 12.7 45.6 41.2 11.5 47.1
Gaussian 36.6 12.7 45.6 41.2 11.6 47.1

method. As we can see, our method achieves the best per-
formance using the Gaussian distribution, the gain is about
0.7% compared with the baseline method. This is because
Gaussian distribution generally exists in a stochastic pro-
cess. We also note that the uniform distribution deteriorates
the performance because it significantly deviates from the
ground truth distribution. Although the t-distribution ex-
hibits a similar performance with Gaussian, we do not en-
courage using it. Since using t-distribution has no analytic
form of fusing formulas, we have to solve a transcendental
equation through Newton iteration.

Similarly, we conduct experiments in Table 3 for eval-
uating the effectiveness of our fusion strategy during test-
ing. With exactly the same distributions in the previous ex-
periments, we choose NMS as our baseline. Specially, the
baseline model is trained without the LinPro Pseudo Label
Generation module and the pseudo labels for a fair compar-
ison. From Table 3, we can see that the Gaussian distribu-

tion still achieves the best performance and acquire a gain
as high as 2.3% at testing time. Intriguingly, we notice that
the exponential distribution and t-distribution achieve the
same performance. We argue that this is because those three
distributions are very similar when the hyper-parameter of
temperature is low during testing.

Although our method is almost hyper-parameter-free, we
still suffer from the impact of the template distribution pa-
rameter temperature T . For this reason, we study the tem-
perature’s impact on our method. We conduct the following
experiments for two aspects. (1) We study the temperature’s
impact during the training stage, these experiments are car-
ried out with the default setting. To ensure fair comparison,
we do not use the fusion strategy during testing. (2) We
study how the temperature influences the post-processing
during testing. Also, we use the default settings with the
training temperature set as 0.1.

From the results in Figure 3, we claim that our method
is not sensitive to the hyper-parameter of temperature in a
large range (from 0.05 to 0.2) during the training stage. Be-
sides, our method suffers some performance loss when the
temperature is too low. Under this circumstance, the candi-
date action instances of high sampling probability would be
overwhelming during the fusion process, we cannot collect
information from regions where the probability is low.

Similarly, during testing, the temperature impact on our
method is also limited. There is a large region where our
method doesn’t change much as the temperature varies. One
may notice that our method achieved 48.5% in terms of
mAP as temperature 0.01, however, we do not report it as
our main result because we believe this temperature is too
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Figure 3. Impact of temperature on Gaussian weighted Instance
Fusion module during training and testing.

Table 4. Evaluation of each component of our method.

componet mAP @ IoU
0.3 0.5 0.7 AVG

baseline 55.8 38.2 12.5 45.1
+ LinPro Pseudo Label Generation 57.4 36.2 12.2 44.9
+ Gaussian weighted fusion 58.2 36.6 12.7 45.6
+ ∆ pseudo label 58.4 37.6 12.2 46.2
+ Gaussian weighted fusion (testing) 60.7 42.7 13.1 48.3

Table 5. The detection results of applying our method to existing
methods. Embedding means we add a learnable network after the
backbone network to learn the video features. The results of the
original methods are reproduced.

Method mAP @ IoU
0.3 0.5 0.7 AVG

STPN [34] + embedding 38.4 19.1 4.7 28.4
STPN + embedding + Ours 41.6 22.1 6.8 31.6 ↑2.2
BM [35] 45.2 26.2 8.7 35.3
BM + Ours 47.4 28.5 10.3 37.3 ↑2.0
WUM [17] 51.0 32.8 10.9 40.4
WUM + Ours 53.2 34.0 11.4 42.3 ↑1.9
FAC-Net [9] 53.2 34.4 13.7 42.9
FAC-Net + Ours 56.4 37.2 13.0. 44.8 ↑1.9

radical. Instead, we choose temperature 0.03 as our default
setting since it lies in the center of our temperature interval.

Performance gain of each component. Our method con-
sists of three components, i.e., Gaussian weighted instance
fusion, LinPro pseudo label generation, and ∆ pseudo la-
bel. Here, we study the performance gain of each com-
ponent and their combinations, we take the RSKP [10] as
our baseline method, and gradually add the three compo-
nents. As we can see in Table 4, when only adopting
the LinPro pseudo label generation to the NMS-generated
action boundaries, the performance drops, indicating the
NMS cannot generate high-quality action boundaries. After
adding the Gaussian weighted fusion module, the perfor-
mance increases by 1.5% over the baseline. Further bene-
fitted from the introduction of ∆ pseudo labels, our method
can reach the average mAP of 46.2%. Finally, an evident
gain of 2.1% can be obtained when the Gaussian weighted
fusion strategy is adopted as post-processing during testing.

Figure 4. Illustration of the detection results of GolfSwing and
JavelinThrow. GT stands for the ground truth, conf score is the
predicted confidence score of the given action. The pseudo labels
are generated by our Linpro pseudo label generation module.

Integrating our modules to existing methods. In Table
5, we plug our proposed pipeline into some existing meth-
ods. The default settings of these methods are used for fair
comparisons. As we can see, our method can consistently
improve the performances of the previous methods.

Qualitative results. We visualize some examples of the
confidence scores and Linpro pseudo labels generated by
our method. As we can see from Figure 4, the generated
pseudo labels preserve the confidence score within each ac-
tion instances, meanwhile they are as uniform as possible.

5. Conclusion
In this paper, we propose a novel framework to gener-

ate better pseudo labels from action boundaries. We first
propose a Gaussian weighted instance fusion module to ob-
tain high-quality action boundaries. After that, we gener-
ate the pseudo labels from action boundaries by solving the
the optimization problem under the constraints in terms of
the confidence scores of action instances. Finally, we pro-
pose to utilize the ∆ pseudo-label for introducing a self-
correction mechanism into the model. Our method achieves
state-of-the-art performance on THUMOS14 and Activi-
tyNet1.3 and can consistently improve the performance of
existing methods.
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