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Abstract

Human action recognition aims at classifying the cate-
gory of human action from a segment of a video. Recently,
people have dived into designing GCN-based models to ex-
tract features from skeletons for performing this task, be-
cause skeleton representations are much more efficient and
robust than other modalities such as RGB frames. However,
when employing the skeleton data, some important clues
like related items are also discarded. It results in some
ambiguous actions that are hard to be distinguished and
tend to be misclassified. To alleviate this problem, we pro-
pose an auxiliary feature refinement head (FR Head), which
consists of spatial-temporal decoupling and contrastive fea-
ture refinement, to obtain discriminative representations of
skeletons. Ambiguous samples are dynamically discovered
and calibrated in the feature space. Furthermore, FR Head
could be imposed on different stages of GCNs to build a
multi-level refinement for stronger supervision. Extensive
experiments are conducted on NTU RGB+D, NTU RGB+D
120, and NW-UCLA datasets. Our proposed models obtain
competitive results from state-of-the-art methods and can
help to discriminate those ambiguous samples. Codes are
available at https://github.com/zhysora/FR-Head.

1. Introduction

In human-to-human communication, action plays a par-
ticularly important role. The behaviors convey intrinsic in-
formation like emotions and potential intentions and thus
help to understand the person. Empowering intelligent ma-
chines with the same ability to understand human behaviors
is critical for natural human-computer interaction and many
other practical applications, and has been attracting much
attention recently.

Nowadays, obtaining 2D/3D skeletons of humans has
become much easier thanks to the advanced sensor tech-
nology and human pose estimation algorithms. Skeletons
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Figure 1. There are some actions that are hard to recognize be-
cause the skeleton representations lack important interactive ob-
jects and contexts, which make them easily confused with each
other.

are compact and robust representations that are immune to
viewpoint changes and cluttered backgrounds, making them
attractive for action recognition. A typical way to use skele-
tons for action recognition is to build Graph Convolutional
Networks (GCNs) [38]. The joints and bones in the human
body naturally form graphs, which make GCNs a perfect
tool to extract topological features of skeletons. GCN-based
methods have become more and more popular, with another
merit that the models can be built lightweight and have high
computational efficiency compared with models processing
video frames.

However, using skeletons to recognize actions has some
limitations. A major problem is that skeleton representation
lacks important interactive objects and contextual informa-
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tion for distinguishing similar actions. As shown in Fig. 1, it
is hard to distinguish “Writing”, “Reading” and “Typing on
a keyboard” based on the skeleton view alone. In contrast,
a model can recognize them from RGB frames by focusing
on the related items. These actions are easily confused with
each other and should be given more attention.

To alleviate this drawback, we propose a feature re-
finement module using contrastive learning to lift the dis-
criminative ability of features between ambiguous actions.
We first decouple hidden features into spatial and temporal
components so that the network can better focus on discrim-
inative parts among ambiguous actions along the topologi-
cal and temporal dimensions. Then we identify the con-
fident and ambiguous samples based on the model predic-
tion during training. Confident samples are used to main-
tain a prototype for each class, which is achieved by a con-
trastive learning loss to constrain intra-class and inter-class
distances. Meanwhile, ambiguous samples are calibrated
by being closer to or far away from confident samples in
the feature space. Furthermore, the aforementioned feature
refinement module can be embedded into multiple types of
GCNs to improve hierarchical feature learning. It will pro-
duce a multi-level contrastive loss, which is jointly trained
with the classification loss to improve the performance of
ambiguous actions. Our main contributions are summarized
as follows:

e We propose a discriminative feature refinement mod-
ule to improve the performance of ambiguous actions
in skeleton based action recognition. It uses con-
trastive learning to constrain the distance between con-
fident samples and ambiguous samples. It also de-
couples the raw feature map into spatial and temporal
components in a lightweight way for efficient feature
enhancement.

e The feature refinement module is plug-and-play and
compatible with most GCN-based models. It can be
jointly trained with other losses but discarded in the
inference stage.

e We conduct extensive experiments on NTU RGB+D,
NTU RGB+D 120, and NW-UCLA datasets to com-
pare our proposed methods with the state-of-the-art
models. Experimental results demonstrate the signif-
icant improvement of our methods.

2. Related Work
2.1. Human Pose Estimation

Human pose estimation is an essential building block
for a wide range of intelligent systems in fields such as
AR, sports analysis, and healthcare, thus receiving much
attention in recent years. Recent approaches leverage the

temporal information of 2D pose sequences to alleviate the
depth ambiguity in 3D poses [ 1, 13, 19,20,23]. Hossain et
al. [13] tackle the task as a sequence-to-sequence problem
and build RNNs to learn the mapping. Cai et al. [1] ex-
ploit the spatial-temporal relations from the 2D sequences
via an encoder-decoder like GCN. Li et al. [19] use Trans-
former [31] to capture the long-range relationships in the
2D pose sequence.

2.2. Skeleton Based Action Recognition

Action recognition benefits a lot from human pose es-
timation. Early works treat the recognition as a sequence
classification task. Su et al. [30] design an auto-encoder
with RNNs to learn high-level features from the sequence.
Another stream converts the skeleton sequence to image-
like data using hand-crafted schemes [9, 37]. Duan et al.
[10] concatenate an RGB frame with a 2D skeleton heat
map and use 3D CNNs to extract features. These works
do not explicitly exploit the spatial structure of the human
body.

The mainstream in this field is to use GCNss to extract the
high-level features from skeletons since the joints and bones
in the human body naturally construct a graph [5,22,38,42].
In this way, the topology of the human body is fully ex-
ploited. Yan et al. [38] is the first attempt to use GCNs
for skeleton based human action recognition. They define
the basic connections of spatial and temporal dimensions
and introduce an efficient pipeline. Zhang et al. [42] build
a two-stream architecture for both joint and bone modali-
ties. Chen et al. [5] improve the design of GCNs in [38]
and propose to dynamically learn different topologies and
effectively aggregate joint features in each channel.

2.3. Contrastive Learning

Recently, contrastive learning has achieved remarkable
progress in diverse fields. Typically, contrastive learning re-
quires generating a set of transformed versions (or “views”)
of an image using data augmentations, then training the net-
work to distinguish the different views of the image. Chen
et al. [2] explore the strategies of data augmentations and
use a huge batch size to obtain the enhanced representation.
He et al. 3,4, 12] realize contrastive learning in a more effi-
cient way using a momentum encoder and a dynamic queue.
Wang et al. [33] define the positive and negative samples in
a supervised manner. They design a metric function loss to
calibrate these misclassified feature representations for bet-
ter intra-class consistency and segmentation performance.
Inspired by this, our work tries to use a similar spirit to re-
fine the skeleton representations for ambiguous actions.

2.4. Ambiguous Sample

Most of the recognition tasks for solving ambiguous
samples focus on fine-grained image classification. For ex-
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Figure 2. overview of the proposed method.

ample, Lin et al. [32] perform bilinear pooling on the rep-
resentations of two local patches to learn the discriminative
feature. Dubey et al. [1 1] model similarity between image
pairs and leverage metric learning to improve the feature
distributions. Zhuang et al. [43] design a module to adap-
tively discover contrastive cues from a pair of images and
attentively distinguish them via pairwise interaction. How-
ever, we have not found works that aim at solving skeleton-
based action recognition.

3. Methodology

We now give the details of our method. The overview of
it is depicted in Fig. 2.

3.1. Backbone

The input of our model is a sequence of skeletons with
a shape of T' x V' x 3, which means 7" frames of V' joints
in a 3D space. We build our approach on [5]. However, we
will show in the experimental section that it can improve
any GCNs. The backbone consists of 10 basic units, termed
TGN. TGN is constructed by a series of Temporal CNNs
(TCNs) and Graph Convolution Networks (GCNs). Con-
cretely, TCNs extract the temporal features by imposing 1D
CNNs on the temporal dimension; GCNs extract the spa-

tial features with a learnable topological graph defined on
the spatial dimension. Note that two of the basic units are
strided TGNs implemented by strided 1D CNNs. They are
used to generate multi-scale features by decreasing the tem-
poral dimension while increasing the channel dimension.
Then, a pooling layer is applied to get the 1D high-level
feature vectors. Finally, a fully-connected (FC) layer with
softmax activation maps the feature to a probability distri-
bution of K candidate categories.

It is noted that the detailed implementation of the back-
bone is not the main concern of our method. The imple-
mentation of the basic unit can be replaced by any other
GCN-based networks like [26, 38].

3.2. Feature Refinement Head

Our main idea is to improve the performance of the
skeleton based model on ambiguous actions that are quite
similar and easily misclassified. To achieve this, we pro-
pose a plug-and-play module to optimize multi-level fea-
tures within the backbone network, termed Feature Refine-
ment Head (FR Head). It first decouples the hidden feature
maps into spatial and temporal components and then applies
a contrastive learning loss with global class prototypes and
ambiguous samples. It is worth noting that the proposed FR
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Head is added only for training. There is no additional com-
putational cost or memory consumption during inference.

3.2.1 Multi-Level Feature Selection

To learn more discriminative feature representations, we di-
vide the backbone into four stages, respectively at the 1st,
Sth, 8th, and last layer of TGN, and impose a FR Head on
each of them. The 5th and the 8th layers employ a strided
operation. Each FR Head refines the corresponding hid-
den features by calculating a contrastive learning (CL) loss,
whose details will be discussed in Section. 3.2.3. To bal-
ance the different levels, we add a weighting parameter for
each stage and the multi-level CL loss can be defined as a
weighted average sum:

4
Lon =Y N Lo )
=1

where Lcy, is the multi-level CL loss, A; is the hyper-
parameter to control stage ¢ and L, is the local CL loss
calculated by stage 7.

3.2.2 Spatial-Temporal Decoupling

Due to the complexity of human activities, coarse mod-
elling features will lead to confusion between ambiguous
actions with similar spatial appearances or temporal trans-
formations.

For example, “put sth. into a bag” can be easily distin-
guished from “take sth. out of a bag” using temporal clues.
However, compared to the “reach into pockets”, more con-
centrations on the spatial information are required. There-
fore, we propose a spatial-temporal decouple module that
mines the spatial and temporal information simultaneously
to improve the discriminative ability of action representa-
tions.

As Fig. 2 describes, the raw feature map is fed into two
parallel branches for efficient feature enhancement. Con-
cretely, each branch comprises a spatial/temporal pooling
layer which only keeps the average value of the related di-
mension and a 1 x 1 convolution layer which is used to
squeeze the feature to a fixed size. Then the output feature
is flattened to a unified representation with the channel size
of C,. Finally, a CL loss is added on top of each branch.
We accomplish the Spatial-Temporal Decoupling feature re-
finement by summing losses from the two branches:

&1, = CL(F!) + CL(F}) )

where F? and F} stand for the spatial feature and the tem-
poral feature of stage i, respectively. CL(-) is the function
to calculate the CL loss with a specific feature vector.
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Figure 3. Discovering the confident and ambiguous samples for
action “writing”.

3.2.3 Contrastive Feature Refinement

As Fig. 2 shows, we conduct the feature refinement in a
manner of contrastive learning. The idea is inspired by [33].
Each sample will be refined by both its ground truth actions
and other ambiguous actions.

Confident Sample Clustering. Given an action label k,
if a sample is predicted correctly, namely as a True Posi-
tive (TP), we consider it a confident sample to distinguish it
from ambiguous samples. Apparently, features from confi-
dent samples tend to have better intra-class consistency. As
Fig. 3 shows, we gather those features to update the global
representation (i.e., prototype) of the corresponding classes
via exponential moving average (EMA). Assuming s’% pis
the set of confident samples for action k in a batch and its
size is n’:} p» the EMA operation can be defined as:

Pk:(l—a)-%ZFi—&—chk (3)
"rp i€sk
TP

where Py is the prototype of action k, F; is the feature ex-
tracted from sample . « is the momentum term, we set it
to 0.9 by experience. Over the training procedure, the pro-
totype becomes a stable estimation of the clustering cen-
ter for action k. It is capable of refining the feature of a
newly arrived sample. Each sample should be close to the
related prototype while far away from other prototypes. The
distance between two feature vectors is defined as dis(-, -),
which is implemented by cosine distance:

T
uv
dis(u,v) = ———— “)
’ [[ulf2]|v]]2
where u, v stand for 1D vectors. || - ||2 is Lo norm.

Ambiguous Sample Discovering. To discover the am-
biguous samples during the training stages, we gather the
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misclassified samples which tend to be quite similar to other
categories. Given an action label k, there are two types of
ambiguous samples. If a sample of action k is misclassified
as other categories, it is termed as False Negative (FN). If a
sample of other categories is misclassified as action k, it is
termed as False Positive (FP). Supposing sk, sk are sets
of FN and FP samples for action £ and the sizes of them are
nk v, nkp. As fig. 3 shows, We gather those samples in a
batch and calculate the mean values as the center represen-
tations:

1
E ) koo
HrpN = nk E Fj, ppp=
EN j€sky

1
”%P Zk fi ®
JESFp
where pi% ., pk 1 stand for the center representation of FN
and FP samples of class k. Note that, we do not maintain a
global representation for those ambiguous samples because
the prediction of those samples is not stable in the training
stage and the amount is much less than TP samples.

Ambiguous Sample Calibration. To calibrate the pre-
diction of ambiguous samples, we take confident sample ¢
of action k as the anchor and calculate an auxiliary term
in the feature space. For those FN samples which should be
classified as action k, a compensation term ¢; is introduced:
{1 — dis(F}, pk ), if i € sk p and nk.y > 0;
¢z = . (6)

0, otherwise.

By minimizing the compensation term ¢;, FN samples are
supposed to be closer to the confident sample in the feature
space. When there are no FN samples or the cosine distance
converges to 1, ¢; reaches the minimum value 0. This may
motivate the model to correct these ambiguous samples as
action k.

On the other hand, for those FP samples which belong to
other categories, a penalty term v; is introduced:

1+ dis(Fy, php),if i € sk and nk > 0;
;= . (7
0, otherwise.

Similarly, the penalty term ¢); penalizes the distance be-
tween the FP samples and the confident samples in the fea-
ture space. When there are no FP samples or the cosine
distance converges to -1, ¢; reaches the minimum value
0. This may prevent the model from recognizing these am-
biguous samples as action k.

Finally, taking sample ¢ as an anchor, the proposed CL
loss function can be defined as:

edis(F, Py) /7—(1=pir) i
CL(F;)

= ~log G Bt £ > CELP /T

ediS(Fi,Pk)/T*(lqu‘,k)tﬁi

710gedis(Fi,Pk)/T—(l—pik)wi ¥ Zz;sk edis(F;,P) /7
)

where p;; is the predicted probability score of sample ¢ for
class k. It means that the TP samples with weaker confi-
dence get stronger supervision from those ambiguous sam-
ples.

3.3. Training Objective

We use Cross-Entropy (CE) loss to train our network:

Lcp = —% Z > viclog(pic) )

where IV is the number of samples in a batch. y;. is the
one-hot presentation of the label of sample ¢. If and only if
c is the target class of sample i, y;. = 1. p;. is the probabil-
ity score of sample i belonging to class k predicted by the
network.

Finally, CE loss is combined with our proposed multi-
level CL loss to form the full learning objective function:

L=Lcg+weg- Lcr (10)

where Lo, and Lo are defined in Egs. 1 and 9. wy; is the
balanced hyper-parameter for CL loss.

4. Experiments
4.1. Datasets

NTU RGB+D. NTU RGB+D [24] is a widely used
dataset containing 56, 880 samples. 40 participants are in-
vited to perform 60 actions including daily behaviors and
health-related actions. Each action is performed by 1 or 2
people. The human skeleton is presented by 25 3D joints,
which are captured by 3 Microsoft Kinect v2 cameras with
different horizontal angle settings. It provides two bench-
marks: (1) Cross-Subject (X-Sub): the dataset is divided
according to the subjects. The training set consists of 20
subjects while the testing set consists of other 20 subjects.
(2) Cross-View (X-View): the dataset is split by the camera
views. They select camera views 2 and 3 to construct the
training data while camera view 1 is used for testing.

NTU RGB+D 120. NTU RGB+D 120 [2]1] extends
NTU RGB+D with extra 57,367 samples by introducing
new 60 action classes, making it the largest skeleton based
action recognition dataset. In total, it collects 113,945
skeleton sequences over 120 different classes performed by
106 participants. It also increases the number of camera se-
tups to 32 by using different places and backgrounds. Two
evaluation protocols are recommended: (1) Cross-Subject
(X-Sub): samples from 56 subjects are selected to form the
training set, and the reaming 50 subjects are used for test-
ing. (2) Cross-Set (X-Set): samples with even setup IDs
are used for training, while samples with odd setup IDs are
used for testing.
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Table 1. Ablation studies of our method on NTU-RGB+D 120
dataset under the X-Sub setting with the joint input modality.

Method Params. Acc (%)
Baseline 1.46M 84.5

+ CL Loss 1.53M  85.0105
+ST Decouple  1.59M  85.310:8
+ ML Refine 1.61M  84.710:2
Ours 1.99M  85.5TL0

Table 2. Hyper-parameter exploration of our proposed method on
NTU-RGB+D 120 dataset under the X-Sub setting with the joint
input modality. The best one is in bold.

Wel )\1 Az A3 )\4 Acc (%)
1 0 0 0 1 84.4
0.1 0 0 0 1 85.3
0.01 O 0 0 1 85.0
1 1 1 1 84.5
1 02 02 1 84.7
1 05 02 0.1 84.1
0.1 0.1 01 1 1 85.2
0.1 0.1 01 1 85.1
01 02 02 1 85.4
01 02 05 1 85.5

NW-UCLA. Northwestern-UCLA dataset [34] contains
1494 video clips performed by 10 volunteers. 3 Kinect cam-
eras are used to capture 3D skeletons with 20 joints from
multiple views. Totally 10 action categories are covered.
We adopt the evaluation protocols recommended by the au-
thor: training data comes from the first two cameras, while
testing data is from the other camera.

4.2. Implementation Details

We adopt [5] as the backbone and implement the pro-
posed method with the PyTorch deep learning framework.
All experiments are conducted on one RTX 2080Ti GPU.
The Stochastic Gradient Descent (SGD) optimizer is em-
ployed with a momentum of 0.9 and a weight decay of
0.0004 to train the models. In the first 5 epochs, we apply a
warmup strategy for stable training. The initial learning rate
is set to 0.1 and we decrease it at epoch 35 and 55 with a fac-
tor of 0.1. We train all models with 70 epochs and select the
best performance. The base channel C' is set to 64 and the
hidden channel C}, is set to 256. The hyper-parameters in
our methods are set as: Ay = 0.1, Ao = 0.2, A3 = 0.5, \4 =
1,we = 0.1. For NTU RGB+D and NTU RGB+D 120,
we follow the data preprocessing in [41] and set the batch
size to 64. All samples are resized to 64 frames. For NW-

UCLA, we follow the data preprocessing in [8] and set the
batch size to 16.

4.3. Ablation Study

We conduct ablation studies and evaluate the different
hyper-parameter settings on the X-Sub benchmark of NTU
RGB+D 120 dataset to verify the effectiveness of the pro-
posed module.

The results of ablation studies are displayed in Table 1.
We remove all additional heads and train the network with
CE loss to build the baseline. We also divide the proposed
module into different sub-modules and design 3 variants:
(1) CL Loss: we directly employ the CL loss to refine fea-
tures from the last layer without any additional operations.
(2) ST Decouple: we decouple the features into spatial and
temporal components before refinement. (3) ML Refine: we
impose the refinement on proposed multi-level stages in the
training pipeline. It can be seen that all these sub-modules
can improve the performance of the baseline. Among them,
the contributions from CL loss and ST Decouple are rela-
tively dominant. Moreover, when combining all of them,
the result becomes better. We also report the count of train-
able parameters of different models. The extra cost of pa-
rameters may increase the time of the training procedure but
does not affect the inference stage.

We analyze the configurations on the hyper-parameters
of our method, and the results are available in Table 2.
First, we try 3 different values of w,; to find the balance
between the CL loss and CE loss with the fixed combi-
nation of Ay = Xy = A3 = 0,\y = 1 for an efficient
experiment. It seems that bigger w. may hurt the per-
formance while too small values only provide a little im-
provement. Then, we try more combinations of \; to bal-
ance the importance of different stages. From the results,
we can observe that giving higher weight to the previous
layers may obtain negative influence and increase the im-
portance gradually from the early stage to the last stage
and thus lead to an optimal result. It is concluded that the
refinement of the high-level features from the final stage
plays a major role and the low-level features provide the
auxiliary effects. Finally, we choose the configuration of
A1 =012 = 02,23 = 0.5,y = 1, wg = 0.1 for the
following experiments.

4.4. Combined with Other Backbones

Our proposed module is plug-and-play and compatible
with most GCN-based backbones. To examine its univer-
sality, we apply it to 5 widely used GCN-based backbones
[5,17,26,35,38] and evaluate them on the X-Sub and X-
Set of NTU RGB+D 120 dataset. For fair comparisons,
we reimplement them and use the same data preprocessing
without the multi-stream fusion. Table 3 reports the perfor-
mance and number of parameters of different methods. It is
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Table 3. Performance of our proposed method using different
GCN-based backbones on NTU-RGB+D 120 dataset with the joint
input modality.

NTU-RGB+D 120

Method Params. X-Sub (%) X-Set (%)
ST-GCN [38] 2.11M 83.4 85.1
+ FR Head 2.65M 84.411-0 86.5T14
2s-AGCN [26] 3.80M 84.3 85.9
+ FR Head 4.33M 84.610-3 86.610-7
CTR-GCN [5] 1.46M 84.5 86.6
+ FR Head 1.99M 85.5T1.0 87.310.7
TCA-GCN [35]  5.65M 85.0 86.3
+ FR Head 6.18M 85.210-2 87.4T1-1
HD-GCN [17] 1.68M 85.1 87.2
+ FR Head 221M 85.410-3 87.710:5

Table 4. Accuracy (%) on different difficult level actions for NTU-
RGB+D 120 dataset under the X-Sub setting with the joint input
modality.

NTU-RGB+D 120

Method Hard Medium Easy

ST.GCN [38] 574 809 947
2s-AGCN [26] 589 820  95.0
CTR-GCN[5] 59.6 824  95.1
Ours 61.6 833 957

A 2.0 0.9 0.6

observed that all models obtain an obvious gain of accuracy
by employing the FR Head. The improvement is around
1.0%. In most cases, the models with lower accuracy are
improved more than those with higher initial accuracy. The
reason behind it may be that our modules utilize the knowl-
edge from the misclassified samples. The lower accuracy
of means the misclassified samples are more sufficient. The
additional count of parameters introduced by the FR Head
is around 0.5M and can be ignored in the inference stage.

4.5. Performance on Ambiguous Actions

We spilt NTU-RGB+D 120 dataset into 3 subsets with
different difficulty levels. Specifically, according to the re-
sults of CTR-GCN [5], we gather actions whose accuracy
is lower than 70% as Hard Level, between 70% and 90%
as Medium Level, and over 90% as Easy Level. The re-
sults are displayed in Table 4. The experiment is under the
X-Subsetting with only the joint input modality. Because
ambiguous actions are quite similar and easy to be misclas-
sified, these actions usually fall into Hard Level. From the

Figure 4.

The group-wise accuracy difference (%) between
our method and CTR-GCN [5] on ambiguous actions for NTU-
RGB+D 120 dataset under the X-Sub setting with the joint input
modality.

Figure 5. Visualization of latent representation by t-SNE for am-
biguous groups from NTU RGB+D 120 dataset. Different col-
ors indicate different classes. The upper one is from the CTR-
GCN [5], while the bottem one is from our method.

results, we can see that our method makes a great improve-
ment in Hard Level actions, which demonstrates the ability
to distinguish those ambiguous actions.

Furthermore, we define ambiguous groups, which col-
lect several related ambiguous actions to verify the perfor-
mance of ambiguous samples. We first pick a class as an
anchor class, for example, “writing”. Then we gather the
misclassified samples on ~’writing” and obtain the top-3 ac-
tions with the highest frequency, like “reading”, “typing on
a keyboard” and “playing with phone”. These 4 actions
will be constructed as an ambiguous group. The group-
wise accuracy will be the average accuracy of all actions
included by the group. Here, we randomly pick 60 anchor
actions and constructed corresponding ambiguous groups
from NTU-RGB+D 120 dataset. We compare our results
with a SOTA model CTR-GCN [5] and display the results
in Fig. 4. Our method gains great improvement in most am-
biguous groups.

We randomly pick some ambiguous groups and visual-
ize the distribution of them in the feature space using t-
SNE. As mentioned before, each ambiguous group contains
four classes, including an anchor class and three ambiguous
classes. We compare our method with CTR-GCN [5]. Fig. 5
shows that our model achieves a more compact clustering.
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Table 5. Performance comparison of skeleton-based action recognition in top-1 accuracy (%). The best one is in bold and the second one

is underlined.

.. NTU RGB+D NTU RGB+D 120
Method Publication X-Sub X-View X-Sub X-Set NW-UCLA
ST-GCN [38] AAAI2018 81.5 88.3 - - -
Ind-RNN [18] CVPR2018 81.8 88.0 - - -
RotClips+MTCNN [15] TIP2018 - - 62.2 61.8 -
2s-AGCN [26] CVPR2019 88.5 95.1 82.9 84.9 -
AGC-LSTM [27] CVPR2019 89.2 95.0 - - 93.3
DGNN [25] CVPR2019 89.9 96.1 - - -
PA-ResGCN-B19 [28] ACMMM2020  90.9 96.0 87.3 88.3 -
Dynamic GCN [39] ACMMM2020 91.5 96.0 87.3 88.6 -
SGN [41] CVPR2020  89.0 94.5 79.2 81.5 -
Shift-GCN [8] CVPR2020  90.7 96.5 85.9 87.6 94.6
MS-G3D [22] CVPR2020 91.5 96.2 86.9 88.4 -
DDGCN [16] ECCV2020 91.1 97.1 - - -
DC-GCN+ADG [7] ECCV2020  90.8 96.6 86.5 88.1 95.3
MST-GCN [6] AAAI2021 91.5 96.6 87.5 88.8 -
Skeletal-GNN [40] ICCV2021 91.6 96.7 87.5 89.2 -
CTR-GCN [5] ICCV2021 92.4 96.8 88.9 90.6 96.5
STF [14] AAAI2022 925 96.9 88.9 89.9 -
Ta-CNN [36] AAAI2022 904 94.8 85.4 86.8 96.1
EfficientGCN-B4 [29] TPAMI2022  91.7 95.7 88.3 89.1 -
Ours - 928 96.8 89.5 90.9 96.8

4.6. Comparison with the State-of-the-Art

In this section, we conduct a comparison with the state-
of-the-art methods on NTU RGB+D 120, NTU RGB+D,
and NW-UCLA datasets to demonstrate the competitive
ability of our proposed module. The quantitative results are
displayed in Table 5. It is noted that most of the state-of-the-
art methods employ a multi-stream fusion framework. For
a fair comparison, we follow the same framework as [5,35].
We make a fusion with the results from four modalities in-
cluding joint, bone, joint motion, and bone motion as the
final report result.

It is observed that our methods outperform most ex-
isting methods on these three datasets. On both settings
of NTU-RGB+D 120, X-Sub of NTU-RGB+D, and NW-
UCLA datasets, our model obtains the best results. On X-
View of NTU-RGB+D, our model reaches state-of-the-art
results with a reasonable gap between the best one, which
demonstrates the great potential of our proposed module.
Notably, our method is the first to propose a way to solve
ambiguous actions, which are very important in skeleton
based action recognition.

5. Conclusion

In this paper, we present a novel feature refinement
module equipped with contrastive learning to solve the

ambiguous actions for skeleton based action recognition.
Multi-level features extracted from GCN-based backbone
are leveraged and enhanced on both the spatial and tempo-
ral dimensions. The contrastive learning is conducted with
the samples with high confidence and calibrated by the FP
and FN samples to make full use of the misclassified ac-
tions.

The extensive experiments demonstrate the effectiveness
of the proposed module to distinguish the confusing cate-
gories and the university to be compatible with most GCN-
based backbones. On three widely used benchmarks, our
proposed method obtains satisfactory results and outper-
forms those state-of-the-art methods.

Discussion. Despite the performance of our proposed
module on three public large-scale datasets, the ambiguous
actions in a few-shot setting with insufficient data remain to
be explored. We will concentrate on it in our future work. In
addition, there are some potential negative societal impacts
to be considered. Our method may be applied in some con-
troversial fields, such as surveillance. Besides, applying our
module will introduce extra training costs, which should be
discussed in the carbon emission problem.
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