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Abstract

Mobile monocular 3D object detection (Mono3D) (e.g.,
on a vehicle, a drone, or a robot) is an important yet chal-
lenging task. Existing transformer-based offline Mono3D
models adopt grid-based vision tokens, which is subopti-
mal when using coarse tokens due to the limited available
computational power. In this paper, we propose an online
Mono3D framework, called MonoATT, which leverages a
novel vision transformer with heterogeneous tokens of vary-
ing shapes and sizes to facilitate mobile Mono3D. The core
idea of MonoATT is to adaptively assign finer tokens to ar-
eas of more significance before utilizing a transformer to
enhance Mono3D. To this end, we first use prior knowl-
edge to design a scoring network for selecting the most
important areas of the image, and then propose a token
clustering and merging network with an attention mecha-
nism to gradually merge tokens around the selected areas
in multiple stages. Finally, a pixel-level feature map is re-
constructed from heterogeneous tokens before employing a
SOTA Mono3D detector as the underlying detection core.
Experiment results on the real-world KITTI dataset demon-
strate that MonoATT can effectively improve the Mono3D
accuracy for both near and far objects and guarantee low
latency. MonoATT yields the best performance compared
with the state-of-the-art methods by a large margin and is
ranked number one on the KITTI 3D benchmark.

1. Introduction
Three-dimensional (3D) object detection has long been

a fundamental problem in both industry and academia and

enables various applications, ranging from autonomous

vehicles [17] and drones, to robotic manipulation and

augmented reality applications. Previous methods have

achieved superior performance based on the accurate depth

information from multiple sensors, such as LiDAR signal

[11,23,35,43,44,69] or stereo matching [9,10,21,34,37,57].

In order to lower the sensor requirements, a much cheaper,

more energy-efficient, and easier-to-deploy alternative, i.e.,
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Figure 1. Illustration of (a) grid-based tokens used in traditional vi-

sion transformers and (b) heterogeneous tokens used in our adap-

tive token transformer (ATT). Instead of equally treating all image

regions, our ATT distributes dense and fine tokens to meaningful

image regions (i.e., distant cars and lane lines) yet coarse tokens

to regions with less information such as the background.

monocular 3D object detection (Mono3D) has been pro-

posed and made impressive progress. A practical online

Mono3D detector for autonomous driving should meet the

following two requirements: 1) given the constrained com-

putational resource on a mobile platform, the 3D bounding

boxes produced by the Mono3D detector should be accu-

rate enough, not only for near objects but also for far ones,

to ensure, e.g., high-priority driving safety applications; 2)

the response time of the Mono3D detector should be as low

as possible to ensure that objects of interest can be instantly

detected in mobile settings.

Current Mono3D methods, such as depth map based

[15, 29, 36], pseudo-LiDAR based [15, 29–31, 36, 54, 57],

and image-only based [2,3,12,22,26,28,42,48,51,64–67],

mostly follow the pipelines of traditional 2D object de-

tectors [41, 42, 48, 66] to first localize object centers from

heatmaps and then aggregate visual features around each

object center to predict the object’s 3D properties, e.g., lo-

cation, depth, 3D sizes, and orientation. Although it is con-
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ceptually straightforward and has low computational over-

head, merely using local features around the predicted ob-

ject centers is insufficient to understand the scene-level ge-

ometric cues for accurately estimating the depth of objects,

making existing Mono3D methods far from satisfactory.

Recently, inspired by the success of transformers in natural

language processing, visual transformers with long-range

attention between image patches have recently been devel-

oped to solve Mono3D tasks and achieve state-of-the-art

(SOTA) performance [19, 64]. As illustrated in Figure 1

(a), most existing vision transformers follow the grid-based
token generation method, where an input image is divided

into a grid of equal image patches, known as tokens. How-

ever, using grid-based tokens is sub-optimal for Mono3D

applications such as autonomous driving because of the fol-

lowing two reasons: 1) far objects have smaller size and less

image information, which makes them hard to detect with

coarse grid-based tokens; 2) using fine grid-based tokens is

prohibitive due to the limited computational power and the

stringent latency requirement.

In this paper, we propose an online Mono3D frame-

work, called MonoATT, which leverages a novel vision

transformer with heterogeneous tokens of varying sizes and

shapes to boost mobile Mono3D. We have one key obser-

vation that not all image pixels of an object have equivalent

significance with respect to Mono3D. For instance, pixels

on the outline of a vehicle are more important than those on

the body; pixels on far objects are more sensitive than those

on near objects. The core idea of MonoATT is to automat-

ically assign fine tokens to pixels of more significance and

coarse tokens to pixels of less significance before utilizing

a transformer to enhance Mono3D detection. To this end,

as illustrated in Figure 1 (b), we apply a similarity compati-
bility principle to dynamically cluster and aggregate image

patches with similar features into heterogeneous tokens in

multiple stages. In this way, MonoATT neatly distributes

computational power among image parts of different impor-

tance, satisfying both the high accuracy and low response

time requirements posed by mobile Mono3D applications.

There are three main challenges in designing MonoATT.

First, it is essential yet non-trivial to determine keypoints on

the feature map which can represent the most relevant infor-

mation for Mono3D detection. Such keypoints also serve as

cluster centers to group tokens with similar features. To

tackle this challenge, we score image features based on

prior knowledge in mobile Mono3D scenarios. Specifically,

features of targets (e.g., vehicles, cyclists, and pedestrians)

are more important than features of the background. More-

over, more attention is paid to features of distant targets and

the outline of targets. Then, a predefined number of key-

points with the highest scores are selected as cluster cen-

ters to guide the token clustering in each stage. As a result,

an image region with dense keypoints will eventually be as-

signed with fine tokens while a region with sparse keypoints

will be assigned with coarse tokens.

Second, given the established cluster centers in each

stage, how to group similar tokens into clusters and ef-

fectively aggregate token features within a cluster is non-

intuitive. Due to the local correlation of 2D convolu-

tion, using naive minimal feature distance for token clus-

tering would make the model insensitive to object outlines.

Furthermore, a straightforward feature averaging scheme

would be greatly affected by noise introduced by outlier to-

kens. To deal with these issues, we devise a token clustering

and merging network. It groups tokens into clusters, taking

both the feature similarity and image distance between to-

kens into account, so that far tokens with similar features

are more likely to be designated into one cluster. Then, it

merges all tokens in a cluster into one combined token and

aggregates their features with an attention mechanism.

Third, recovering multi-stage vision tokens to a pixel-

level feature map is proved to be beneficial for vision trans-

formers [46, 62]. However, how to restore a regular image

feature map from heterogeneous tokens of irregular shapes

and various sizes is challenging. To transform adaptive to-

kens of each stage into feature maps, we propose an efficient

multi-stage feature reconstruction network. Specifically, the

feature reconstruction network starts from the last stage of

clustering, gradually upsamples the tokens, and aggregates

the token features of the previous stage. The aggregated

tokens correspond to the pixels in the feature map one by

one and are reshaped into a feature map. As a result, accu-

rate 3D detection results can be obtained via a conventional

Mono3D detector using the enhanced feature map.

Experiments on KITTI dataset [17] demonstrate that our

method outperforms the SOTA methods by a large margin.

Such a framework can be applied to existing Mono3D de-

tectors and is practical for industrial applications. The pro-

posed MonoATT is ranked number one on the KITTI 3D

benchmark by submission. The whole suite of the code base

will be released and the experimental results will be posted

to the public leaderboard. We highlight the main contri-

butions made in this paper as follows: 1) a novel online

Mono3D framework is introduced, leveraging an adaptive

token transformer to improve the detection accuracy and

guarantee a low latency; 2) a scoring network is proposed,

which integrates prior knowledge to estimate keypoints for

progressive adaptive token generation; 3) a feature recon-

struction network is designed to reconstruct a detailed im-

age feature map from adaptive tokens efficiently.

2. Related Work
Standard Monocular 3D object detection. The

monocular 3D object detection aims to predict 3D bounding

boxes from a single given image. Except for methods as-

sisted by additional inputs, such as depth maps [15, 29, 36],

CAD models [6, 8, 27, 33, 56], and LiDAR [7, 30, 40, 54],
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Figure 2. MonoATT consists of four main components, i.e., cluster center estimation (CCE), adaptive token transformer (ATT), multi-
stage feature reconstruction (MFR), and monocular 3D detection. CCE involves a scoring network to predict the most essential image areas

which serve as cluster centers in each heterogeneous token generation stage. Given the initial fine grid-based tokens obtained by slicing

the feature map, ATT first generates heterogeneous tokens adaptive to the significance of image areas by grouping and merging tokens

in multiple stages; then it leverages the long-range self-attention mechanism provided by a transformer network to associate features on

heterogeneous tokens. MFR reconstructs an enhanced pixel-level feature map from all irregular tokens for the ease of Mono3D. Finally, a

standard Mono3D detector is employed as the underlying detection core.

standard monocular detectors [18, 20, 24, 45, 68] take as

input only a single image and mostly adopt center-guided

pipelines following conventional 2D detectors [42, 48, 66].

M3D-RPN [2] designs a depth-aware convolution along

with 3D anchors to generate better 3D region propos-

als. With very few handcrafted modules, SMOKE [26]

and FCOS3D [51] propose concise architectures for one-

stage monocular detection built on CenterNet [66] and

FCOS [48], respectively. Many methods turn to geomet-

ric constraints for improving performance. MonoPair [12]

considers adjacent object pairs and parses their spatial rela-

tions with uncertainty. MonoEF [67] first proposes a novel

method to capture the camera pose in order to formulate de-

tectors that are not subject to camera extrinsic perturbations.

MonoFlex [65] conducts an uncertainty-guided depth en-

semble and categorizes different objects for distinctive pro-

cessing. GUPNet [28] solves the error amplification prob-

lem by geometry-guided depth uncertainty and collocates a

hierarchical learning strategy to reduce the training insta-

bility. To further strengthen the detection accuracy, recent

methods have introduced more effective but complicated vi-

sion transformers into the networks. MonoDTR [19] pro-

poses to globally integrate context- and depth-aware fea-

tures with transformers and inject depth hints into the trans-

former for better 3D reasoning. MonoDETR [64] adopts

a depth-guided feature aggregation scheme via a depth-

guided transformer and discards the dependency for cen-

ter detection. The above geometrically dependent designs

largely promote the overall performance of image-only

methods, but the underlying problem still exists, namely,

the detection accuracy for distant objects is still not satis-

factory.

Object detection via the transformer. Transformer

[50] is first introduced in sequential modeling in natural lan-

guage processing tasks, and it has been successfully lever-

aged in DETR [5] which improves the detection perfor-

mance in the computer vision field by using the long-range

attention mechanism. Several methods [13, 58, 59] have

made a demonstration of how to apply a vision transformer

to a monocular camera model. Transformerfusion [1] lever-

ages the transformer architecture so that the network learns

to focus on the most relevant image frames for each 3D

location in the scene, supervised only by the scene recon-

struction task. MT-SfMLearner [49] first demonstrates how

to adapt vision transformers for self-supervised monocular

depth estimation focusing on improving the robustness of

natural corruptions. Some recent works, MonoDTR [19]

and MonoDETR [64], have tried to apply transformers to

monocular 3D detection tasks. However, the token splitting

of these models is still based on a grid of regular shapes and

sizes. None of these methods consider how to merge unnec-

essary tokens to reduce the computational complexity of the

high-resolution feature maps, which will not be available in

a typical Mono3D task in autonomous driving scenarios.

There exist some schemes working on improving the ef-

ficiency of transformers. Yu et al. [61] propose to refor-

mulate the cross-attention learning as a clustering process.

Some approaches [16, 39, 47] study the efficiency of ViTs

and propose a dynamic token sparsification framework to

prune redundant tokens progressively. Wang et al. [55] pro-

pose to automatically configure a proper number of tokens

for each input image. The methods mentioned above are

all variants of grid-based token generation, which modify

the resolution, centers of grids, and number specifically. In

contrast, the token regions of MonoATT are not restricted

by grid structure and are more flexible in three aspects, i.e.
location, shape, and size.

Our MonoATT inherits DETR’s superiority for non-local

encoding and long-range attention. Inspired by transform-

ers based on variant-scaled and sparse tokens [39, 55, 63],

we use dynamically generated adaptive tokens to obtain

high accuracy for both near and far targets with low compu-
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tational overhead.

3. Design of MonoATT
The guiding philosophy of MonoATT is to utilize adap-

tive tokens with irregular shapes and various sizes to en-

hance the representation of image features for transformer-

based Mono3D so that two goals can be achieved: 1) su-

perior image features are obtained from coarse to fine to

increase Mono3D accuracy for both near and far objects;

2) irrelevant information (e.g., background) is cut to reduce

the number of tokens to improve the timeliness of the vi-

sion transformer. Figure 2 depicts the architecture of our

framework. Specifically, MonoATT first adopts the DLA-

34 [60] as its backbone, which takes a monocular image of

size (W ×H×3) as input and outputs a feature map of size

(Ws×Hs×C) after down-sampling with an s-factor. Then,

the feature map is fed into four components as follows:

Cluster Center Estimation (CCE). CCE leverages a

scoring network to pick out the most crucial coordinate

point locations from monocular images that are worthy of

being used as cluster centers based on the ranking of scores

and quantitative requirements in each stage.

Adaptive Token Transformer (ATT). Starting from the

initial fine grid-based tokens obtained by slicing the feature

map and the selected cluster centers, ATT groups tokens

into clusters and merges all tokens within each cluster into

one single token in each stage. After that, a transformer

network is utilized to establish a long-range attention rela-

tionship between adaptive tokens to enhance image features

for Mono3D. The ATT process is composed of N stages.

Multi-stage Feature Reconstruction (MFR). MFR re-

stores and aggregates all N stages of irregularly shaped and

differently sized tokens into an enhanced feature map of

size (Ws ×Hs × C
′
).

Monocular 3D Detection. MonoATT employs GUP-

Net [28], a SOTA monocular 3D object detector as its un-

derlying detection core.

3.1. Cluster Center Estimation
In order to generate adaptive tokens, it is key to be aware

of the significance of each image region with respect to the

Mono3D task. We have the following two observations:

Observation 1: As a depth knowledge, distant objects
are more difficult to detect and should be paid more atten-
tion to.

Observation 2: As a semantic knowledge, features of
targets (e.g., vehicles, pedestrians, and cyclists) are more
valuable than those of backgrounds, and outline features
(e.g., lanes, boundaries, corner points) are more crucial
than inner features of a target.

Therefore, we propose to design two scoring functions to

measure the depth and semantic information, respectively.

For the depth scoring function, it is straightforward to es-

timate the depth information using a monocular depth esti-

mation network but it would greatly increase the computa-

tional overhead and training burden. In addition, pixel-level

depth labels are required, which is not allowed in a standard

Mono3D task (e.g., pixel-level depth labels are not available

in the KITTI 3D detection dataset [17]).

Instead, we take an effective depth estimation scheme

based on the camera’s pinhole imaging principle and have

the following proposition:

Proposition 1: Given the camera coordinate system P,
the virtual horizontal plane can be projected on the image
plane of the camera according to the ideal pinhole camera
model and the depth corresponding to each pixel on the im-
age is determined by the camera intrinsic parameter K.

Particularly, we envision a virtual scene to quickly es-

timate the depth of each pixel in the scene, where there is

a vast and infinite horizontal plane in the camera coordi-

nate system P. Specifically, for each pixel locating at (u, v)
with an assumed depth ẑ, it can be back-projected to a point

(x3d, y3d, ẑ) in the 3D scene:

x3d =
u− cx
fx

ẑ y3d =
v − cy
fy

ẑ, (1)

where fx and fy are the focal lengths expressed in pixels

along the x− and y− axes of the image plane and cx and

cy are the possible displacements between the image cen-

ter and the foot point. These are referred to as the camera

intrinsic parameters K.

Assume that the elevation of the camera from the ground,

denoted as H , is known (for instance, the mean height of

all vehicles in the KITTI dataset, including ego vehicles, is

1.65m [17]), the depth of a point on the depth feature map

(u, v) can be calculated as:

z =
fy ·H
v − cy

. (2)

Note that (2) is not continuous when the point is near the

vanishing point, i.e., v = cy , and does not physically hold

when v ≤ cy . To address this issue, we use the reciprocal

to score the depth as follows:

Sd = −ReLU(B
v − cy
fy ·H ), (3)

where v is the vector for y− axis, B is a constant, the ReLU

activation is applied to suppress virtual depth values smaller

than zero, which is not physically feasible for monocular

cameras.

For the semantic scoring function, we introduce the sub-

sequent neural network to detect the possible key points

from images. Specifically, in addition to the regular regres-

sion tasks in CenterNet [66] based network, we introduce a

regression branch for semantic scoring:

Ss = f(H), (4)
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Figure 3. A schematic diagram of the ATT module. The pixels in

the feature map are regarded as initial vision tokens. In each stage

l, ATT assigns nl−1 input tokens to the selected nl cluster center

tokens δ (i.e., denoted as those red dots) and calculates the atten-

tion score p in the respective cluster. Then, tokens in one cluster

are merged by feature x with score p to obtain a unified token y.

Finally, adaptive tokens are associated using a transformer and are

used as the input tokens in the next stage l + 1.

where H is the input image feature and f is the CNN archi-

tecture. We represent the loss of point detection task as:

LCCE = FL(gm(ut,vt),S), (5)

where FL is the Focal Loss used to deal with sample im-

balance for key point labels; (ut,vt) is the ground truth

key point coordinate; gm is the mapping function gm :
(Rm,Rm) �→ R

Ws×Hs which turns m point coordinates

into heatmap; S = Sd + αSs is the score matrix for the

image feature map with a size of (Ws × Hs); α is a hy-

perparameter. The matrix addition method expands the di-

mensions and adds content when necessary. The detection

network is supervised by LCCE and can be trained jointly

with other Mono3D branches.

After scoring the whole feature map, CCE calculates the

mean value of the pixel scores within each token to assess

the importance of that token. We define the cluster cen-
ter token as a token that has the highest average score and

serves as the starting center for token clustering. As the

number of cluster centers required for different stages is in-

consistent, for stage l, we rank and pick out the set of cluster

center tokens with number nl from nl−1 original tokens:

Xl
c = gr(Xl, nl,S), (6)

where Xl
c ∈ R

nl×C
′

is the cluster center token features;

gr is the ranking and picking function selects the high-

est ranked nl token features from the input tokens Xl ∈
R

nl−1×C
′

which is consistent with the output of previous

stage l − 1.

3.2. Adaptive Token Transformer
To enhance the image features for Mono3D, inspired

by [63], we leverage an ATT to exploit the long-range

self-attention mechanism in an efficient way. As shown

in Figure 3, our AAT loops through N stages, where each

stage goes through two consecutive processes: i.e., outline-
preferred token grouping, and attention-based feature merg-
ing.

3.2.1 Outline-preferred Token Grouping

It is infeasible to cluster tokens based on the straightfor-

ward spatial distance of features as it fails to identify out-

lines of objects due to the local feature correlation brought

by 2D convolution [38]. We utilize a variant of the nearest-

neighbor clustering algorithm which considers both the fea-

ture similarity and image distance between tokens [63].

Specifically, given a set of tokens X and cluster center

tokens Xc, for each token, we compute the indicator δi as

the minimal feature distance minus average pixel distance

between it and any other cluster center token:

δi = minj:xj∈Xc
(||xi−xj ||22−β ||gl(xi)−gl(xj)||22), (7)

where δi is the indicator that represents which cluster token

i should be subordinated to, xi and xj are feature vectors

of token i and j. gl is the look-up function that can find

the mean position on the feature map corresponding to each

token. β is a hyperparameter. The distance constraint re-

quires that two close tokens in the image space have to have

extremely similar features in order to be clustered into the

same cluster. In this way, we assign all tokens to their cor-

responding clusters.

3.2.2 Attention-based Feature Merging

To merge token features, an intuitive scheme is to directly

average the token features in each cluster. However, such

a scheme would be greatly affected by outlier tokens. In-

spired by the attention mechanism [39], we attach each to-

ken with the attention score p to explicitly represent the im-

portance, which is estimated from the token features. The

token features are averaged with the guidance of attention

scores as

yi =

∑
j∈Ci

epjxj
∑

j∈Ci
epj

, (8)

where yi is the merged token feature; Ci indicates the set

of i-th cluster; xj and pj are the original token features and

the corresponding attention score. The region of the merged

token is the union of the original cluster.

For associating adaptive tokens via the long-range self-

attention mechanism, as shown in Figure 3, merged tokens

are fed into a transformer network as queries Q, and the

original tokens are used as keys K and values V. In order

to differentially allow more important tokens to contribute

more to the output and Reduce the impact of outliers, the at-

tention score p is involved in the calculation of the attention
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Figure 4. A illustration diagram of the MFR module. MFR starts

from the last stage N and progressively aggregates features by

stacked upsampling processes and MLP blocks. In the token up-

sampling process, we use the recorded token relationship to copy

the merged token features to the corresponding upsampled tokens.

The final tokens are in one-to-one correspondence with the pixels

in feature maps and reshaped to the feature maps for Mono3D.

matrix of the transformer:

Attention(Q,K,V) = softmax(
QKT

√
dk

+ p)V, (9)

where dk is the channel number of the queries. When the

dimensions of the matrix addition are inconsistent, the ma-

trix performs expansion of the data to the appropriate di-

mension. Introducing the token attention score p equips

our ATT with the capability to focus on the critical image

features when merging vision tokens.

3.3. Multi-stage Feature Reconstruction
Prior work [46,62] has proved the benefits of multi-stage

stacking and aggregation of feature maps of different scales

for detection tasks. In order to reconstruct the feature map

from irregular tokens for feature enhancement, we propose

the Multi-stage Feature Reconstruction (MFR), which is

able to upsample the tokens by history record and restore

the feature maps.

Figure 4 shows the proposed token upsampling process.

During the token clustering and feature merging process in

Section 3.2, each token is assigned to a cluster and then each

cluster is represented by a single merged token. We record

the positional correspondence between the original tokens

and the merged tokens. In the upsampling process, we use

the record to copy the merged token features to the corre-

sponding upsampled tokens. To aggregate detailed features

in multiple stages, MFR adds the token features in the pre-

vious stage to the upsampled vision tokens. The tokens are

then processed by a multi-layer processing (MLP) block.

Such processing is executed progressively in N stages until

all tokens are aggregated. The lowest level of tokens can be

reshaped to feature maps and are processed by 2D convolu-

tion for further Mono3D detection.

Some DETR-based Mono3D detectors, such as Mon-

oDETR [64] and MonoDTR [19], which use the Hungarian

algorithm to detect the 3D properties of the objects directly

from the tokens.

4. Performance Evaluation
We conduct experiments on the widely-adopted KITTI

3D dataset [17]. We report the detection results with three-

level difficulties, i.e. easy, moderate, and hard, in which

the moderate scores are normally for ranking and the hard

category is generally distant objects that are difficult to dis-

tinguish.

4.1. Quantitative and Qualitative Results
We first show the performance of our proposed

MonoATT on KITTI 3D object detection benchmark 1 for

the car category. Comparison results with other SOTA

Mono3D detectors are shown in Table 1. For the official test
set, it achieves the highest score for all kinds of samples and

is ranked No.1 with no additional data inputs on all metrics.

Compared to the second-best models, MonoATT surpasses

them under easy, moderate, and hard levels respectively by

+1.07, +1.45, and +2.01 in AP3D, especially achieving a

significant increase (15%) in the hard level. The compari-

son fully proves the effectiveness of the proposed adaptive

tokens for letting the model spend more effort on the more

crucial parts of the image. The first two columns of Figure

5 show the qualitative results on the KITTI dataset. Com-

pared with the baseline model without the aid of adaptive

tokens, the predictions from MonoATT are much closer to

the ground truth, especially for distinct objects. It shows

that using image patches with irregular shapes and various

sizes indeed helps locate the object precisely.

4.2. Ablation Study
Effectiveness of each proposed component. In Table

2, we conduct an ablation study to analyze the effectiveness

of the proposed components: (a) the baseline which only

uses image features for Mono3D based on GUPNet [28];

(b) an improved version of (a) which uses a 3-stage DETR

for enhancing image features with regular tokens; (c) group-

ing tokens based on minimal feature distance and the token

features within one cluster are averaged. (d) the proposed

outline-preferred token grouping is exploited and token fea-

tures are averaged; (e) attention-based feature merging is

also used for token aggregation within the cluster. All of

(c), (d), and (e) do not consider the issue of how to select

cluster centers, they determine them using random sampling

in each stage. Based on (e), (f) and (g) consider cluster cen-

ter selection based on scores. The difference is that (f) only

uses the depth knowledge while (g) considers both the depth

knowledge and the semantic knowledge. (h) is the final ver-

sion of our proposed MonoATT which additively takes into

account the reconstruction of adaptive tokens into a feature

map.

From a → b, it can be seen that the effectiveness of the

transformer on overall performance, which helps the model

to understand the long-range attention relationship between

1https://www.cvlibs.net/datasets/kitti/eval object.php?obj benchmark=3d
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Method Extra data Time (ms)
Test, AP3D Test, APBEV

Easy Mod. Hard Easy Mod. Hard

PatchNet [29]
Depth

400 15.68 11.12 10.17 22.97 16.86 14.97

D4LCN [15] 200 16.65 11.72 9.51 22.51 16.02 12.55

Kinematic3D [3] Multi-frames 120 19.07 12.72 9.17 26.69 17.52 13.10

MonoRUn [7]
Lidar

70 19.65 12.30 10.58 27.94 17.34 15.24

CaDDN [40] 630 19.17 13.41 11.46 27.94 18.91 17.19

AutoShape [27] CAD - 22.47 14.17 11.36 30.66 20.08 15.59

SMOKE [26]

None

30 14.03 9.76 7.84 20.83 14.49 12.75

MonoFlex [65] 30 19.94 13.89 12.07 28.23 19.75 16.89

GUPNet [28] 40 20.11 14.20 11.77 - - -

MonoDTR [19] 37 21.99 15.39 12.73 28.59 20.38 17.14

MonoDETR [64] 43 23.65 15.92 12.99 32.08 21.44 17.85

MonoATT (Ours) None 56 24.72 17.37 15.00 36.87 24.42 21.88
Improvement v.s. second-best - +1.07 +1.45 +2.01 +4.79 +2.98 +4.03

Table 1. AP40 scores(%) of the car category on KITTI test set at 0.7 IoU threshold referred from the KITTI benchmark website. We utilize

bold to highlight the best results, and color the second-best ones and our performance gain over them in blue. Our model is ranked NO. 1

on the benchmark.

Figure 5. Qualitative results on KITTI dataset. The predicted 3D bounding boxes of our proposed MonoATT are shown in the first row.

The second row shows the detection results in the bird’s eye view (z-direction from right to left). The green dashed boxes are the ground

truth, and the blue and red solid boxes are the prediction results of our MonoATT and the comparison baseline (GUPNet [28]), respectively.

The third row and fourth rows visualize the heatmap for estimating cluster centers and adaptive tokens in the last stage.

pixels. However, the grid-based token makes the model un-

able to cope with small-sized targets and shows no signifi-

cant change in accuracy at a distance (i.e., usually the hard

case). From b → c, we can observe that the use of adap-

tive tokens has a certain enhancement effect compared to

the grid-based tokens, especially in the hard case. Because

of averaging merged token features and random sampling to

select cluster centers, the performance improvement of (c)

is not obvious. From c → d, it shows that the introduced

distance constraint plays a role in improving the detection

accuracy. From d → e, it can be seen that the performance

gain of treating tokens in a cluster differently and using the

attention mechanism to achieve feature merging. Both (f)

and (g) demonstrate that appropriate cluster centers are cru-

cial for the generation of adaptive tokens. In addition, both

the depth knowledge and the semantic knowledge are indis-

pensable in determining cluster centers. Group (h) indicates

that for the CenterNet-based Mono3D model, transforming

the token into a feature map by MFR for subsequent pro-

cessing seems to be a more efficient way compared to the

Hungarian algorithm in [64].

Response time analysis. Other Mono3D models may

require some additional operations to assist the prediction

during inference. Compared to these methods, MonoATT

is based on CenterNet [66] and we adopt an efficient GPU

implementation of ATT module, which only costs 9.4% of

the forward time. We can see from Table 1 that our method

also has a great advantage in terms of response time.

Visualization of the adaptive tokens. To facilitate the

understanding of our ATT, we visualize the cluster center

scoring heatmap and the corresponding adaptive tokens in

Figure 5. In the heatmap, a warmer color means a higher

score and a higher likelihood of becoming a cluster center.

As shown in the third row of the figure, the heat is con-

centrated on the outlines of vehicles, lane lines, and distant

targets in the image. It is worth mentioning that the out-

lines in the scene are of great help for depth discrimination,

so even though there are no associated labels, the model

can still learn that outlines are crucial for the Mono3D task

based on semantics alone. From the visualization, we can

see that the model can adaptively divide the images into to-

kens of different sizes and shapes. This enables the model
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Abla. ATT CCE MFR Easy Mod. Hard

(a) base.
- - -

22.76 16.46 13.72

(b) +T. 23.18 17.68 13.95

(c) +δi
� - -

24.45 19.32 16.23

(d) +gl 24.81 19.68 16.57

(e) +p 25.62 20.67 17.76

(f) +Sd � � -
27.72 21.19 18.15

(g) +Ss 28.36 21.78 18.87

(h) - � � � 29.01 23.49 19.60

Table 2. Effectiveness of different components of our approach on

the KITTI val set for car category. The Ablation column indicates

which new variables and modules we have added to the previous

experimental group compared to the previous one. base. is the

GUPNet [28] baseline. +T. stands for the addition of a DETR-

based 3-stage transformer.

Method
Val, AP3D Val, APBEV

Easy Mod. Hard Easy Mod. Hard

MonoDTR [19] 24.52 18.57 15.51 33.33 25.35 21.68

+ Ours 26.98 21.46 18.41 35.49 27.76 24.34
Imp. +2.46 +2.89 +2.90 +2.16 +2.41 +2.66

MonoDETR [64] 28.84 20.61 16.38 37.86 26.95 22.80

+ Ours 29.56 22.47 18.65 38.93 29.76 25.73
Imp. +0.72 +2.13 +2.27 +1.07 +2.81 +2.93

Table 3. Extension of MonoATT to existing transformer-based

monocular 3D object detectors. We show the AP40 scores(%)

evaluated on KITTI3D val set. +Ours indicates that we apply the

ATT and CCE modules to the original methods. All models bene-

fit from the MonoATT design.

to use fine tokens for image parts that contain more details

(e.g., small targets and boundary lines) and coarse tokens

for image parts that do not matter (e.g., the sky and the

ground). This implies that ATT is able to put more expe-

rience on more important tokens, leading to more accurate

predictions.

Plugging into existing transformer-based methods.
Our proposed approach is flexible to extend to existing

transformer-based Mono3D detectors. We respectively plug

the CCE and the ATT components into MonoDTR and

MonoDETR, the results of which are shown in Table 3.

It can be seen that, with the aid of our CCE and ATT,

these detectors can achieve further improvements on KITTI

3D val set, demonstrating the effectiveness and flexibility

of our proposed adaptive token generation. Particularly,

MonoATT enables models to achieve more performance

gains in the hard category. For example, for MonoDETR,

the AP3D/APBEV gain is +0.72/+1.07 in the easy category

and +2.27/+2.93 in the hard category.

Efficacy for detecting objects at different distances.
In Table 4, we compare the accuracy gain of our model

for detecting objects at different distances. We present the

accuracy (%) of ours with Kinemantic3D, MonoDTR, and

MonoDETR as the baselines in the KITTI val set for the fol-

Method
Val, AP3D Val, APBEV

Near Mid. Far Near Mid. Far

Kinematic3D [3] 34.52 16.50 5.82 246.86 22.81 7.35

+ Ours 35.70 21.86 10.48 48.23 27.84 12.34
Imp. +1.18 +5.36 +4.66 +1.37 +5.03 +4.99

MonoDTR [19] 48.51 17.87 2.16 61.25 25.03 3.29

+ Ours 49.69 22.49 10.95 63.24 29.81 11.65
Imp. +1.18 +4.62 +8.79 +1.99 +4.78 +8.36

MonoDETR [64] 48.66 17.91 2.35 61.21 25.25 3.38

+ Ours 49.92 22.48 11.07 63.29 30.00 11.91
Imp. +1.26 +4.57 +8.72 +2.08 +4.75 +8.53

Table 4. The comparison of the performance gain of our

MonoATT over existing models at different distances. We show

the AP40 scores(%) evaluated on KITTI3D val set. +Ours indi-

cates that we apply our modules to the original methods. Near

(5m-10m), middle (20m-25m), and far (40m-45m) are three dif-

ferent distance intervals. All models benefit from the MonoATT

design, especially for far objects.

lowing three distance ranges: near (5m-10m), middle (20-

25m), and far (40m-45m). It can be seen that MonoDTR

and MonoDETR using a transformer with grid-based tokens

do not perform well in the far case, although they outper-

form Kinemantic3D in terms of overall accuracy. For Mon-

oDTR, the AP3D/APBEV gain is +8.79/+8.36 on the far

case. From this, we can see that our method has a signifi-

cant improvement in detecting distant objects.

5. Conclusion
In this paper, we have proposed a Mono3D framework,

called MonoATT, which can effectively utilize the gener-

ated adaptive vision tokens to improve online Mono3D. The

advantages of MonoATT are two-fold: 1) it can greatly

improve the Mono3D accuracy, especially for far objects,

which is an open issue for Mono3D; 2) it can guarantee

low latency of Mono3D detectors by omitting backgrounds

suitable for appealing mobile applications. Nevertheless,

MonoATT still has two main limitations as follows: 1) the

computational complexity of the nearest neighbor algorithm

in stage 1 is still linear with respect to the token number,

which limits the speed of MonoATT for a large initial token

input; 2) it heavily counts on the scoring network in CCE,

which may sometimes be disturbed by semantic noise, such

as complex vegetation areas. These limitations also di-

rect our future work. We have implemented Mono3D and

conducted extensive experiments on the real-world KITTI

dataset. MonoATT yields the best performance compared

with the SOTA methods by a large margin and is ranked

number one on the KITTI 3D benchmark.
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