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Figure 1. Typical examples of Chinese bronze dings from 4 dynasties and 11 periods. The columns from left to right show Shang (Early,
Late), Western Zhou (Early, Mid, Late), Spring and Autumn (Early, Mid, Late), and Warring States (Early, Mid, Late). The timeline under
the image is the time range for the corresponding periods, where B.C. indicates Before Christ.

Abstract
The archaeological dating of bronze dings has played a

critical role in the study of ancient Chinese history. Current
archaeology depends on trained experts to carry out bronze
dating, which is time-consuming and labor-intensive. For
such dating, in this study, we propose a learning-based ap-
proach to integrate advanced deep learning techniques and
archaeological knowledge. To achieve this, we first collect
a large-scale image dataset of bronze dings, which contains
richer attribute information than other existing fine-grained
datasets. Second, we introduce a multihead classifier and a
knowledge-guided relation graph to mine the relationship
between attributes and the ding era. Third, we conduct
comparison experiments with various existing methods, the
results of which show that our dating method achieves a
state-of-the-art performance. We hope that our data and

applied networks will enrich fine-grained classification re-
search relevant to other interdisciplinary areas of expertise.
The dataset and source code used are included in our sup-
plementary materials, and will be open after submission
owing to the anonymity policy. Source codes and data are
available at: https://github.com/zhourixin/bronze-Ding

1. Introduction
Dings are cauldrons used for cooking, storage, and rit-

ual offerings to gods or ancestors in ancient China, and
they are the most important species used in Chinese ritual
bronzes [35]. The archaeological dating of dings has con-
tributed to the study of ancient Chinese history. Although
the excavated bronzes are massive, dating such artifacts de-
pends on the long-term training and accumulation of ex-
pertise in archaeological typology [58]. In addition, some
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artifacts are easy to identify to a precise age and others are
difficult to identify.

For the object, we focus on a ding, the features of which
are similar and complicated in different eras, as shown in
the columns of Figure 1. We therefore consider this dat-
ing task as a fine-grained classification problem. Simulta-
neously, research into fine-grained classification is close to
that of other areas of expertise because it often requires ex-
pensive specialized data and knowledge areas, such as birds
(zoology) [51, 52] and flowers (botany) [43].

Data features and domain knowledge, particularly in ar-
chaeology, vary in different fields. In addition to the com-
mon traits of the existing fine-grained datasets, our data are
more challenging. First, our data are unbalanced and dif-
ficult to mitigate through their collection because they are
determined based on an unearthed state. Second, there are
more similarities between bronze dings of adjacent eras,
leading to the possibility of misclassifying them into fine
granularity adjacent eras beyond a coarse granularity. In
other words, compared to other fine-grained classification
data, our data have a larger intra-class difference and a
smaller inter-class difference between adjacent eras. Third,
the attributes and eras are intertwined and the relations are
more complex. Each period of bronze dings has multiple
shapes and characteristics, and each shape and characteris-
tic correspond to multiple periods of bronze dings, leading
to the impracticality of making simple judgments regarding
the period based on the shape and characteristic. Existing
fine-grained classification methods therefore struggle when
applying our data.

To address these issues, we make the following contribu-
tions in this study:

• We collect an image dataset of 3690 bronze dings with
rich annotations made by bronze experts, including the
era (4 course-grained dynasties and 11 fine-grained
periods), attributes (29 shapes and 96 characteristics
with bounding boxes), literature, location of excava-
tion, and the museum where they are displayed.

• We build an end-to-end multihead network to solve
this multi-granularity task. The two heads combine
coarse- and fine-grained features in a bidirectional
manner with a gradient truncated addition to improve
the performance at both granularities. The outputs of
other two heads, the shape and characteristic nodes, are
added to a knowledge-guided relation graph to embed
the domain knowledge into our network,

• We propose exploiting these rich attributes following
archaeological knowledge by employing the focal-type
probability classification loss and indicate the ineffec-
tiveness of simply concatenating external information.

• We achieve the best performance in terms of the dating
accuracy, outperforming other state-of-the-art (SOTA)
fine-grained classification methods.

2. Related Work
2.1. Bronze Dings dating

In addition to manual inference [53, 58], the chemical
and physical properties of metals are also used to locate
the exact year of a bronze ding [13, 14, 34, 54]. However,
chemical and material science based techniques are time-
consuming and difficult to manipulate, and they may cause
irreversible damage to the bronze. Meanwhile, machine-
learning-based methods have been used to explore bronze
inscription recognition [21, 31, 67]. Although the meaning
of the inscriptions on a bronze ding is important, it is in-
sufficient for achieving an accurate dating. The automatic
dating of bronze dings using artificial intelligence has been
largely underexplored.

2.2. Fine-Grained Visual Classification
Datasets. Compared to a traditional image recognition
task [22,30,47], a fine-grained visual classification (FGVC)
task is more challenging [56]. Although the variation be-
tween different categories of fine-grained data can be ex-
tremely small, the variation within the same category, owing
to changes in pose and occlusions, is much broader, which
leads to more difficulties. Several datasets have been pro-
posed to address these challenges, including birds [2, 51,
52], dogs [28], airplanes [41], flowers [43], cars [29], veg-
etables [24], fruits [24], foods [3], fashion [18, 27, 37], and
retail products [1, 55].

Single-Granularity Visual Classification. Single-
granularity FGVC treats objects at the single-class
level. Some studies [26, 57, 61–64] have been based
on localization-classification networks to find the local
features with differentiation and then combine the global
features for fine-grained recognition. In addition, high-
order feature interactions [25, 33, 40] and the design of
specific loss functions [5, 16, 17, 48, 66] have resulted in
significant improvements. In addition to conventional
methods, to further assist fine-grained recognition tasks,
some researchers leverage external information, such as at-
tributes [8,15,20,36,65], web data [49,60,68], multi-modal
data [23, 45, 59], or human-computer interactions [10, 12].

Multi-Granularity Visual Classification. Hierarchical
multi-granularity structures can express richer information
than single-granularity structures. We construct the network
as a hierarchical structure, which has also been adapted in a
number of other studies [4, 6, 7, 11, 42]. In protein function
prediction, the output of each level is combined with the in-
put of the next level, thus allowing the network to learn the
features of each level jointly [4]. Parameters assigned for
each task are used to encourage cross-task feature interac-
tions [42]. Tree-structured tasks are constructed to integrate
knowledge from the tree hierarchy [11, 19] and conduct a
feature transfer between levels [7, 9].
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Period(fine-grained):  mid of Western Zhou 

Shape: round Ding with pointed conical foot

Characteristic：standing ear, flat title ribs, long-tailed 

                     bird pattern, phoenix pattern, hoof- 
                                   shaped feet, animal head on the foot

Bounding boxes:  bounding box coordinates × 14,     
                                      bounding box categories × 6

Literature：from The Complete Collection of Chinese  

                         Excavated Bronzes, vol. 5, no. 29

Excavation：excavated at Xi'an, Shaanxi Province, China

Dynasty(coarse-grained): Western Zhou

Museum：now in the Taipei National Palace Museum

Figure 2. Annotations of a bronze ding example. The characteris-
tics are labeled by bounding boxes in the left figure, and the right
shows the detailed information.

3. Bronze Ding Dataset
Data Collection and annotation. We collect more than
four thousand ding images from both five published archae-
ology books and four websites, and sort out 3690 images
as our dataset. Some of these are line graphs. Because
many dating results are controversial, we re-argue the era
of each artifact through discussions with three bronze ex-
perts. The collection and labelling of data were carried out
by an archaeologist and eight archaeology assists, who took
approximately 8 months to complete.

The collected dings belong to 4 course-grained dynasties
and 11 fine-grained periods, and each image is annotated
with additional annotations, as shown in Figure 2, includ-
ing:

• Shape: Single-category label for bronze ding shape,
with 29 types in total.

• Characteristic: Multi-category labels for the key
components, decorations, and inscriptions, along with
bounding boxes, with 96 types in total.

• Source: Literature (studies to which these bronze ding
images belong); excavation (location of excavation),
and museum (current exhibition museums).

The detailed process used in the data annotation is described
in the supplementary material.

Statistics. We also count the numbers of eras, shapes, and
characteristic labels from different eras, the results of which
are shown in Figure 3. The numbers of shapes and charac-
teristic annotations varied considerably between eras.

Comparison. To quantify the information provided by
the additional annotations, we calculate the information
gain of the shape and characteristic annotations of the era
judgement, as shown in Equation (1).

g(D,A) = H(D)−H(D | A) (1)
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Figure 3. Statistics showing the imbalance of our dataset.

Table 1. Comparison of our dataset and five existing datasets in
terms of category statistics, entropy, conditional entropy, and in-
formation gain. The information gain shows that the shape and
characteristic annotations of our dataset provide richer informa-
tion.

Bronze Ding CUB 200 2011 Deep Fashion CompCars Stanford Dogs Food-101
Images 3690 11788 289222 136726 20580 101000

Image Categories 11 200 50 1716 120 101
Images per Category 335±315 59±3 5784±11989 79±48 171±23 1000±0

Attribute Categories 96 29 312 1000 26 218 – –(characteristic) (shape) (coarse) (fine)
H(D) 3.459 7.644 5.644 10.745 – –

H(D | A)
1.826 1.717 6.599 4.470 4.789 9.570 – –(characteristic) (shape) (coarse) (fine)

g(D,A)
1.633

(characteristic)
1.742

(shape) 1.045
1.174

(coarse)
0.855
(fine) 1.002 – –

where H(D) is the entropy of the fine-grained labels on
dataset D and H(D | A) is the conditional entropy of at-
tribute A on dataset D.

For comparison, the entropy in CUB-200-2011 [28] and
Deep-Fashion [37] are also calculated. The results are pre-
sented in Table 1. We find that the information gain in our
dataset is more significant than that of the other datasets,
which means that our shape and characteristic annotations
provide richer information. Such information is therefore
critical for improving the network performance.

4. Methodology
4.1. Overview

To address the challenges to our task, we construct a
multihead network for predicting the era of bronze dings on
an archaeology knowledge-guided relation graph, as shown
in Figure 4. The network consists of three parts: a multi-
granularity module (MGM), knowledge extraction module
(KEM), and archaeology knowledge-guided relation graph
(AKG). Compared to HRN [7], first, we additionally en-
hance the dynasty (coarse) features without affecting the
period (fine) dating performance by adding the feature of
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Figure 4. Overview of our network. We design four heads: two heads in MGM are responsible for extracting dynasty and period features
at two granularities. Two other heads in KEM are responsible for extracting shape and characteristic features of the bronze dings. Then,
the outputs of MGM and KEM jointly build our AKG to formulate the relationship between the eras and attributes of each ding through the
graph loss. Simultaneously, the outputs are also used to compute cross-entropy and focal losses to enhance the learning of the annotations
on each head.

period head to the dynasty head with gradient truncation,
and then feeding into the next FC layer. Second, we im-
plement KEM in our network and extend the relation graph
to leverage the features of our dataset by considering at-
tributes information (shape and characteristic) in the knowl-
edge graph. Third, we design a focal-type probability clas-
sification loss to learn the relationship between attributes
and eras from easy (shape) to difficult (characteristic), in-
stead of just learning category information.

4.2. Network Architecture
Multi-granularity Module. The MGM is built to com-
bine dynasty features with period features and enhance
them interactively. After the backbone network, dynasty
and period features are separately extracted by two heads
consisting of two convolution layers and two fully con-
nected layers. Then, in addition to applying an element-
wise addition from dynasty head to period head to enrich
period information, an element-wise gradient truncation ad-
dition is applied in reverse to enhance dynasty features
without affecting the period performance.

For the outputs, dynasty head applies a sigmoid pro-
jection, and then the result forms the dynasty node of the
AKG. The period head applies sigmoid and softmax pro-
jections, where the sigmoid output forms the period node
of the AKG, and the softmax output computes the cross-
entropy loss Lce to enhance the exclusive relation between
the period nodes.

Knowledge Extraction Module. Because of the narrow
inter-class differences and wide intra-class variations of the
bronze ding, archaeologists must combine various factors to
determine the era to which they belong. We therefore intro-

duce domain knowledge to improve the performance of the
network, including the shape and characteristic annotations.
Specifically, we design a KEM for extracting the shape and
characteristic information of a bronze ding, which consists
of two separate heads for extracting knowledge-specific fea-
tures.

The shape head of the KEM applies sigmoid and
softmax projections. From Figures 3 (b) and (c), we
can see that the shape and characteristic categories are un-
balanced; therefore, we compute Lfocal [32] between its
softmax output and the shape labels to alleviate the cat-
egory imbalance problem and enhance the exclusive rela-
tion between the shape nodes. Furthermore, because the
classification of the characteristics is a multilabel classifica-
tion task, the characteristic head of the KEM only applies a
sigmoid projection, and we compute the multilabel Lml-focal
between its sigmoid output and the characteristic labels.
The sigmoid outputs of these two heads are also fed to the
AKG.

4.3. Archaeology Knowledge Guided Relation
Graph

The Formalism of Relation Graph. Inspired by the
study in [7, 11], we develop an archaeological knowledge-
guided relation graph embedded with domain knowledge to
enable the network to synthetically learn the era, shape, and
characteristic labels. The nodes of the relation graph are the
types of eras and attributes from MGM and KEM, and a set
of directed edges and undirected edges are defined between
these nodes. A directed edge is a subsumption edge that in-
dicates that the parent nodes subsume the child node. An
undirected edge is an exclusion edge and indicates that the
two nodes are mutually exclusive.
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According to archaeological knowledge, we conclude
that the relations of the edges and nodes are as follows:

• Because a bronze ding cannot belong to two eras at
the same time, any two dynasty or period nodes only
have an exclusive edge between them. The relation of
the era node subsumes in the dynasty node and can be
expressed as a subsumption edge.

• Although one bronze ding only contains one type of
shape node, multiple dings within the same period con-
tain multiple shape nodes. Therefore, the period and
shape nodes have multiple subsumption edges. In ad-
dition, because a bronze ding cannot have two shapes,
any two period nodes have exclusive edges between
them.

• A bronze ding may contain multiple characteristics,
and the period and characteristic nodes therefore have
multiple subsumption edges.

Based on these relations, we define an extended legal global
assignment of all labels in the relation graph as binary-
label vectors for an object. Beyond [7], we consider the
shape and characteristics of a node assignment. The set
of all legal global assignments forms the era state space
SGe

⊆ {0, 1}n, era-shape combination state space SGes
⊆

{0, 1}n+m, and era-characteristic combination state space
SGec

⊆ {0, 1}n+k of relation graph G, where n, m, and k
denote the number of nodes for the eras, shapes, and charac-
teristics, respectively. Thus, we calculate the probabilistic
classification loss on G, enabling the network to improve its
judgement of the era by learning domain knowledge of the
shapes and characteristics.

Focal-type Probabilistic Classification Loss. The two
types of attributes have different effects on the dating by
archaeologists. There are a few types of shapes, which are
relatively easy to distinguish. However, the ding shape type
is not decisive for dating. Meanwhile, some characteristic
types can accurately define this era. However, the number
of characteristic types is large, and they are both similar
and complex. Based on this knowledge, we construct prob-
abilistic classification losses to enable the network to learn
information in the relation graph.

During training, we obtain the predicted label in the rela-
tion graph and maximized its marginal probability in a step-
by-step manner. Given an input image x, the unnormalized
era joint probability of all era nodes concerning the era label
assignment ye can be computed as P̃e(ye|x). The era joint
probability is then normalized by Pre(ye | x) = P̃e(ye|x)

Ze(x)
,

where Ze(x) is the era partition function that sums over
all legal era assignments ye ∈ SGe

in the era state space.
If input image x has the i-th era label, we can obtain the
era marginal probability Pre(yei = 1 | x) of era label i
by summing over all legal era assignments ye that include

yei = 1. Procedures for calculating normalized era-shape
joint probability Pres(yes | x) and era-characteristic joint
probabilityPrec(yec | x) are the same. The details of the
calculations are described in the supplementary material.

Given m training samples, D =
{
xl, yle, y

l
es, y

l
ec, g

l
e,

gles, g
l
ec

}
, l = 1, . . . ,m, where yle, yles and ylec are the

ground-truth label vector of the era, era-shape combination,
and era-characteristic combination, respectively. And gle ∈
{1, . . . , n}, gles ∈ {1, . . . , n+m}, glec ∈ {1, . . . , n+ k}
are the indices of the observed era, era-shape combina-
tion, and era-characteristic combination labels, respectively.
Subsequently, the era probabilistic classification loss Le(D)
is defined as follows:

− 1

m

m∑
l=1

ln(Pre(y
l
e
gle

= 1 | xl)) (2)

Then, because of the different importance of attributes,
we define the focal-type era-shape probabilistic classifica-
tion loss Les(D) and the era-shape-characteristic probabilis-
tic classification loss Lesc(D) as follows:

− 1

m

m∑
l=1

(
(1−Pre(y

l
e
gle

=1|xl))α1 ln(Pres(y
l
es

gles

=1|xl))
)

(3)

− 1

m

m∑
l=1

(
(1−Pres(yles

gles

=1|xl))α2 ln(Prec(y
l
ec

glec

=1|xl))
)

(4)

Thus, when the network learns sufficient information
through the era features of a given sample to determine its
era, the influence of the shape and characteristics can be
weakened by decay factor α1 and α2. When the network
cannot learn a sufficient amount of information to determine
the era of this sample, Les(D) plays a supportive role. When
neither the era features nor the shape features can provide
sufficient information, Lesc(D) will contribute to determin-
ing the chronology of this sample by learning the relation-
ship between the era and characteristics. In this manner, the
network can adaptively adjust its learning of the shape and
characteristics according to the amount of information pos-
sessed by different samples, thereby avoiding a disturbance
of the main task.

Finally, the aforementioned losses are added in a linear
manner to form a complete probabilistic classification loss:

Lgraph(D) = Le(D) + β · (Les(D) + Lesc(D)) (5)

where β denotes the weight used to balance the influence of
the loss components.

4.4. Total Loss
In addition to the probabilistic classification loss Lgraph,

we also use Lce, Lfocal, and Lml−focal to enable the net-
work to learn the era, shape, and characteristic categories
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Table 2. Ablation study of each component in our network.

MGM
w/ Truncated

KEM AKG
Dynasty OA Period OAShape Characteristic Shape Characteristic

Concat Embed Concat Embed
1 85.28 75.81
2 ✓ 86.85 77.05
3 ✓ ✓ 84.54 75.54
4 ✓ ✓ ✓ 86.53 76.51
5 ✓ ✓ ✓ 87.71 77.86
6 ✓ ✓ 87.23 77.37
7 ✓ ✓ ✓ 87.50 77.10
8 ✓ ✓ ✓ 87.72 77.98
9 ✓ ✓ ✓ ✓ ✓ 86.80 76.62

10 ✓ ✓ ✓ ✓ 87.12 77.05
11 ✓ ✓ ✓ ✓ 87.45 78.83
12 ✓ ✓ ✓ ✓ ✓ 88.79 78.83

of bronze dings, respectively. In summary, the total loss is
given as a summation of the aforementioned losses with a
trade-off parameter, λ:

Ltotal (D)=Lgraph (D)+Lce(D)+λ·(Lfocal(D)+Lml-focal(D)) (6)

5. Experiments
5.1. Data Preparation

We split our data into three sets: the scales of the training
set, validation set, and test set are 4:1:5 (1470:363:1857),
respectively, following the divisions of other fine-grained
classification datasets [41, 52]. Due to the data imbalance,
we keep the proportions of each dynasty and period divided
in the same way. For the pre-processing, we apply data aug-
mentation to the collected images, including background re-
moval and grayscale.

5.2. Implementation Details
We implement our network using PyTorch [44] and

conduct experiments on a workstation equipped with an
NVIDIA RTX 3090 GPU. For a fair comparison, we
also adopt ResNet50 pretrained on ImageNet as our net-
work backbone and resized the input images to 400×400
throughout the experiments. We train each experiment for
64 epochs with early stopping and use Adam optimizer with
a learning rate of 0.0001, adjusted using a cosine annealing
strategy [39] to optimize our network. The batch size is set
to 32. Besides, We set the decay factors α1 = 2 and α2 = 3
in Equations (3) and (4), balance weight β = 0.001 in Equa-
tion (5), and trade-off parameter λ = 0.1 in Equation (6).
And the parameter settings in Lfocal and Lml−focal fol-
low [32]. The impact of hyper-parameters are also analysed
in supplementary materials. Based on these implementation
details, we set the HRN [7] as our baseline model.

Evaluation. We use the overall accuracy (OA) and
the area under the average precision and recall curve
AU(PRC) to evaluate the dating performance.

5.3. Ablation Study
We evaluate different combinations of the proposed com-

ponents and followed the default parameter settings de-
scribed in Section 5.2. The results are listed in Table 2.

Multi-Granularity Module (MGM). We apply an
element-wise gradient truncated addition, from the period
features to the dynasty features, forming a bi-directional
interaction structure. Simple but efficient, this (1→2) im-
proves the dynasty dating accuracy of the network by 1.57%
and the period dating accuracy by 1.24%. The removal of
the gradient truncated addition from the complete model
(11→12) leads to a 1.34% decrease in the dynasty dat-
ing accuracy, while maintaining the period dating accuracy.
This result is also in line with our original intention, which
strengthens the dynasty dating while not affecting the pe-
riod dating.

Knowledge Extraction Module (KEM). With this mod-
ule, we first verify the influence of the shape information
on the dating performance. After adding the shape head of
the KEM to the baseline (2→3), the dynasty dating accu-
racy of the network is reduced by 2.31%, and the period
dating accuracy is reduced by 1.51%. After concatenating
the extracted shape features with the period features and us-
ing them together for period learning (3→4), the accuracy
of the dynasty dating increases by 1.99%, and the accuracy
of the period dating increases by 0.97%.

Second, we verify the influence of characteristic infor-
mation on the dating performance. The addition of the
characteristic head of the KEM (2→6) improves the dat-
ing accuracy of the network by 0.38% and 0.32%. After
concatenating the extracted characteristic features with the
period features and using them together for period learn-
ing (6→7), the accuracy of the period dating decreases by
0.27%, whereas the accuracy of the dynasty dating im-
proves by only 0.27%. When we simultaneously concate-
nate the shape and characteristic features into the features
of the period for period learning (2→9), but the accuracies
of the dynasty dating and period dating decrease by 0.05%
and 0.43%, respectively.

These results demonstrate that concatenating the at-
tribute information with the period information is ineffi-
cient. The external information is far from being fully uti-
lized. In the following, we embed the shape and charac-
teristic predictions into an archaeology knowledge-guided
relation graph.

Archaeology Knowledge Guided Relation Graph
(AKG). To make better use of the additional information,
we build an AKG by adding the shape and characteristic
predictions extracted from the KEM to the relation graph.
Experiment results show that embedding the shape into the
relation graph (2→5) improves the accuracy of the dynasty
dating by 0.86% and the accuracy of the period dating by
0.81%. Embedding the characteristics into the relation
graph (2→8) improves the accuracy of dynasty dating by
0.87% and accuracy of period dating by 0.93%. In the
complete model, embedding both the shape and character-
istics (2→12) improves the accuracy of the dynasty dating
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Table 3. Comparison of each method on the proposed datasets. Bold indicates the best results, and underlined values are the second best
results. The single- and multi-granularity methods use single- and multi-granularity era labels as supervision, respectively. In addition,
our method and A3M [20] use additional attribute annotation information, and Part-based R-CNN [64] uses additional bounding box
annotations.

Shang Western Zhou Spring and Autumn Warring StatesMethod w/ Attributes OA AU(PRC) Early Late Early Mid Late Early Mid Late Early Mid Late
ConvNeXt [38] 76.01 0.8397 73.04 82.31 75.21 82.56 80.00 77.44 64.17 67.76 56.90 41.18 63.37

Part-based R-CNN [64] BBox 69.45 0.7796 92.59 84.47 62.54 90.78 67.74 62.03 62.79 46.89 38.46 73.33 84.91
MCL [5] 70.41 0.7742 79.55 78.56 66.85 79.58 76.28 71.57 54.23 66.02 35.42 31.18 60.11

CrossX [40] 70.54 0.7755 70.89 72.97 75.21 71.74 82.88 67.67 62.14 57.20 25.00 57.14 69.23
BCNN [33] 71.59 0.7402 71.15 80.48 70.92 76.82 78.60 73.14 57.53 59.00 0.00 0.00 48.11

NTS-Net [62] 73.06 0.7890 71.15 80.93 67.28 79.17 78.15 81.56 58.24 60.48 54.17 70.83 67.78
A3M [20] ✓ 75.12 0.8002 79.59 78.24 74.11 85.71 78.42 78.99 62.35 63.08 44.44 50.00 69.32
SPS [25] 76.94 0.8245 80.39 83.30 73.19 86.51 85.61 81.21 62.38 66.36 42.11 50.00 67.78Si

ng
le

-G
ra

nu
la

ri
ty

P2PNet [61] 77.32 0.8370 79.25 78.25 80.39 78.80 88.37 85.11 64.52 67.24 50.00 52.78 71.59
84.85 0.9125 84.37 84.09 87.25 84.97YourFL [6] 73.92 0.8019 79.25 80.20 69.38 82.21 83.59 82.14 56.38 62.90 53.85 51.72 60.67
84.43 0.8934 82.07 84.28 85.91 90.41C-HMCNN [19] 74.52 0.7766 81.25 79.29 70.04 85.57 81.95 75.00 67.47 60.45 58.06 45.24 77.46
85.28 0.9124 81.08 88.24 85.98 85.71HRN [7] 75.81 0.8206 75.93 79.66 75.89 80.63 85.61 81.70 62.24 62.71 51.06 48.15 68.06
88.79 0.9380 86.80 88.62 91.57 90.45M

ul
ti-

G
ra

nu
la

ri
ty

Ours ✓ 78.83 0.8550 77.36 84.85 78.30 81.28 85.31 83.33 64.84 68.85 45.95 53.13 75.31

Table 4. Comparison results of the dating performance showing
the effect of the order of the shape and characteristic embedding.

Embedding order Dynasty OA Period OA

Era-Characteristic-Shape 86.37 76.13
Era-Shape-Characteristic 88.79 78.83

by 1.94% and the accuracy of the period dating by 1.78%.
It is worth noting that the embedding order of the shape

and characteristics also has an impact on the dating per-
formance. As illustrated in Equations (3) and (4), in our
network, we use the Era-Shape-Characteristic order to in-
crementally learn different information. To verify the in-
fluence of the embedding order, we also tested the oppo-
site case. In the Era-Characteristic-Shape learning order,
when the model is unable to accurately determine the era
of a sample based on its era feature, it first increases the
influence of the characteristic features and finally consid-
ers the shape feature. The comparison results are shown
in Table 4, where the embedding learning order of the Era-
Characteristic-Shape is 2.42% and 2.70% lower than that
of our applied order. This confirms that when learning la-
bels with different distributions, the network needs to learn
the labels progressively from weak to strong and from easy
to complex. This also explains why the strong supervised
method (Part-based R-CNN [64]) did not achieve excellent
dating results in the following comparison experiment.

5.4. Comparison with SOTA Methods
We compare our proposed network with other SOTA ap-

proaches under multi- and single-granularity settings. Un-
der a multi-granularity setting, we train all multi-granularity
methods with two-level labels of the bronze ding datasets.

We report the OA and AU(PRC) results for each hier-
archical level on the test set. Under a single-granularity
setting, we train all single-granularity methods using fine-
grained period labels of a bronze ding. Besides, to observe
the classification performance of each dynasty and period
independently, we calculate the precision of each approach
on 4 coarse-grained dynasties as well as on 11 fine-grained
periods recall is reported in our supplementary material. In
addition to research related to fine-grained classification, we
also compare our method with ConvNeXt [38], which is
an extremely popular approach in traditional classification
tasks.

As Table 3 shows, using the same backbone ResNet50,
our method outperforms the state-of-the-art single-
granularity method P2PNet [61] on the bronze ding dataset
benchmark by more than 1.51% OA and 0.018 AU(PRC)
for period dating. And our method outperforms the state-
of-the-art multi-granularity method HRN [7] (our baseline)
on the bronze ding dataset benchmark by more than 3.51%
OA and 0.0256 AU(PRC) in terms of dynasty dating, and
by more than 3.02% OA and 0.0344 AU(PRC) for period
dating. Furthermore, we achieve the best performance for
all 4 coarse-grained dynasties and 3 out of 11 fine-grained
periods for each independent era classification.

Visualization. To demonstrate that our network can cap-
ture important regions of interest useful for bronze ding dat-
ing, we adopt Grad-CAM [46] for an intuitive visualiza-
tion. For comparison, we also conducte the same visualiza-
tion for the single-granularity method P2PNet [61] and the
multi-granularity methods HRN [7] and C-HMCNN [19],
which also exhibit competitive performances. As shown in
Figure 5, our network is more concentrated within the dis-
criminative regions of a bronze ding. Compared to the other
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Figure 5. Gradient-weighted class activation map of different methods on 11 period test samples. Compared to the other methods, our
network is more concentrated on the discriminative regions of a bronze ding and is able to capture its key characteristics.

OursHRN

C-HMCNNP2PNet

Figure 6. Visualization of learned representations of different
methods on our dataset using T-SNE. Compared to the other meth-
ods, the decision boundaries of our proposed network become
more separated.

methods, our network captures the key locations on a bronze
ding when performing the dating, such as decorations and
inscriptions.

In addition, as shown in Figure 6, we draw t-SNE [50]
scatter plots from the learned high-dimensional period fea-
tures of our network and some other comparison methods.
For better visualization, we randomly select 40 images for
each period. From the t-SNE plots, we can clearly see that
our network extracts more discriminative period represen-
tations of different images.

6. Conclusion and Further Work
In this study, we introduce a bronze ding dataset with

rich archaeological labels. To address the challenges, we
construct an end-to-end multihead network for predicting
the era of bronze dings based on an AKG. Comprehen-
sive experiments are conducted on our dataset, the re-
sults of which demonstrate the effectiveness of our pro-
posed network in comparison to existing multi- and single-
granularity FGVC methods. And, excitingly, our learning-
based dating network achieve the same level of human ex-
perts.

In a future study, we plan to collect and open up more
types of Chinese bronze data to facilitate research through
learning-based methods. We hope that our study will pro-
vide further contributions to both the archaeological and
deep-learning communities.

Acknowledgement. This work is supported by the ”Pa-
leography and Chinese Civilization Inheritance and Devel-
opment Program” Collaborative Innovation Platform (Grant
No.G3829) and Jilin University (Grant No.419021421665
and No.419021422B08).

3110



References
[1] Yalong Bai, Yuxiang Chen, Wei Yu, Linfang Wang, and Wei

Zhang. Products-10k: A large-scale product recognition
dataset. arXiv preprint arXiv:2008.10545, 2020. 2

[2] Thomas Berg, Jiongxin Liu, Seung Woo Lee, Michelle L
Alexander, David W Jacobs, and Peter N Belhumeur. Bird-
snap: Large-scale fine-grained visual categorization of birds.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2011–2018, 2014. 2

[3] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
Food-101–mining discriminative components with random
forests. In European conference on computer vision, pages
446–461. Springer, 2014. 2

[4] Ricardo Cerri, Rodrigo C Barros, André C PLF de Car-
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Redondo-Marugán, Laura Osete-Cortina, J Barrio, A

Fuentes, MV Vivancos-Ramón, W Al Sekhaneh, B Martı́nez,
I Martı́nez-Lázaro, et al. Electrochemical characterization
and dating of archaeological leaded bronze objects using
the voltammetry of immobilized particles. Archaeometry,
60(2):308–324, 2018. 2
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