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Figure 1. We propose an improved CNNMRF model. It can be used for example-based texture optimization with or without guidance maps
(left). The newly defined loss function can also be applied to train generative networks, enabling real-time controlled synthesis (right).

Abstract

Markov random fields (MRFs) are the cornerstone of
classical approaches to example- based texture synthesis.
Yet, it is not fully valued in the deep learning era. This pa-
per aims to re- promote the combination of MRFs and neural
networks, i.e., the CNNMRF model, for texture synthesis,
with two key observations made. We first propose to com-
pute the Guided Correspondence Distance in the nearest
neighbor search, based on which a Guided Correspondence
loss is defined to measure the similarity of the output texture
to the example. Experiments show that our approach sur-
passes existing neural approaches in uncontrolled and con-
trolled texture synthesis. More importantly, the Guided Cor-
respondence loss can function as a general textural loss in,
e.g., training generative networks for real- time controlled
synthesis and inversion- based single- image editing. In con-
trast, existing textural losses, such as the Sliced Wasserstein
loss, cannot work on these challenging tasks.

1. Introduction
Example-based texture synthesis has been a long-

standing topic in vision and graphics. It aims to synthesize
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new textures of any resolution that retain the patterns of a
given exemplar, with no apparent visual flaws and having
realism. Classical approaches formulate the synthesis as a
Markov Random Field (MRF) problem and solve it by iter-
atively optimizing the output patches to be similar to their
nearest neighbor in the input. This MRF-based optimization
framework is not only widely used both in texture synthe-
sis [18–20, 25, 39], but also adopted in more general tasks
such as image synthesis and editing [1, 7].

Despite the success of MRF optimization, recent atten-
tion has been devoted to utilizing deep neural networks, ei-
ther matching the statistics of deep features [12,16] or train-
ing generative adversarial networks (GANs) [5, 30, 33, 40].
In this paper, we retake the MRF optimization framework,
given its versatility and flexibility in texture synthesis, and
combine it with deep neural networks. We first search the
nearest neighbor for each output patch according to Guided
Correspondence Distance over multi-layer deep features.
Then, unlike traditional methods that copy and paste source
patches, we define a Guided Correspondence loss that mea-
sures the overall similarity based on all the corresponding
patches, and update the output pixels via back-propagation.

Actually, Li et al. [22] used to explore a CNNMRF
model in 2016, which combines MRF and neural networks
for style transfer. Champandard [6] applied it to texture syn-
thesis later. Comparing to traditional texture optimization,
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Figure 2. The synthesized textures from CNNMRF model [6] have
obvious repetition and blurry issues.

the main issue of CNNMRF is that its results have a poor
patch diversity and severe blurry artifacts; see, e.g., Fig-
ure 2. To address that, we made two critical changes in our
approach. First, the Guided Correspondence Distance is de-
fined as a weighted sum of various penalty terms. Thus, in
the nearest neighbor search, we can take more factors such
as matching diversity into account rather than only con-
sider patch similarity. Second, inspired by the Contextual
loss [26] used for matching image statistics in style transfer,
we modify the conventional L2-based MRF energy to ac-
count for contextual similarities. The motivation is that we
hope the nearest neighbor we found for a target patch is sig-
nificantly closer to it than all other source patches. The so-
designed Guided Correspondence loss improves the sharp-
ness of the synthesized results substantially. Our framework
can be easily extended to various guided scenarios, includ-
ing (but not limited to) user annotations, progression maps,
and orientation fields. We just add the corresponding penal-
ties to the Guided Correspondence Distance.

Experiments show that our approach performs remark-
ably well for texture optimization both in uncontrolled and
controlled scenarios, reaching state-of-the-art visual qual-
ity. Moreover, the Guided Correspondence loss can be used
as a general textural loss. We demonstrate its usage in, e.g.,
training feedforward networks for real-time controlled syn-
thesis and inversion-based single-image editing. Existing
statistic-based losses, such as the Sliced Wasserstein loss,
cannot handle these challenging tasks. Code is available at
https://github.com/EliotChenKJ/Guided-
Correspondence- Loss.

2. Related Work
Classical approaches. Classical example-based texture

synthesis approaches have gone through three stages: pixel-
based [9, 37], stitching-based [8, 21], and optimization-
based [20, 38]. Given the success of texture optimization,

follow-up researches focus on such as PatchMatch acceler-
ation [1, 7], self-guided optimization [18], and applications
in various controlled scenarios [3, 24, 25, 29, 35, 39].

Deep learning based approaches. The first work us-
ing neural networks for texture synthesis is proposed by
Gatys et al. [12]. They synthesize new textures by match-
ing the correlations between deep features to be similar to
the source. Heitz et al. [16] also leverage deep features
but choose to align them between images by minimizing
the Sliced Wasserstein Distance, resulting in better visual
quality. They assume a strong prior of stationary statis-
tics for textures and emphasize matching the distribution
in the feature space while “overlooking” the spatial coher-
ence on the target image. When an exemplar has large-scale
structures or non-stationary changes in the spatial domain,
matching global statistics will cause discontinuities or inco-
herent color distributions in the synthesized textures.

Another direction utilizing deep techniques is training
generative networks [4,5,11,17,23,28,31,32,34]. Recently,
several single-image GANs are proposed to learn the inter-
nal patch distribution [30,33,40]. They can reasonably deal
with challenging non-stationary textures at the cost of long-
time training but always suffer from visual artifacts, espe-
cially near the border areas. Another critical problem is that
GANs have no explicit measure about the synthesis quality
with respect to the exemplar. We may not know when to
stop training to prevent overfitting.

3. Method
We start by describing the classical MRF global objec-

tive defined in [20] that measures the overall similarity be-
tween two images. The key idea behind MRF prior is to em-
phasize the visual coherence across all overlapping output
patches. Formally, let It denote the output/target texture to
be optimized, and Is denote the input/source example. For
controlled synthesis, there are also a certain target guidance
map Gt and a corresponding source guidance map Gs. We
represent each texture as a collection of overlapping patch
samples: T = {ti} and S = {sj}. nt = |T | and ns = |S|
are the patch numbers. Usually, we assume nt > ns, as we
always synthesize textures larger than the exemplar. The
global MRF energy that measures the similarity of It to Is
can be written as:

EMRF (It, Is) =
∑
ti∈T

p(ti, NN(i)), (1)

where NN(i) ∈ S is the nearest neighbor of ti, and
p(·, ·) is a similarity function, which is usually the sum of
squared color distance in classical approaches. Classical ap-
proaches solve the MRF objective above by an Expectation-
Maximization (EM)-like algorithm which iterates between
updating the output pixels (E-step) and finding the nearest
neighborhoods in input (M-step). In our framework, we will
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convert the above energy into a loss function so that it can
be used to optimize target pixels via back-propagation, or to
update network parameters as a general textural loss.

Next, we will introduce the Guided Correspondence Dis-
tance we used in nearest neighbor search, followed by the
detailed definition of Guided Correspondence loss.

3.1. Guided Correspondence Distance

Feature Representation. We extract multi-layer deep
features for texture images using a pre-trained VGG-19, and
select L layers from them to compute the patch distance
for nearest neighbor search. Note that in controlled synthe-
sis, the features in guidance maps should also be involved.
Thus, the feature vector of a target patch ti is comprised
by {F l

t (i), G
l
t(i)}, where F l

t denotes the VGG activation
at the l-th layer, Gl

t is the down-sampled target guidance
map with the same size as F l

t , and i represents the patch
sampling on the feature map. For a source patch sj , it is
{F l

s(j), G
l
s(j)} with the same meaning of notations. Since

we compute identically for all selected layers, we will ig-
nore the superscript l in the following for simplicity.

Distance Metric. We formulate the pair-wise guided
distance dij between patches ti and sj at a certain layer as:

dij = dV GG
ij + λGC ∗ dGC

ij + λocc ∗ doccj , (2)

where dV GG
ij is the cosine distance between neural patches

Ft(i) and Fs(j), dGC
ij is the distance between guidance

patches Gt(i) and Gs(j), doccj is the occurrence penalty (to
be defined later) for sj , and λGC , λocc are the weights. The
definition of distance function dGC

ij depends on the type of
guidance channel in controlled synthesis. We will specify
it case by case in the experiment section. While for uncon-
trolled synthesis, we directly set λGC = 0.

Occurrence Penalty. Finding correspondences for tar-
get samples only by the features from image and guidance
channel will cause repetition issues, as there’s no guaran-
tee to avoid the many-to-one degradation in matching. In-
spired by the occurrence penalty used in self-tuning texture
optimization [18], we implement a simplified version to en-
courage selecting source patches uniformly. Specifically,
we first use the feature distance terms dV GG

ij and dGC
ij in

Eq. (2) to get an approximated guided correspondence for
each target patch. Then, for each source patch sj , we count
the number of times it is chosen as the guided correspon-
dence and define its occurrence penalty as:

doccj = Ωj/ω, (3)

where Ωj = |{sj = NN(ti), ∀i}|, and ω = nt/ns is a nor-
malization defined by the average occurrence number over
all source patches.

dV GG
ij = 1− (Ft(i)−µs)·(Fs(j)−µs)

‖Ft(i)−µs‖2·‖Fs(j)−µs‖2
, where µs = 1

ns

∑
j
Fs(j)

Figure 3. Illustration of our contextual similarity. Given the strong
self-similarity of texture, there could be multiple source samples
with similar distances to the same target sample. Minimizing L2

distance makes the optimization favor the average of nearby source
samples, resulting in blurry artifacts in the output. The contextual
similarity, instead, considers the context of all source samples. A
target sample is contextually similar to a source sample if it is sig-
nificantly closer to it than to all other source samples. Minimizing
the contextual similarity will push the target sample to get closer
and closer to its nearest neighbor.

After updating the pair-wise distances with the occur-
rence penalty, we find the guided correspondence for each
target patch. Next, we convert the Guided Correspondence
Distance into Guided Correspondence loss.

3.2. Guided Correspondence loss

We could have directly used the distance metric of
Eq. (2) as the similarity function p(·, ·) in the global ob-
jective. But we noticed severe blurry artifacts in the gen-
erated results. Such blurry issue can also be evidenced in
the results of the original CNNMRF model that optimizes
the L2 distance of deep features between corresponding
patches. We argue that this issue can be attributed to the
strong self-similarity of textures. For a target sample (i.e., a
patch), there could be multiple source samples with similar
distances to it in feature space. Minimizing the Euclidean
distance to its nearest neighbor would make the optimiza-
tion stay or vibrate at the average of nearby source samples
and hence output blurry patches. We, therefore, turn to the
contextual similarity introduced in [26]. As illustrated in
Figure 3, the contextual similarity requires a target sample
to be significantly closer to its nearest neighbor than to all
other source samples. To capture that, we first normalize
the guided distance of Eq. (2) and shift it to similarity:

wij = exp

(
1− dij/(mink dik + ε)

h

)
, (4)

where ε = 1e − 5 is to prevent division by zero, and h is a
bandwidth parameter which we set as 0.5 in all our experi-
ments. Then, we normalize it to be the contextual similarity:

CXij = wij/
∑
k

wik. (5)
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Figure 4. Ablation study on occurrence penalty. Note the results
of all these three settings are optimized from the same random
initialization (shown at the bottom left of each row).

Finally, we modify the MRF energy function of Eq. (1) and
formally define our Guided Correspondence loss:

LGC(It, Is) =
1

nt

∑
i

−log(CXi,NN(i)). (6)

Note that our Guided Correspondence loss is different
from the Contextual loss defined in [26]; please refer to the
supplementary for more details. In texture optimization, we
minimize the above loss by iterating between computation
of guided correspondence and error back propagation so as
to modify output pixels. While in training generative mod-
els, the above loss can be used to measure the quality of
generated images so as to update network weights.

3.3. Implementation details

We select the feature layers relu1 1, relu2 1, relu3 1,
and relu4 1 of VGG-19 to sample the neural patches with
patch size 7 and stride 3 for the computation of Guided Cor-
respondence loss. Following [22] and classical approaches,
we use the multi-resolution strategy to further enlarge the
receptive field in optimization-based synthesis. Specifi-
cally, we set 4 levels of resolution by default, which are
[0.25, 0.5, 0.75, 1]. We run 500 EM iterations for each
scale. It takes about 5 minutes to optimize a texture of 512
× 512 pixels with an Nvidia Titan Xp GPU.

In controlled scenarios, to meet the requirement of guid-
ance channels, classical approaches usually apply general-
ized PatchMatch [2] to search for rotated patches. In our im-
plementation, we directly augment the source patches with
flipped and rotated copies. We found this simple augmen-
tation significantly improves the synthesis quality. To save
the memory cost, we remove layer relu1 1 in the controlled
synthesis. When there are 4 augmented copies (horizon-
tal+vertical flips), the computation time is around 5 minutes
for an output of 5122 pixels, and 20 minutes when there are
8 augmented copies (each rotated by 45◦).

Figure 5. Ablation study on the contextual similarity in our loss
function. By keeping all the other settings unchanged, we replace
the contextual similarity in the Guided Correspondence loss with
L2 distance. Top: zoom-in patches in the synthesis results. Bot-
tom: we monitor the evolution of the two losses during the opti-
mization (at scale 0.25) respectively using either loss. The loss
curves indicate that minimizing the contextual similarity based
loss, i.e., the Guided Correspondence loss, minimizes the L2 dis-
tances simultaneously, but it’s not true for the opposite.

Table 1. We check the average number of correspondence switches
for all target patches during the optimization (at scales 0.75 and 1,
since now the target texture is optimized a lot). We can see using
the contextual similarity based loss is almost two-times stable than
using the L2 distance in the nearest search, which hence leads to
better optimization for the final output patches.

Texture 1 in Fig. 5 Texture 2 in Fig. 5
L2-based Ours L2-based Ours

Scale 0.75 14.09±5.33 6.83±4.12 8.01±5.91 3.93±3.93
Scale 1 2.43±4.17 1.32±3.21 1.39±3.97 0.62±2.14

4. Experiments

We select 50 texture images from [40] for experiments.
Each is resized to 256 pixels for the shorter dimension. De-
tailed configurations of all experiments and more results in
high resolution are included in the supplementary material.

4.1. Ablation study

We start by validating the two key components of our
approach: the occurrence penalty in the Guided Correspon-
dence search and the contextual similarity in our loss func-
tion. For the former one, we run our method for texture
optimization and tune the penalty weight to see the effect.
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Figure 6. Qualitative comparison to state-of-the-art approaches on
uncontrolled synthesis of stationary textures. All the resulting tex-
tures are in size 512×512 pixels. Note that TexExp can only out-
put textures two times larger than the input. To get a square output,
we expand the input first and then crop the central part. We did the
same operation for SWD, avoiding unnecessary upsampling on the
source patches according to the authors’ suggestion. Please check
the supplementary for more comparisons in high-resolution.

As shown in Figure 4, severe repetitions can be seen in the
output when excluding the occurrence penalty. After raising
its weight, the synthesized textures become more and more
natural-looking. We fix the weight of occurrence penalty as
0.05 for most experiments unless specified.

Figure 5 shows the comparison between using the con-
textual similarity with using the L2 distance in the Guided
Correspondence loss. The visual comparison may be subtle
to tell the difference. But the loss curves indicate that opti-
mizing the contextual similarity based loss also minimizes
the L2 distance between correspondences, whereas the op-
posite is not true. Besides to track the loss curve, we further
check the correspondence switches during the optimization.
For the two textures shown in Figure 5, the statistics shown
in Table 1 indicate that our contextual similarity based loss
is much more stable in correspondence search than using
the L2 distance, which explains why our loss leads to better
optimization for the target pixels.

4.2. Uncontrolled synthesis

The basic use of our method is running it for texture opti-
mization. Figure 6 shows a gallery of uncontrolled synthe-

Table 2. Quantitative comparison on uncontrolled synthesis. We
compute the Average Color Distance as the metric of synthesis
quality and investigate the user preference over 40 participants
with 2k questions. Note that 50% means comparable.

Self-tuning CNNMRF SWD SinGAN TexExp Ours
ColorDis 2.65 23.16 24.21 15.72 25.32 9.40
User Pref. 47.3% 33.1% 31.5% 9.57% 33.0% -

sis results produced by our method along with qualitative
comparison to results from several existing approaches, in-
cluding: Self-tuning texture optimization [18], the state-of-
the art classical method; CNNMRF [22], the baseline model
of our method; Sliced Wasserstein loss (SWD) [16], the
state-of-the-art statistic-based textural loss; SinGAN [30]
and Texture Expansion networks (TexExp) [40], two state-
of-the-art single-image GANs. Compared to CNNMRF, we
can see that our results are consistently sharper and have
fewer artifacts and, more importantly, fewer repetitions.
While SWD deals well with stochastic textures, it struggles
for textures with structures or large-scale texture elements;
e.g., we may notice many broken lines and distorted pat-
terns in rows 3, 5, and 7 of Figure 6. This is because SWD
does not consider the local coherence between target sam-
ples. As for SinGAN and TexExp, they both have border
issues and seemly fall into overfitting for some of the tex-
tures. In contrast, Self-tuning produces plausible results for
almost all examples. Our results are visually comparable
to theirs and only differ in some details. More results and
comparisons are contained in the supplementary.

Although there’s no canonical metric to evaluate the syn-
thesis quality, we still conducted two quantitative compar-
isons. First, we compute the Average Color Distance be-
tween the synthesized textures and the examples. We di-
vide the output into tiles of size 10×10 pixels. For each tile
we search exhaustively its nearest neighbor in the source
by the sum of squared color distance. The average color
distance of output tiles to their nearest neighbor is highly
correlated with the synthesis quality. As shown in Table 2,
Self-tuning has the minimal average color distance since it
directly copies source patches to composite the target tex-
ture. Our results also have small color distance, especially
given the significant improvement over CNNMRF, demon-
strating the sharpness advance and artifacts reduction again.

We then did a user study to examine the human percep-
tion of synthesis quality. Each time we show the participant
a random exemplar and two results: one from ours and the
other from the competing methods. The user is asked to
choose the better one or “comparable” otherwise. Each par-
ticipant needs to finish 50 questions (10 for each competing
method). 40 participants have been involved. We can see
from Table 2 that our method wins the comparisons against
the neural methods by a large margin, and performs slightly
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Figure 7. Our method can control the spatial distribution of textures according to user-specified annotation maps. CNNMRF [6] can do the
same job but produces much worse visual quality. The Sliced Wasserstein loss [16], however, struggles on this task as it requires a strong
bi-directional similarity between the source and target images, which may conflict with the controls specified by the user.

better than Self-tuning. However, Self-tuning uses a smart
initialization and an additional edge map as the guidance
for more coherent structures. Our method optimizes from
random noise without edge guidance involved.

4.3. Controlled synthesis

Our approach is naturally suitable to cooperate with var-
ious guidance channels for controlled synthesis. We experi-
ment with several types of guidance to demonstrate the flex-
ibility and controllability of our method.

Annotation control. First is the annotation map for
spatial control. A source label map is augmented with the
source texture to characterize the element classes. The out-
put layout is specified by a target label map. To achieve
spatial control, we set dGC

ij in Eq. (2) as the sum of pixel-
wise L0 distance between the patches on annotation maps:

dGC
ij =

1

k ∗ k

k∗k∑
x=0

||Gt(j)(x)−Gs(i)(x)||0, (7)

where k is patch size (7 in default). Gs(i)(x) and Gt(j)(x)
denote the corresponding pixels in the patch on annotation
maps. The weight λGC is set as 10.

As shown in Figure 7, our method precisely controls the
output distribution and plausibly preserves the exemplar’s
fine details. CNNMRF realizes spatial control by concate-
nating the annotation maps to deep features before distance
computation. Although controlled correctly, it produces
less appealing results with severe repetition and blurry ar-
tifacts. The Sliced Wasserstein loss [16] also concatenates

We used the implementation from Neural Doodles [6].

user annotations to deep features as spatial tags. To en-
sure a correct grouping of samples in feature space, these
tags are set strictly larger than other dimensions. However,
SWD cannot control the spatial distribution as expected.
The reason is SWD enforces a strong bi-directional sim-
ilarity, which may conflict with the requirements of user
annotations as the element portions could be very different
between the source and target label maps.

Progression and orientation control. Then we exper-
iment with two automatically extracted source guidance
channels proposed in [39]. One is a scalar progression map
to control the texture distribution continuously. The other
is a direction field to control the local dominant orientation
of texture patterns. As shown in Figure 8, our method can
achieve these two controls separately, or simultaneously.
For separate control, we realize progression control by set-
ting dGC

ij in Eq. (2) as the sum of squared L2 distance be-
tween patches on the progression maps, i.e.,

dGC
ij =

1

k ∗ k

k∗k∑
x=0

||Gt(j)(x)−Gs(i)(x)||22. (8)

While for orientation control, since now Gs(i)(x),
Gt(j)(x) are 2D vectors, we compute the cosine distance:

dGC
ij =

1

k ∗ k

k∗k∑
x=0

(
1− |Gt(j)(x) ·Gs(i)(x)|
|Gt(j)(x)| · |Gs(i)(x)|

)
. (9)

For separate control, we set λGC as 10 for progression,
and 5 for orientation. For achieving two controls simulta-
neously, we sum up the two distances above and set their
weights as 10 and 1. Since there’s no neural methods devel-
oped for these two controls, we compare our method to [39].
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Figure 8. We can realize controls of progression (top), orientation
(middle), and two simultaneously (bottom) for inhomogeneous
textures as [39] does. Due to the limit of patch augmentation, our
results are not smooth enough for the continuous changes in orien-
tation control. But note that [39] needs almost 90 minutes in two
controls, while our method requires only 20 minutes.

From Figure 8, we can see our results are completely com-
parable to those of [39]. One may notice that the orientation
changes in our results are not as smooth as theirs. This is be-
cause we only use eight orientation augmentations for each
source patch as depicted in Sec. 3.3. In contrast, [39] can
search the orientation space in any resolution via general-
ized PatchMatch [2], but needs long-time optimization.

4.4. Real-time synthesis

Beyond texture optimization, the proposed Guided Cor-
respondence loss can serve as a general textural loss in train-
ing generative models. Once trained, new textures can be
synthesized in real-time by a single forward pass. Follow-
ing [16], we first tried to train TextureNets [34] on a given
stationary texture by replacing the Gram loss with our new
loss function. We keep all the settings default as we set
for texture optimization, except the multi-resolution strat-
egy. Figure 9 shows a few examples. We can see our loss
performs comparable with the Sliced Wasserstein loss.

We then tried a more challenging task that uses the pro-
posed loss to train generative models for real-time con-
trolled synthesis. We take SPADE [27] as the backbone.
Conditions such as progression maps or orientation fields
are gradually fed into SPADE generator to modulate fea-
ture activations for output control. Take progression con-
trol as an example. The challenge here is that the net-
work must have a strong generalization ability, given that
the user-specified target is probably very different from the
source progression. To address that, we separate the train-
ing into two stages. In the first stage, we train the model

Figure 9. Given an example texture, we train TextureNets [34]
either using the Sliced Wasserstein loss (LSW ) or the proposed
Guided Correspondence loss (LGC ), respectively, to update the
weights. The network learns to generate textures of size 256×256
during training and produces 512×512p images for inference. Vi-
sually comparable results are produced by the two losses.

Figure 10. Utilizing the Guided Correspondence loss to train
SPADE [27], a conditional generative model, for real-time con-
trolled synthesis. We can see LcGAN+LGC performs best for pro-
gression control, while the other options lead to degraded results.

to learn how to reconstruct the source textures locally from
cropped source progression maps. In the second stage, we
randomly generate a massive number of target progressions
as data augmentation. Since now the synthesized image has
no “ground truth”, we complement the Guided Correspon-
dence loss (LGC) to the conditional-GAN loss (LcGAN ).
As shown in Figure 10, without LGC , the conditional GAN
cannot generate correct texture patterns. If we remove the
discriminator (i.e., use LGC only), the model suffers from
degeneration of fine details. The combination of LcGAN

and LGC achieves the best result. We also tried to replace
LGC with the Sliced Wasserstein loss (LSW ) in the sec-
ond stage but got degraded results. Figure 1 shows two
more examples of real-time synthesis, respectively, on pro-
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Figure 11. Single-image editing based on inversion synthesis of [36] . LClass stands for the inversion using classification error. As shown,
it cannot guarantee plausible local textures. Using the Guided Correspondence loss only (LGC ) produces high-quality textures but with
semantic errors, such as the incomplete fish and the butterfly wing inside the flower. The combination LClass+LGC leads to the most
plausible results both in semantic content and fine textures. Using the Sliced Wasserstein loss, however, cannot achieve the same effect.

gression and orientation control, which are trained with the
same settings. For more details about how we train SPADE
and more results, please refer to the supplementary.

4.5. Image editing

As shown in Figure 12, our method can be easily ap-
plied for texture transfer and image inpainting. For the for-
mer one, we replace the Gram loss in [13] with our Guided
Correspondence loss, and balance it with the content loss
by 1:10. For image inpainting, we just need to constrain
the texture optimization to fill the holes only using source
patches from the remaining area of the same image.

A more interesting while challenging task is single-
image editing. Recent single-image models [10, 14, 30] can
be applied for editing tasks by maintaining the patch distri-
bution. However, the semantic correctness of output is guar-
anteed. Recently, Wang et al. [36] proposed IMAGINE, an
inversion model that uses classification error from a pre-
trained ResNet [15] to regularize the results’ semantic info.
But it cannot produce high-quality textures. To address that,
we add the Guided Correspondence loss to the inversion. As
shown in Figure 11, the combination of LClass and LGC

(with weights 1:10) leads to the most plausible editing both
in semantic content and fine textures.

5. Conclusion
We have improved the CNNMRF model with a Guided

Correspondence Distance that takes the matching diver-
sity and additional guidance channels into account, and

Figure 12. Our method can be easily extended for texture transfer
(left) and image inpainting (right).

a Guided Correspondence Loss that better optimizes out-
put patches. Intensive experiments with high-quality tex-
ture synthesis show that our method is comparable to tra-
ditional MRF texture optimization and surpasses existing
neural methods, especially in controlled scenarios. The ver-
satility of the proposed loss is demonstrated in training gen-
erative networks and single-image editing.
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