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Abstract

A key challenge for LiDAR-based 3D object detection is

to capture sufficient features from large scale 3D scenes es-

pecially for distant or/and occluded objects. Albeit recent

efforts made by Transformers with the long sequence mod-

eling capability, they fail to properly balance the accuracy

and efficiency, suffering from inadequate receptive fields or

coarse-grained holistic correlations. In this paper, we pro-

pose an Octree-based Transformer, named OcTr, to address

this issue. It first constructs a dynamic octree on the hier-

archical feature pyramid through conducting self-attention

on the top level and then recursively propagates to the level

below restricted by the octants, which captures rich global

context in a coarse-to-fine manner while maintaining the

computational complexity under control. Furthermore, for

enhanced foreground perception, we propose a hybrid po-

sitional embedding, composed of the semantic-aware po-

sitional embedding and attention mask, to fully exploit se-

mantic and geometry clues. Extensive experiments are con-

ducted on the Waymo Open Dataset and KITTI Dataset, and

OcTr reaches newly state-of-the-art results.

1. Introduction

3D object detection from point clouds has received ex-

tensive attention during the past decade for its ability to pro-

vide accurate and stable recognition and localization in au-

tonomous driving perception systems. In this task, feature

learning plays a very fundamental and crucial role; yet it is

rather challenging due to not only the disordered and sparse

nature of data sampling, but also to insufficient acquisition

under occlusion or at a distance. To address this issue, many

methods have been proposed, which can be taxonomized

into two major classes, i.e. grid-based and point-based. The

former first regularize point clouds into multi-view images

or voxels and then apply 2D or 3D CNNs to build shape rep-

*indicates the corresponding author.
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Figure 1. Illustration of three sparsification strategies of attention

matrices. Fixed pattern (1) narrows receptive fields and set proxy

(2) discards elaborate correlations. The proposed octree construc-

tion (3) keeps the global receptive field in a coarse-grained manner

while maintaining fine-grained representations.

resentations [4, 52], while the latter directly conduct MLP

based networks such as PointNet++ [33] and DGCNN [50]

on original points for geometry description [32, 40, 42, 60].

Unfortunately, they fail to capture necessary context infor-

mation through the small receptive fields in the deep mod-

els, leading to limited results.

Witnessing the recent success of Transformers in NLP,

many studies have investigated and extended such architec-

tures for 3D vision [24, 29, 58, 61]. Transformers are re-

puted to model long-range dependencies, delivering global

receptive fields, and to be suitable for scattered inputs of ar-

bitrary sizes. Meanwhile, in contrast to those static weights

that are learned in convolutions, Transformers dynamically

aggregate the input features according to the relationships
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between tokens. Regarding the case in 3D object detection,

compared to point-based Transformers [11,61], voxel-based

ones show the superiority in efficiency. However, they tend

to suffer heavy computations when dealing with large scale

scenes because of the quadratic complexity of Transform-

ers, with the underlying dilemma between the grid size and

the grid amount in voxelization. Taking the KITTI dataset

as an example, it is unrealistic for Transformers to operate

on the feature map with the spatial shape of 200× 176× 5,

which is commonly adopted in most of the detection heads

[38, 46, 52, 55].

More recently, there have appeared an influx of efficient

self-attention model variants that attempt to tackle long se-

quences as input. They generally sparsify the attention ma-

trix by fixed patterns [7, 23, 34], learned patterns [21, 45] or

a combination of them [1, 56]. Fixed patterns chunk the in-

put sequence into blocks of local windows or dilation win-

dows, whilst learned patterns determine a notion of token

relevance and eliminate or cluster outliers. Specific to 3D

object detection from point clouds, VoTr [24] modifies self-

attention with pre-defined patterns including local windows

and stride dilation ones in a sparse query manner, and the di-

lation mechanism enlarges the receptive field by sampling

attending tokens in a radius. SST [9] splits input tokens into

non-overlapping patterns in a block-wise way and enables

window shifting to capture cross-window correlation. De-

spite some improvements reported, they both only achieve

bigger local receptive fields rather than the expected global

ones, and computations still increase rapidly with the ex-

pansion of receptive fields.

Another alternative on self-attention is to take advantage

of a proxy memory bank which has the access to the entire

sequence tokens [1, 2, 56]. By using a small number of in-

duced proxies to compress the whole sequence, it diffuses

the global context efficiently. VoxSet [12] adapts Set Trans-

former [19] to 3D object detection and exploits an induced

set to model a set-to-set point cloud translation. With the

help of the compressed global proxies and Conv-FFN, it ob-

tains a global receptive field; nevertheless, as they admit, it

is sub-optimal to set only a few latent codes as proxies for a

large 3D scene, prone to impairing the representation of dif-

ferent point cloud structures and their correlations. There-

fore, there remains space for a stronger solution.

In this paper, we present a novel Transformer network,

namely Octree-based Transformer (OcTr), for 3D object

detection. We firstly devise an octree-based learnable sparse

pattern, i.e. OctAttn, which meticulously and efficiently en-

codes point clouds of scenes as shown in Fig. 1. The Oc-

tAttn module constructs a feature pyramid by gathering and

applies self-attention to the top level of the feature pyramid

to select the most relevant tokens, which are deemed as the

octants to be divided in the subsequent. When propagating

to the level below, the key/value inputs are restricted by the

octants from the top. Through recursively conducting this

process, OctAttn captures rich global context features by a

global receptive field in a coarse-to-fine manner while re-

ducing the quadratic complexity of vanilla self-attention to

the linear complexity. In addition, for better foreground per-

ception, we propose a hybrid positional embedding, which

consists of the semantic-aware positional embedding and at-

tention mask, to fully exploit geometry and semantic clues.

Thanks to the designs above, OcTr delivers a competitive

trade-off between accuracy and efficiency.

Our contribution is summarized in three-fold:

1. We propose OcTr for voxel-based 3D object detection,

which efficiently learns enhanced representations by a

global receptive field with rich contexts.

2. We propose an octree-based learnable attention sparsi-

fication scheme (OctAttn) and a hybrid positional em-

bedding combining geometry and semantics.

3. We carry out experiments on the Waymo Open Dataset

(WOD) and the KITTI dataset and report state-of-the-

art performance with significant gains on far objects.

2. Related Work

2.1. 3D Object Detection from Point Clouds

There exist two prevailing point-cloud representations in

3D object detection, i.e. point-based and voxel-based.

The point-based methods [31,40,42,60] directly process

raw point clouds in the irregular 3D space. As a pioneering

attempt, F-Pointnet [32] employs instance segmentation in

frustums to extract proposals. VoteNet [31] clusters objects

from the surface in a deep Hough voting manner. PointR-

CNN [40] generates 3D RoIs with foreground segmentation

and applies an RCNN-style [35] two-stage refinement. Dif-

ferent from PointRCNN, some existing methods [3, 53, 59]

build a lightweight and efficient single stage 3D object de-

tection framework. However, the current point-based meth-

ods still suffer from a large computation burden, which is

not suitable for large-scale point cloud scenes.

The voxel-based ones [4,6,13,52,55,62,63] conduct vox-

elization on entire point clouds to construct regular grids.

VoxelNet [63] exploits the voxel feature encoding layer with

3D convolutions to extract the feature of each voxel. SEC-

OND [52] improves the model with sparse 3D convolutions,

significantly increasing the speed of both training and infer-

ence. Pointpillars [18] compacts point clouds into vertical

columns and encodes them with 2D CNNs. Several recent

methods [13, 38, 54] also explore merging point-based and

voxel-based networks into one framework for complemen-

tary features from different representations of point clouds.

Unfortunately, they all use small convolution kernels with

limited receptive fields, which are not competent to capture

global context that is important to 3D detection.
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Figure 2. Framework overview of the proposed Octree-based Transformer (OcTr) model.

2.2. Transformer in 3D Vision

Inspired by the great success of the self-attention mech-

anism in NLP [47] and CV [8, 23], Transformers have been

adapted to 3D vision for their ability to capture long-range

dependencies. For instance, Point Transformer [61] brings

in vector attention that modulates individual feature chan-

nels for point cloud classification and segmentation; PCT

[11] presents offset-attention with the implicit Laplace op-

erator and normalization refinement which is more suitable

for point cloud learning. To address the high latency, some

methods [30, 57] adopt voxels or patches for acceleration.

For 3D detection, 3DETR [28] treats and predicts bound-

ing boxes as sequences in an end-to-end manner. CT3D [37]

leverages a channel-wise Transformer architecture to refine

the RoI head. To learn context-aware representations, some

studies [9,12,24,29] introduce Transformers into a point- or

voxel-based encoder. Pointformer [29] stacks local, global

and local-global Transformers based on the point-based en-

coder; VoTr [24] exploits dilated attention with fast query to

enlarge receptive fields; VoxSet [12] builds an induced point

set as proxies of global context and applies point-to-point

translation using voxels as mediums; and SST [9] embraces

single strides without down-sampling and conducts window

attention combining with its shifted version. Even though

they all expand receptive fields by diverse Transformer vari-

ants, global context is not adequately involved or efficiently

utilized. In contrast, we propose Octree-based Transformer

(OcTr) for voxel-based 3D object detection, achieving a true

global receptive field that balances accuracy and efficiency.

3. Method

3.1. Framework

This sub-section describes the overall framework of the

proposed OcTr model as shown in Fig. 2. Specifically, as

inspired by [51], we first voxelize the point cloud into reg-

ular grids and adopt the sparse 3D convolution for patch

embedding, where the girds are regarded as the “tokens”

and are passed through the Octree Transformer Blocks

(OTB). Compared with the vanilla Transformer block, the

self-attention module is substituted by the proposed octree-

attention OctAttn, which encodes global context in a more

efficient way. After applying a hybrid semantic embedding

on multi-scale features, we sequentially stack two OTBs,

tailed by a down-sampling layer. The voxel features are

then projected into the BEV view by point-wise convolu-

tions and are passed through a multi-scale dense 2D back-

bone. Ultimately, an anchor-based or anchor-free RPN head

is used for 3D proposal generation, and the RoI head is op-

tional for refinement. Note that our OcTr can be adopted for

most of the voxel-based detection frameworks by simply al-

tering 3D backbones.

3.2. Self­attention Revisit

According to [47], Transformer encoder blocks typically

include a multi-head self-attention (MHSA) mechanism, a

feed-forward network (FFN), a normalization function, and

the residual connections [14]. Given an input sequence X ,

the principle part of MHSA is formulated as

MHSA(X ) =

H∑

h=1

Wh [σ(
XWqW

T
k XT

√
d

) · XWv ], (1)

where h denotes the index of the head, and H , σ, W and d
are the amount of heads, softmax function, learnable weight

and feature dimension, respectively. The subscripts of q, k
and v indicate query, key and value. The inputs and outputs

of the MHSA module are connected by residual connectors

and normalization layers. The MLP-based FFN connects its

inputs/outputs in a similar manner.

3.3. Octree Attention

An octree is a multi-scale asymmetric and efficient rep-

resentation for unstructured 3D data such as point clouds.

To build an octree for the input point cloud, we recursively

sub-divide it in the breadth-first order until the pre-defined

octree depth is reached. Whether to sub-divide an octant is

determined by the occupancy [36, 48], the surface approxi-

mation [44, 49] or a learning algorithm [26].
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Figure 3. Octree Attention (OctAttn). The OctAttn module constructs a dynamic octree on a hierarchical feature pyramid with a partitive

criterion of attention scores. For illustration, an octree representation is individually pruned from the pyramid for each grid in F . For

example, the blue grids are the divided octants for the grids with stars. The detailed structures of OcTr-Top and OcTr-Base are shown at

the right side.

Despite of being resource-friendly, the octree represen-

tation is discrete and non-differentiable, which motivates

us to ameliorate previous cumbersome pre-processing di-

vision by introducing a novel octree-based attention mech-

anism.As depicted in [21, 45], the attention matrices calcu-

lated by self-attention imply the relevance of input tokens

and guide feature selection. We thus prune the dense atten-

tion matrices of the multi-scale feature pyramid to sparse

octree attention in an adaptive and parallel manner, namely

OctAttn.

As shown in Fig. 3, let the output feature map and coor-

dinates of convolutional patch embedding be F0 ∈ R
M×d

and I0 ∈ R
M×3; M and d indicate the amount of the non-

empty grids in a batch and feature dimension, respectively.

Based on F0, we generate a multi-scale feature pyramid as

C = {Fn, In}N , n ∈ [0, N), (2)

where

In = ⌊ I0
2n

⌋, Fn = BN(Smax(F0, In)), (3)

n, N , BN and Smax are the index of the level of the multi-

scale feature pyramid, the height of the pyramid, batch nor-

malization [16] and the max scatter function, respectively.

The pruning begins from the top of the pyramid. The

top feature map, i.e. FN−1, is reorganized to dense input

tokens F̄N−1 ∈ R
B×mN−1×d, where B and mN−1 are

the batch size and maximum number of non-empty vox-

els per batch, respectively. The voxel is padded with 0

if it is empty. As shown in Eq. (4), the MHSA takes

F̄N−1 as input and outputs the attention score matrices

AN−1 ∈ R
B×mN−1×mN−1 and attentive features F̄

′

N−1 as

AN−1 =

H∑

h=1

σ(
F̄N−1WqW

T
k F̄T

N−1√
d

),

F̄
′

N−1 =

H∑

h=1

Wh[σ(
F̄N−1WqW

T
k F̄T

N−1√
d

) · F̄N−1Wv ].

(4)

For each query token, we select the topk attention scores as

its most relevant token group in a row-wise way, denoted by

ON−1 ∈ Z
B×mN−1×k.

When propagating from top to bottom through the pyra-

mid and reaching the n-th level, we uniformly sample lim-

ited K attending octants from the selected regions with fea-

tures in F̄n and topk indices in On+1. We conduct cross-

attention instead of self-attention with the dense query se-

quence of the n-th level, Q̄n ∈ R
B×mn×d, and the compact

sampled key/value sequence of the n-th level, K̄n/V̄n ∈
R

B×mn×K×d , which is formulated as below

An =

H∑

h=1

σ(
Q̄nWqW

T
k K̄T

n√
d

),

F̄
′

n =
H∑

h=1

Wh[σ(
Q̄nWqW

T
k K̄T

n√
d

) · V̄nWv ].

(5)

Backing off the sampling, this can be treated as an attention

mask on self-attention matrices. The above process is run

recursively until reaching the bottom level of the pyramid.

Furthermore, as the topk selection is a hard decision that

disables gradient back-propagation, we adopt the Gumbel-

topk technique [17] to perform a differentiable and contin-

uous approximation by replacing the vanilla topk selection.

5169



The normalized scores used in topk are derived from the

distribution in Eq. (6) during training, maintaining the orig-

inal ones during inference. g, τ , mn denote the noise sam-

pled from the Gumbel distribution, the temperature and the

amount of non-empty voxels in layer n, respectively.

pi =
exp((Ai

n + gi)/τ)
mn∑
i

exp((Ai
n + gi)/τ)

∈ [0, 1].
(6)

In order to leverage the multi-scale features in distinct

spatial shapes, we concatenate them by upsampling, which

is implemented by inverse indices of the scatter function,

followed by a linear projection layer for aligning the input

feature dimension.

As the local context is generally critical for object de-

tection, inspired by [7], we additionally introduce a Locally

enhanced Positional Embedding (LePE) which enables lo-

cal neighbor interactions on the value sequence. With sub-

manifold sparse convolutions, we replace the residual con-

nections in the attention mechanism with LePE.

Finally, OTB is formulated as follows

F̃ = FC({F ′

N−1|F
′

N−2|...|F
′

0}) + LePE(F0),

F̃
′

= BN(FFN(F̃ )) + F̃ ,
(7)

where F
′

n ∈ R
m0×d denotes the compact tensor of the up-

sampled F̄
′

n, | indicates concatenation, and FC denotes the

fully-connected layer.

Besides, we analyze the time complexity of the octree

attention as below

O((
M

ωN−1
)2 +

N−2∑

n=0

KM

ωn
)

=O((
M

ωN−1
)2 +

ω

ω − 1
KM(1− ω1−N )),

(8)

where ω is the average down-sampling ratio in the sparse

voxel representation.

3.4. Semantic Positional Embedding

Due to the large proportion of background grids in point

clouds, the attention matrices are dominated by background

grid pairs, leading to a sub-optimal solution. To fully lever-

age the local 3D shape patterns and original voxel coordi-

nates, we propose a hybrid positional embedding to capture

both the geometry and semantic clues as displayed in Fig. 4.

Specifically, we first segment foreground grids using the

supervision from the ground truth. Segmentation scores are

predicted by a sub-manifold sparse convolution branch with

a sigmoid function; and the focal loss [22] is applied to bal-

ance the foreground and background.

SubM

𝝈
Segmentation Scores

FL Loss

Ground Truth

Training

C

∼

+
coordinates

Linear

+F

SAPE

SAM

𝝈
C+×

SA

Sigmoid

Concat

Add

Hadamard 

Production

Gather

.

>𝜹𝟏 >𝜹𝟐
Mask

. Dot Production

Softmax

Figure 4. Illustration of semantic positional embedding, where an

extra foreground segmentation branch is adopted with supervision

and semantic scores are concatenated as absolute positional em-

beddings and serve as relative masks on attention matrices.

We concatenate the center coordinate (x, y, z) and the

semantic score with the feature f in a grid-wise manner,

followed by a linear projection without the bias as below

SAPE(X) = FCd+4→d({x, y, z, score|f})
= FCd→d(f) + FC4→d(x, y, z, score).

(9)

Eq. (9) is equivalent to the absolute positional embedding

(APE), thus being denoted as the Semantic APE (SAPE).

The scatter function such as the mean, max and batch nor-

malization naturally provide position and semantic informa-

tion of the downsampled voxel grids, making it applicable

for the multi-scale feature pyramid.

Besides the semantic clues implicitly used in SAPE, we

employ the Semantic Attention Mask (SAM) based on the

segmentation scores and we mask the attention matrices to

address correlations between inferior queries and superior

keys in a simple yet effective way. Given a scalar attention

matrix A ∈ R
Nq×Nk before softmax and the segmentation

scores of query and key/value Sq ∈ R
Nq and Sk ∈ R

Nk ,

we formulate the attention matrix after softmax as

A′

= σ(−Γ · [1− (Sq ≥ δq)(Sk ≥ δk)
T ] +A), (10)

where Nq , δq , Nk, δk, σ and Γ are the length and thresh-

old of the query sequence, length and threshold of the key

sequence, softmax function and infinite scalar, respectively.

Finally, we broadcast the semantic mask A′

to all heads.

4. Experiments

We evaluate the proposed OcTr network on the Waymo

Open Dataset (WOD) and KITTI dataset, both of which are

popular in 3D object detection. In this section, we introduce

the benchmarks and implementation details, make compar-

ison to the previous state-of-the-art counterparts, and ablate

the key designs of OcTr.
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Model
Vehicle (L1) Vehicle (L2) Pedes. (L1) Pedes. (L2) Cyclist (L1) Cyclist (L2)

mAP/mAPH mAP/mAPH mAP/mAPH mAP/mAPH mAP/mAPH mAP/mAPH

SECOND [52] 70.96/70.34 62.58/62.02 65.23/54.24 57.22/47.49 57.13/55.62 54.97/53.53

PointPillar [18] 70.43/69.83 62.18/61.64 66.21/46.32 58.18/40.64 55.26/51.75 53.18/49.80

PartA2Net [41] 74.82/74.32 65.88/65.42 71.76/63.64 62.53/55.30 67.35/66.15 65.05/63.89

PVRCNN [38] 75.41/74.74 67.44/66.80 71.98/61.24 63.70/53.95 65.88/64.25 63.39/61.82

CenterPoint [55] 71.33/70.76 63.16/62.65 72.09/65.49 64.27/58.23 68.68/67.39 66.11/64.87

LiDAR-RCNN [20] 73.5/73.0 64.7/64.2 71.2/58.7 63.1/51.7 68.6/66.9 66.1/64.4

Voxel-RCNN [6] 75.59/- 66.59/- -/- -/- -/- -/-

PVRCNN++ [39] 77.82/77.32 69.07/68.62 77.99/71.36 69.92/63.74 71.80/70.71 69.31/68.26

SST† [9] 76.22/75.79 68.04/67.64 81.39/74.05 72.82/65.93 -/- -/-

PDV [15] 76.85/76.33 69.30/68.81 74.19/65.96 65.85/58.28 68.71/67.55 66.49/65.36

Ours 78.12/77.63 69.79/69.34 80.76/74.39 72.48/66.52 72.58/71.50 69.93/68.90

Table 1. Performance on WOD with 202 validation sequences for vehicle (IoU=0.7), pedestrian (IoU=0.5) and cyclist (IoU=0.5), using

20% samples for training. All the results are achieved by the models simultaneously trained for 3 classes on single frames, except the ones

of the model marked by †, which is only trained for a single class. Refer to Supp. B for the results trained with 100% samples.

Model
mAP3D (L1)@Vehicle

Overall 0-30m 30m-50m 50m-inf

PV-RCNN [38] 70.30 91.92 69.21 42.17

Voxel-RCNN [6] 75.59 92.49 74.09 53.15

VoTR-TSD [24] 74.95 92.28 73.36 51.09

CT3D [37] 76.30 92.51 75.07 55.36

Pyramid PV [25] 76.30 92.67 74.91 54.54

PDV [15] 76.85 93.13 75.49 54.75

VoxSeT [12] 77.82 92.78 77.21 54.41

Ours 78.82 92.99 77.66 58.02

Model
mAP3D (L2)@Vehicle

Overall 0-30m 30-50m 50m-inf

PV-RCNN [38] 65.36 91.58 65.13 36.46

Voxel-RCNN [6] 66.59 91.74 67.89 40.80

CT3D [37] 69.04 91.76 68.93 42.60

PDV [15] 69.30 92.41 69.36 42.16

VoxSeT [12] 70.21 92.05 70.10 43.20

Ours 70.50 91.78 71.28 45.46

Table 2. Results on the WOD validation set in different ranges for

vehicle detection.

4.1. Datasets and Implementation Details

WOD [43] is a large dataset of autonomous driving scenes.

It totally contains 798 training sequences with around 160K

LiDAR samples and 202 validation sequences with 40K Li-

DAR samples, with the mean Average Precision (mAP) and

mAP weighted by heading accuracy (mAPH) as evaluation

metrics. There are also two levels of difficulty describing

the sparsity in each bounding box, and LEVEL 1 (L1) and

LEVEL 2 (L2) denote more than 5 points and 1-5 points,

respectively. For detection performance along distance, it

provides mAP/mAPH on 0-30m, 30m-50m and 50m-inf.

KITTI [10] is a widely used benchmark for 3D object de-

tection, which includes 3,712, 3,769 and 7,518 frames for

training, validation and testing, respectively. mAP is used

as the official metric with 11 recall points for the val set and

40 for the test set, and the IoU thresholds are set to 0.7, 0.5,

and 0.5 for car, pedestrian and cyclist. We use the official

setting in all experiments.

Implementation Details The total loss for optimizing the

overall two-stage detection is formulated as Eq. (11), where

Lrcnn can be omitted if there is no RoI head. Refer to Supp.

A.1 for more information.

Ldet = Lrpn + Lrcnn + Lseg. (11)

4.2. Results on WOD

The results on the validation set are displayed in Tab. 1,

and it can be seen that we achieve new state-of-the-art per-

formance on all the three classes. In particular, for pedes-

trian, we outperform the baseline model PV-RCNN++ [39]

by 2.77%/2.56% in terms of both L1 and L2 mAP, which in-

dicates the effectiveness of the proposed model in handling

hard examples.

In comparison with other Transformer-based models, we

focus on vehicle since the counterparts only report the per-

formance on it. As Tab. 2 shows, our OcTr achieves the best

mAP among all these convolution- and Transformer-based

backbones. It also outperforms the Transformer-based de-

tection head network CT3D [37] by 2.52% and 1.46% in

L1 and L2 mAP. Regarding the accuracies at different dis-

tances, OcTr ranks the first place in the range of 30m-50m

and 50m-inf, which surpasses the previous best by 0.45%,

2.66% in L1 mAP and 1.18%, 2.26% in L2 mAP respec-

tively. It clearly illustrates that OcTr has the advantage in

capturing long-range fine-grained context, which facilitates

dealing with objects far away. Indeed, far objects gener-

ally have much more sparse points than near ones and heav-

ily rely on context for detection, thus benefiting more from

OcTr. Refer to Fig. 5 for visualization.
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Model
mAP3D@Car mAP3D@Pedestrian mAP3D@Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

SECOND [52] 88.61 78.62 77.22 56.55 52.98 47.73 80.58 67.15 63.10

PointPillars [18] 88.46 77.28 74.65 57.75 52.29 47.90 80.04 62.61 59.52

VoTR [24] 87.86 78.27 76.93 - - - - - -

VoxSeT [12] 88.45 78.48 77.07 60.62 54.74 50.39 84.07 68.11 65.14

Ours 88.43 78.57 77.16 61.49 57.17 52.35 85.29 70.44 66.17

Table 3. Results of the single-stage models on the KITTI val set. All the models adopt the same anchor-based region proposal network as

the detection head. “Mod.” denotes the moderate difficulty level.

Model
mAP3D@Car on test mAP3D@Car on val

Easy Mod. Hard Mean Easy Mod. Hard Mean

SECOND [52] 83.34 72.55 65.82 73.90 88.61 78.62 77.22 81.48

PointPillars [18] 82.58 74.31 68.99 75.29 86.62 76.06 68.91 77.20

STD [54] 87.95 79.71 75.09 80.92 89.70 79.80 79.30 82.93

SA-SSD [13] 88.75 79.79 74.16 80.90 90.15 79.91 78.78 82.95

3DSSD [53] 88.36 79.57 74.55 80.83 89.71 79.45 78.67 82.61

PV-RCNN [38] 90.25 81.43 76.82 82.83 89.35 83.69 78.70 83.91

Voxel-RCNN [6] 90.90 81.62 77.06 83.19 89.41 84.52 78.93 84.29

CT3D [37] 87.83 81.77 77.16 82.25 89.54 86.06 78.99 84.86

VoTR-TSD [24] 89.90 82.09 79.14 83.71 89.04 84.04 78.68 83.92

VoxSeT [12] 88.53 82.06 77.46 82.68 89.21 86.71 78.56 84.83

Focals Conv [4] 90.55 82.28 77.59 83.47 89.52 84.93 79.18 84.54

Ours 90.88 82.64 77.77 83.76 89.80 86.97 79.28 85.35

Table 4. Comparison to the state-of-the-art models on the KITTI test and val sets. “Mod.” and “Mean” denote the moderate difficulty level

and the average mAP for the three levels, respectively. The best results are bolded and the second best ones are underlined.

Detector Veh. mAP (L1/L2) Pedes. mAP (L1/L2)

SECOND [52] 70.96/62.58 65.23/57.22

Ours 73.28/65.05 68.08/60.36

PV-RCNN [38] 75.41/67.44 71.98/63.70

Ours 76.77/68.31 73.22/64.30

PV-RCNN++ [39] 77.82/69.07 77.99/69.92

Ours 78.01/69.60 80.75/72.45

Table 5. Results of extensions to different representative detectors

on the WOD validation set.

4.3. Results on KITTI

The performance of the single-stage detectors is shown

in Tab. 3. We take SECOND [52], a commonly used anchor-

based model, as the baseline, and compare OcTr with an-

other two advanced Transformer-based variants VoxSet [12]

and VoTR [24]. We can see that OcTr achieves comparable

results with SECOND and VoxSeT in car, while it signifi-

cantly outperforms all the counterparts and reports the best

performance both in pedestrian and cyclist. Benefiting from

the large receptive field and fine-grained global context, it

exceeds SECOND by 4.19% and 3.29% for pedestrians and

cyclists respectively, where hard samples often appear.

We summarize the performance of the two-stage mod-

els on the KITTI test set in Tab. 4. With the help of the

Attention Veh. mAP (L1/L2) Pedes. mAP (L1/L2)

Ours (OctAttn) 73.3/65.1 68.1/60.4

Performer [5] 71.4/63.6 65.7/57.9

ACT [27] 71.7/63.5 64.3/56.1

VoTr [24] 69.4/61.5 65.0/57.0

Nearest K 68.2/59.8 64.9/56.7

Table 6. Ablation on various attention mechanisms and sampling

patterns on the WOD validation set.

multi-scale backbone features and rich global context, OcTr

reaches a leading mAP in car at the moderate level, surpass-

ing the state-of-the-art Focals-Conv [4] by 0.36%. We also

evaluate OcTr on the KITTI val set, and OcTr again delivers

the best performance in the average score, outperforming

the second-best by 0.49%. One can observe that we rank

the best or the second best in all the cases.

4.4. Ablation study

Scalability on various detectors As summarized in Tab. 5,

we conduct experiments on three different and representa-

tive detectors, SECOND (single-stage, anchor-based), PV-

RCNN (two-stage, anchor-based) and PV-RCNN++ (two-

stage, anchor-free). Regardless of the number of stages or

region proposal network, we acquire sound improvements
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LEPE SAPE SAM Veh. mAP (L1/L2) Pedes. mAP (L1/L2)

71.35/63.30 65.75/57.89

✓ 72.34/64.32 66.56/58.62

✓ ✓ 72.64/64.46 66.62/58.83

✓ ✓ 72.86/64.40 67.79/59.90

✓ ✓ ✓ 73.28/65.05 68.08/60.36

Table 7. Ablation on semantic positional embedding on the WOD

validation set.

topk number Veh. mAP (L1/L2) Pedes. mAP (L1/L2)

1 70.38/62.20 64.19/56.43

4 72.58/64.42 66.21/58.42

8 73.28/65.05 68.08/60.36

16 73.25/65.01 67.89/60.10

Table 8. Results of different k values on the WOD validation set.

Method #Param. (M) Latency (ms) Memory (GB)

SECOND [52] 5.3 48 2.3

VoTR-SSD [24] 4.8 67 3.0

VoxSeT-SSD [12] 3.0 37 3.6

OcTr-SSD 2.9 64 2.5

Table 9. Resource costs of different backbones with single-stage

detectors on the KITTI dataset, test on GTX2080Ti.

compared to the baselines of the sparse convolution back-

bones, highlighting its scalability.

Ablation on OctAttn We carry out additional experiments

to make apple-to-apple comparison with several represen-

tative linear Transformer methods, including Performer [5]

(kernel-based linear attention), ACT [27] (cluster-based lin-

ear attention), VoTr [24] (fixed patterns) and the Nearest-K
strategy. Tab. 6 lists the results, and our OctAttn clearly per-

forms the best, showing its ability.

Ablation on semantic positional embedding We individ-

ually evaluate the contributions of LePE, SAPE and SAM

with SECOND as the baseline detector on WOD in Tab. 7.

By incorporating LePE, the L1/L2 performance is boosted

by 0.99%/1.02% and 0.81%/0.73% on vehicle and pedes-

trian, illustrating its necessity. Furthermore, we separately

verify the validity of SAPE and SAM. With semantic clues,

we observe that SAPE increases by 0.3% L1 mAP on ve-

hicle, while SAM provides an L1/L2 mAP improvement of

0.52%/0.08% and 1.23%/1.28% on vehicle and pedestrian.

Finally, we simultaneously apply SAPE and SAM and con-

struct the full model of OcTr, which gains 0.94%/0.73% and

1.52%/1.74% L1/L2 mAP on vehicle and pedestrian, show-

ing its impact.

Influence by topk Tab. 8 shows the performance of OcTr

with various values of k. As we can see, the performance

improves when k becomes larger but quickly saturates. Due

to the redundancy of the scanned scenes, we argue that only

a few tokens with high relevance need to be subdivided to

embrace fine-grained features.

Analysis on model complexity We compare OcTr with two

recent Transformer-based models in terms of resource cost

by keeping the same detection head. Tab. 9 shows that with

the learnable octree attention mechanism, OcTr consistently

maintains less model parameters and less memory occupan-

cies than the counterparts. Regarding the inference speed,

VoxSeT runs faster, but it should be noted that VoxSeT in-

puts with pillars which discard the height dimension, lead-

ing to inferior results. As for VoTR, we deliver a mild im-

provement in efficiency while bringing a large gain in per-

formance.

Figure 5. Visualization of results by OcTr on the WOD validation

split. Blue/red indicates predicted/ground-truth bounding boxes

5. Conclusion

This paper proposes a novel voxel-based approach to 3D

object detection, namely OcTr. It aims to balance the fine-

grained global representation and efficiency with acceptable

resource costs. To this end, we propose a learned sparsifica-

tion attention mechanism, OctAttn, which adaptively prunes

the octants from the multi-scale feature pyramid in a top-to-

bottom manner. Furthermore, we adopt a hybrid semantic-

aware positional embedding based on foreground segmen-

tation. Extensive experiments are conducted on WOD and

KITTI, and OcTr reaches the state-of-the-art performance,

validating its effectiveness.
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