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Abstract

Predicting the future trajectories of surrounding agents
is essential for autonomous vehicles to operate safely. This
paper presents QCNet, a modeling framework toward push-
ing the boundaries of trajectory prediction. First, we iden-
tify that the agent-centric modeling scheme used by existing
approaches requires re-normalizing and re-encoding the in-
put whenever the observation window slides forward, lead-
ing to redundant computations during online prediction.
To overcome this limitation and achieve faster inference,
we introduce a query-centric paradigm for scene encoding,
which enables the reuse of past computations by learning
representations independent of the global spacetime coordi-
nate system. Sharing the invariant scene features among all
target agents further allows the parallelism of multi-agent
trajectory decoding. Second, even given rich encodings of
the scene, existing decoding strategies struggle to capture
the multimodality inherent in agents’ future behavior, espe-
cially when the prediction horizon is long. To tackle this
challenge, we first employ anchor-free queries to generate
trajectory proposals in a recurrent fashion, which allows
the model to utilize different scene contexts when decod-
ing waypoints at different horizons. A refinement module
then takes the trajectory proposals as anchors and leverages
anchor-based queries to refine the trajectories further. By
supplying adaptive and high-quality anchors to the refine-
ment module, our query-based decoder can better deal with
the multimodality in the output of trajectory prediction. Our
approach ranks 1st on Argoverse 1 and Argoverse 2 motion
forecasting benchmarks, outperforming all methods on all
main metrics by a large margin. Meanwhile, our model can
achieve streaming scene encoding and parallel multi-agent
decoding thanks to the query-centric design ethos.

1. Introduction
Making safe decisions for autonomous vehicles requires

accurate predictions of surrounding agents’ future trajec-
tories. In recent years, learning-based methods have been
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Figure 1. Illustration of our query-centric reference frame,
where we build a local coordinate system for each spatial-temporal
element, including map polygons and agent states at all time steps.
In the attention-based encoder, all scene elements’ queries are de-
rived and updated in their local reference frames.

widely used for trajectory prediction [14, 31, 37, 38, 46, 56].
Despite the considerable efforts made to enhance models’
forecasting ability, there is still a long way to go before fully
addressing the problem of trajectory prediction. Why is this
task so challenging, and what inability lies in existing ap-
proaches? We attempt to answer these questions from the
following two perspectives:

(i) While the flourishing forecasting models have
achieved impressive performance on trajectory prediction
benchmarks [7,13,49], today’s most advanced architectures
specialized for this task [37, 38, 46, 56] fail to process the
heterogeneous traffic scenes efficiently. In an autonomous
driving system, data frames arrive at the prediction module
sequentially as a stream of sparse scene context, including
the high-definition vector map and the surrounding agents’
kinematic states. A model must learn expressive representa-
tions of these scene elements to achieve accurate forecasts.
With the continuing development of modeling techniques
for sparse context encoding [14, 31, 50], the research com-
munity has witnessed rapid progress toward more powerful
trajectory predictors. Notably, factorized attention-based
Transformers [37,38,56] have recently raised prediction ac-
curacy to an unprecedented level. However, they require
learning attention-based representations for each spatial-
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temporal scene element and suffer from prohibitively high
costs when processing dense traffic scenes. As every mini-
mal delay may lead to catastrophic accidents in autonomous
driving, the unmet need for real-time predictions has limited
the applicability of state-of-the-art approaches.

(ii) The immense uncertainty in the output of trajectory
prediction, which grows explosively as the prediction hori-
zon lengthens, has troubled the research community con-
stantly. For example, a vehicle at an intersection may turn
or go straight depending on the driver’s long-term goal. To
avoid missing any potential behavior, a model must learn to
capture the underlying multimodal distribution rather than
simply predicting the most frequent mode. This learning
task is challenging since only one possibility is logged in
each training sample. To ease the learning difficulty, a body
of works utilizes handcrafted anchors as guidance for mul-
timodal prediction [6, 12, 39, 53, 55]. Their effectiveness,
however, is subject to the quality of the anchors. Typically,
these methods fail to work well when few anchors can pre-
cisely cover the ground truth. This problem is exacerbated
in long-term prediction, where the search space for anchors
is much larger. Some other works [10, 31, 38, 46, 56] cir-
cumvent this issue by directly predicting multiple trajecto-
ries, albeit at the risk of mode collapse and training instabil-
ity [33, 41]. Due to the lack of spatial priors, these methods
also fail to produce accurate long-term forecasts.

The analysis above drives us to propose a trajectory pre-
diction framework, termed as QCNet, to overcome the lim-
itations of previous solutions. First, we note that it is possi-
ble to achieve faster online inference while also benefiting
from the power of factorized attention, but the agent-centric
encoding scheme [25, 27, 46, 56] used by existing methods
serves as an impediment. Each time a new data frame ar-
rives, the observation window slides one step forward and
overlaps with its predecessor substantially, which provides
opportunities for models to reuse the previously computed
encodings. However, agent-centric approaches require nor-
malizing the input based on the latest agent states’ positions,
necessitating the re-encoding of scene elements whenever
the observation window slides forward. To address this is-
sue, we introduce a query-centric paradigm for scene en-
coding (see Fig. 1). The crux of our design ethos lies in
processing all scene elements in their local spacetime ref-
erence frames and learning representations independent of
the global coordinates. This strategy enables us to cache
and reuse the previously computed encodings, spreading the
computation across all observation windows and thereby re-
ducing inference latency. The invariant scene features can
also be shared among all target agents in the scene to en-
able the parallelism of multi-agent decoding. Second, to
better utilize the scene encodings for multimodal and long-
term prediction, we use anchor-free queries to retrieve the
scene context recurrently and let them decode a short seg-

ment of future waypoints at each recurrence. This recurrent
mechanism eases the modeling burden on the queries by al-
lowing them to focus on different scene contexts when pre-
dicting waypoints at different horizons. The high-quality
trajectories predicted by the recurrent decoder serve as dy-
namic anchors in the subsequent refinement module, where
we use anchor-based queries to refine the trajectory propos-
als based on the scene context. As a result, our query-based
decoding pipeline incorporates the flexibility of anchor-free
methods into anchor-based solutions, taking the best of both
worlds to facilitate multimodal and long-term prediction.

Our proposed query-centric encoding paradigm is the
first that can exploit the sequential nature of trajectory pre-
diction to achieve fast online inference. Besides, our query-
based decoder exhibits superior performance for multi-
modal and long-term prediction. Experiments show that
our approach achieves state-of-the-art results, ranking 1st on
two large-scale motion forecasting benchmarks [7, 49].

2. Related Work
Scene context fusion encodes rich information for trajec-
tory prediction. Early work rasterizes world states as multi-
channel images and employs classic convolutional neural
networks for learning [5,6,10,21]. Due to the lossy render-
ing, limited receptive field, and prohibitively high cost of
raster-based methods, the research community has turned
to a vector-based encoding scheme [14, 31, 50]. With the
use of permutation-invariant set operators such as pool-
ing [3, 12, 14, 20, 46], graph convolution [11, 31, 36, 53],
and attention mechanism [24, 26, 30, 32, 34, 52], vector-
based methods can efficiently aggregate sparse informa-
tion in traffic scenes. Several powerful trajectory prediction
models have recently adopted Transformers [47] with fac-
torized attention as their encoders [18,37,38,56]. Although
these models improve efficiency by learning agent-centric
representations hierarchically [56] or encoding the whole
scene in a shared coordinate system [38], their scalability is
still limited by the computational complexity of factorized
attention. In comparison, our encoder inherits the represen-
tational power of factorized attention while achieving more
efficient scene context fusion by using a query-centric en-
coding paradigm, which goes beyond agent-centric model-
ing and enables streaming trajectory prediction.
Multimodal future distribution is a widely adopted out-
put form of trajectory prediction, given that world states
are partially observable and agents’ intentions are highly
uncertain. While generative models naturally fit multi-
modal prediction [20,28,40,45], sampling from latent vari-
ables introduces test-time stochasticity, which is undesir-
able for safety-critical applications such as autonomous
driving. Another line of research tackles multimodality by
decoding a discrete set of trajectories from the encoded
scene context [6, 10, 31, 55]. Since only one mode is ob-
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served in training data, predicting multiple diverse futures
is challenging. Anchor-based methods achieve this with the
guidance of anchors, which facilitate multimodal prediction
by leveraging predefined maneuvers [12], candidate trajec-
tories [6, 39], or map-adaptive goals [53, 55]. However,
the quality of these anchors significantly impacts predic-
tion performance. By contrast, anchor-free methods output
multiple hypotheses freely at the risk of mode collapse and
training instability [10, 31, 38, 46]. Our decoding pipeline
takes advantage of both anchor-based and anchor-free solu-
tions, with an anchor-free module generating adaptive an-
chors in a data-driven manner and an anchor-based module
refining these anchors based on the scene context.

3. Approach
3.1. Input and Output Formulation

Consider a scenario with A agents surrounding the au-
tonomous vehicle. During online running, the perception
module supplies a stream of agent states to the prediction
module at a fixed interval, where each agent state is asso-
ciated with its spatial-temporal position and geometric at-
tributes. For example, the i-th agent’s state at time step t
comprises the spatial position pt

i=(pt
i,x,p

t
i,y), the angular

position θt
i (i.e., the yaw angle), the temporal position t (i.e.,

the time step), and the velocity vt
i . We also add the motion

vector pt
i−pt−1

i to the geometric attributes similar to some
baselines [31, 56]. Besides, the prediction module has ac-
cess to M polygons on the high-definition map (e.g., lanes
and crosswalks), where each map polygon is annotated with
sampled points and semantic attributes (e.g., the user type
of a lane). Given the map information and the agent states
within an observation window of T time steps, the predic-
tion module is tasked with forecasting K future trajectories
for each target agent over a horizon of T ′ time steps and
assigning a probability score for each forecast.

3.2. Query-Centric Scene Context Encoding

The first step of trajectory prediction is to encode the
scene input. Recent research has found factorized attention
incredibly effective for scene encoding [37, 38, 56]. These
approaches let a query element attend to key/value elements
along one axis at a time, which results in temporal attention,
agent-map attention, and social attention (i.e., agent-agent
attention) with the complexity of O(AT 2), O(ATM), and
O(A2T ), respectively. Unlike typical encoding strategies
that first apply a temporal network to squeeze the time di-
mension and then perform agent-map and agent-agent fu-
sions at the current time step only, factorized attention con-
ducts fusions at every past time step within the observation
window. As a result, factorized attention can capture more
information, such as how the relations between agents and
map elements evolve over the observation horizon. How-

ever, its scalability is limited by the cubic complexity of
each fusion operation. In extreme circumstances involving
hundreds of agents and map elements, such models may fail
to emit predictions promptly. We ask: is it possible to re-
duce the inference latency during online prediction while
enjoying the representational power of factorized attention?

Before diving into our solution, recall that trajectory pre-
diction is a streaming processing task: when a new data
frame arrives, we put it in the queue and drop the oldest
one. Thus, the latest observation window has T−1 time
steps overlapping with its predecessor. This fact motivates
us to raise another question: can we reuse the overlapped
time steps’ encodings computed previously after the obser-
vation window slides forward? Unfortunately, this idea
is infeasible owing to the normalization requirement for
trajectory prediction: existing methods employ an agent-
centric encoding paradigm for spatially roto-translation in-
variance [25, 27, 46, 56], where each agent is encoded in
the local coordinate frame determined by its current time
step’s position and yaw angle. Each time the observation
window slides forward, the “current time step” also shifts
accordingly, and the geometric attributes of all scene ele-
ments need to be re-normalized based on the positions of
the latest agent states. Due to the variation in input, we are
forced to re-encode all time steps’ elements even though the
observation windows largely overlap.

Based on the analysis above, we identify that the evolv-
ing spacetime coordinate systems hinder the reuse of pre-
viously computed encodings. To address this issue, we
introduce a query-centric encoding paradigm for learning
representations independent of scene elements’ global co-
ordinates. Specifically, we establish a local spacetime co-
ordinate system for each scene element that a query vector
derives from, processing query elements’ features in their
local reference frames. Then, we inject the relative spatial-
temporal positions into the key and value elements when
performing attention-based scene context fusion. We elab-
orate on the encoding process in the following paragraphs.
Local Spacetime Coordinate System. Figure 1 shows an
example of scene elements’ local coordinate systems. For
the i-th agent’s state at time step t, the local coordinate
frame is determined by the reference spatial-temporal posi-
tion (pt

i, t) and the reference direction θt
i, where pt

i and θt
i

are the agent state’s spatial and angular positions, respec-
tively. For lanes and crosswalks, we choose the position
and orientation at the entry point of the centerline as the
reference. In this way, we build local coordinate systems
canonically for all the scene elements considered, resulting
in one dedicated local frame per map polygon and T refer-
ence frames per agent within any observation window.
Scene Element Embedding. For each spatial-temporal
scene element, such as an agent state or a lane, we com-
pute the polar coordinates of all geometric attributes (e.g.,
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the velocity and motion vector of an agent state, the posi-
tions of all sampled points on a lane) relative to the spatial
point and direction referenced by the element’s local frame.
Then, we transform each polar coordinate into Fourier fea-
tures [22, 35, 44] to facilitate learning high-frequency sig-
nals. For each agent state and each sampled point on
the map, the Fourier features are concatenated with the
semantic attributes (e.g., an agent’s category) and passed
through a multi-layer perceptron (MLP) to obtain an em-
bedding. To further produce polygon-level representations
for lanes and crosswalks, we apply attention-based pool-
ing on the embeddings of sampled points within each map
polygon. These operations result in agent embeddings of
shape [A, T,D] and map embeddings of shape [M,D],
where D denotes the hidden feature dimension. Benefit-
ing from modeling in local reference frames, the embedding
of each agent state/map polygon has only one instance and
can be reused in the subsequent observation windows. In
contrast, agent-centric approaches have to copy all inputs
multiple times, encode each copy relative to one of the A
agents’ current position and heading, and re-encode all in-
puts whenever the observation window slides forward, lead-
ing to much more overhead during online inference.
Relative Spatial-Temporal Positional Embedding. We
prepare the relative positional embeddings for scene ele-
ment pairs, which will be incorporated into the attention-
based operators to help the model be aware of the differ-
ence between two elements’ local coordinate frames. For an
element with absolute spatial-temporal position (pt

i,θ
t
i, t)

and another with (ps
j ,θ

s
j , s), we use a 4D descriptor to

summarize their relative position, whose components are
the relative distance

∥∥ps
j − pt

i

∥∥
2
, the relative direction

atan2(ps
j,y−pt

i,y, p
s
j,x−pt

i,x)− θt
i, the relative orientation

θs
j − θt

i, and the time gap s − t. Since we can easily re-
construct one element’s absolute position from another with
the help of the descriptor, we have preserved all spatial-
temporal position information of the scene element pair.
Then, we transform the 4D descriptor into Fourier features
and pass them through an MLP to produce the relative po-
sitional embedding rs→t

j→i . If any of the two scene elements
are static (e.g., static map polygons), we can omit the super-
script and denote the embedding as rj→i.
Self-Attention for Map Encoding. We employ self-
attention to model the relationships among map elements,
after which the updated map encodings will enrich the agent
features and assist trajectory decoding. For the i-th map
polygon, we derive a query vector from its embedding mi

and let it attend to the neighboring lanes and crosswalks
{mj}j∈Ni , where Ni denotes the neighbor set of the poly-
gon. To incorporate spatial awareness for map encoding, we
generate the j-th key/value vector from the concatenation of
mj and the relative positional embedding, i.e., [mj ; rj→i].
Since each triple of (mi,mj , rj→i) input to the attention
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Figure 2. Overview of the encoder in an online mode. Af-
ter reusing the encodings computed in previous observation win-
dows (blue), the complexity of factorized attention goes from
O(AT 2)+O(ATM)+O(A2T ) to O(AT )+O(AM)+O(A2).

layer is independent of the global spacetime coordinate sys-
tem, the output map encodings {m′

i}Mi=1 are also invariant
under transformations of the global reference frame. Thus,
they can be shared across all agents and all time steps and
can even be pre-computed offline, thereby avoiding redun-
dant computation suffered by agent-centric modeling.
Factorized Attention for Agent Encoding. To help the
agent embeddings capture more information, we also con-
sider factorized attention across agent time steps, among
agents, and between agents and maps. Take the i-th agent at
time step t as an example. Given the query vector derived
from the agent state’s embedding ati, we employ temporal
attention by computing the key and value vectors based on
{[asi ; rs→t

i→i ]}
t−1
s=t−τ , which are the i-th agent’s embeddings

from time step t−τ (0<τ<T ) to time step t−1 and the cor-
responding relative positional embeddings. Likewise, the
key and value vectors for agent-map and social attention
are derived from

{
[m′

j ; rj→i]
}
j∈Ni

and
{
[atj ; r

t→t
j→i]

}
j∈Ni

,
respectively, where the neighbor set Ni is determined by a
distance threshold of 50 meters. As a result of updating the
initially invariant queries with invariant keys and values, the
outputs of these layers are also invariant. We stack the tem-
poral, the agent-map, and the social attention sequentially
as one fusion block and repeat such blocks Lenc times.

Thanks to the query-centric modeling, all the agent and
map encodings are unique and fixed no matter from which
spacetime coordinate system we view them (i.e., roto-
translation invariance for the space dimension and transla-
tion invariance for the time dimension), enabling the model
to reuse past computations and operate streamingly. Dur-
ing online prediction, we can cache the encodings computed
in previous observation windows and incrementally update
the scene representation. As shown in Fig. 2, our model
only performs factorized attention for the A incoming agent
states when a new data frame arrives, resulting in temporal
attention with O(AT ) complexity, agent-map attention with
O(AM) complexity, and social attention with O(A2) com-
plexity. All of these operations are an order less expensive
than their non-streaming counterpart. Finally, we update the
cached tensors using the newly computed encodings.
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Figure 3. Overview of the decoding pipeline. An anchor-free module generates trajectory proposals recurrently based on the encoded
scene context. These proposals act as the anchors in the refinement module, where an anchor-based decoder refines the anchor trajectories
and assigns a probability score for each hypothesis.

3.3. Query-Based Trajectory Decoding

The second step of trajectory prediction is to utilize the
scene encodings output by the encoder to decode K fu-
ture trajectories for each target agent, which is non-trivial
since the encoder returns only one set of feature embed-
dings. Inspired by the progress in object detection, some re-
cent works [18, 32, 37, 46] employ DETR-like decoders [4]
to deal with such a one-to-many problem, where multiple
learnable queries cross-attend the scene encodings and de-
code trajectories. However, these models suffer from train-
ing instability and mode collapse like other anchor-free ap-
proaches. Moreover, they do not perform well in long-
term prediction, where the forecasting task is much more
challenging due to the explosive uncertainty in the distant
future. Our query-based decoder overcomes these limita-
tions by utilizing a recurrent, anchor-free proposal mod-
ule to generate adaptive trajectory anchors, followed by an
anchor-based module that further refines the initial propos-
als. An overview of our decoding pipeline is shown in
Fig. 3. In the following, we will illustrate the components
of the decoder in detail.
Mode2Scene and Mode2Mode Attention. Both the pro-
posal and refinement modules use a DETR-like architec-
ture. Similar to the concept of object queries in DETR [4],
each query takes charge of decoding one of the K trajec-
tory modes. In the Mode2Scene attention, we use cross-
attention layers to update the mode queries with multiple
contexts, including the history encodings of the target agent,
the map encodings, and the neighboring agents’ encodings.
Following the Mode2Scene attention, the K mode queries
“talk” to each other via the Mode2Mode self-attention to
improve the diversity of multiple modes.
Reference Frames of Mode Queries. To predict the tra-
jectories of multiple agents in parallel, we share the same
set of scene encodings among all target agents in the scene.
As these encodings are derived from their local spacetime
coordinate systems, we need to project them into each tar-
get agent’s current viewpoint to achieve the same effect as

agent-centric modeling. To this end, we hallucinate a coor-
dinate frame for each mode query based on the correspond-
ing target agent’s current position and yaw angle. When
updating the query embeddings via Mode2Scene attention,
the scene elements’ positions relative to the queries are in-
corporated into the keys and values, which is similar to what
we have done for the encoder.
Anchor-Free Trajectory Proposal. We use learnable,
anchor-free queries to propose initial trajectories. These
proposals will later act as anchors in the refinement mod-
ule. Compared with anchor-based methods that attempt to
cover the ground truth with densely sampled handcrafted
anchors [6, 19], our proposal module generates K adap-
tive anchors in a data-driven manner. Thanks to the cross-
attention layers, the mode queries can retrieve the scene
context and quickly narrow the search space for anchors.
The self-attention layer further allows the queries to collab-
orate with each other when generating trajectory proposals.

Over an extended prediction horizon, an agent can travel
a long distance, and its surrounding environment may vary
quickly. As a result, it is hard to summarize all information
required for decoding a long sequence into a single query
embedding. To ease the queries’ burden of context extrac-
tion and improve the anchors’ quality, we generalize the
DETR-like decoder to a recurrent fashion. Using Trec re-
current steps, the context-aware mode queries only decode
T ′/Trec future waypoints via an MLP at the end of each re-
current step. At the subsequent recurrence, these queries
become the input again and extract the scene context rele-
vant to the next few waypionts’ prediction. For efficiency,
Trec is far smaller than the prediction horizon T ′. We also
find that using much more recurrent steps is unnecessary.
Anchor-Based Trajectory Refinement. Anchor-free de-
coding can be a two-edged sword: despite its flexibility, the
unstable training process may lead to mode collapse occa-
sionally. On the other hand, the randomly initialized mode
queries must adapt to all target agents in all scenes and
lack the scenario-specific bias, which may result in non-
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compliant predictions, such as trajectories that violate the
laws of motion or break the traffic rules conveyed by the
high-definition map. We are thus motivated to employ an
anchor-based module to refine the proposals further. Tak-
ing the output of the proposal module as anchors, we let the
refinement module predict the offset to the proposed trajec-
tories and estimate the likelihood of each hypothesis. This
module also adopts a DETR-like architecture, but its mode
queries are derived from the proposed trajectory anchors in-
stead of randomly initialized. Specifically, a small GRU [8]
is used to embed each trajectory anchor, and we take its final
hidden state as the mode query. These anchor-based queries
provide explicit spatial prior for the model, enabling the at-
tention layers to localize the context of interest more easily.

3.4. Training Objectives

Following HiVT [56], we parameterize the i-th agent’s
future trajectory as a mixture of Laplace distributions:

f({pt
i}T

′

t=1) =

K∑
k=1

πi,k

T ′∏
t=1

Laplace
(
pt
i | µt

i,k,b
t
i,k

)
, (1)

where {πi,k}Kk=1 are the mixing coefficients, and the k-th
mixture component’s Laplace density at time step t is pa-
rameterized by the location µt

i,k and the scale bt
i,k. We then

use a classification loss Lcls to optimize the mixing coeffi-
cients predicted by the refinement module. This loss mini-
mizes the negative log-likelihood of Eq. (1), and we stop the
gradients of the locations and scales to optimize the mixing
coefficients only. On the other hand, we adopt the winner-
take-all strategy [29] to optimize the locations and scales
output by the proposal and refinement modules, which con-
ducts backpropagation on the best-predicted proposal and
its refinement only. For stabilization, the refinement mod-
ule stops the gradients of the proposed trajectory anchors.
The final loss function combines the trajectory proposal loss
Lpropose, the trajectory refinement loss Lrefine, and the clas-
sification loss Lcls for end-to-end training:

L = Lpropose + Lrefine + λLcls , (2)

where we use λ to balance regression and classification.

4. Experiments
4.1. Experimental Settings

Datasets. We use Argoverse 1 [7] and Argoverse 2 [49],
two large-scale motion forecasting datasets, to test the ef-
ficacy of our approach. The Argoverse 1 dataset collects
323, 557 sequences of data from Miami and Pittsburgh,
while the Argoverse 2 dataset contains 250, 000 scenarios
spanning six cities. Both datasets have a sampled rate of
10 Hz. For the Argoverse 1 dataset, models need to pre-
dict agents’ 3-second future trajectories given the 2-second

observations of history. The Argoverse 2 dataset, in com-
parison, is featured by improved data diversity, higher data
quality, a larger observation window of 5 seconds, and a
longer prediction horizon of 6 seconds. Using these two
datasets, we intend to examine models’ forecasting capabil-
ity on various data distributions and prediction horizons.
Metrics. Following the standard evaluation protocol, we
adopt metrics including minimum Average Displacement
Error (minADEK), minimum Final Displacement Error
(minFDEK), Brier-minimum Final Displacement Error (b-
minFDEK), and Miss Rate (MRK) for evaluation. The met-
ric minADEK calculates the ℓ2 distance in meters between
the ground-truth trajectory and the best of K predicted tra-
jectories as an average of all future time steps. On the
other hand, the metric minFDEK only concerns the pre-
diction error at the final time step to emphasize long-term
performance. To further measure the performance of un-
certainty estimation, the metric b-minFDEK adds (1− π̂)2

to the final-step error, where π̂ denotes the best-predicted
trajectory’s probability score that the model assigns. More-
over, the metric MRK is used for counting the ratio of cases
where minFDEK exceeds 2 meters. As a common practice,
K is selected as 1 and 6. If a model outputs more than K
trajectories, only the predictions with the top-K probability
scores are considered during evaluation.

4.2. Comparison with State of the Art

We compare our method with the strongest baselines on
the Argoverse 1 and the Argoverse 2 motion forecasting
benchmarks [7, 49]. We first conduct experiments on the
Argoverse 2 dataset [49], which favors solutions that work
well on long-term prediction, given that its prediction hori-
zon is as long as 6 seconds. The results are shown in Tab. 1.
Even without ensembling, QCNet has already outperformed
all previous approaches on the Argoverse 2 test set in terms
of minADE6, minFDE6, minADE1, and minFDE1. After
using ensembling techniques similar to other entries, QC-
Net surpasses all methods on all metrics by a large margin.
We also evaluate our model on the Argoverse 1 dataset [7] to
better understand the generalizability of our approach. Al-
though the performance on the Argoverse 1 benchmark has
saturated for years [49], Tab. 2 shows that QCNet signifi-
cantly advances state-of-the-art on most metrics. As of the
time we submitted the paper, QCNet ranks 1st on the leader-
boards of Argoverse 1 and Argoverse 2, outperforming all
published and unpublished works on the two benchmarks.
Please refer to the supplementary material for more results
on Argoverse 2 [49] and Waymo Open Motion Dataset [13].

4.3. Ablation Study

Effects of Scene Context Fusion. We study the effects of
scene context fusion in Tab. 3. The first question we an-
swer is whether factorized attention is worth it. If no fac-
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Method b-minFDE6 ↓ minADE6 ↓ minFDE6 ↓ MR6 ↓ minADE1 ↓ minFDE1 ↓ MR1 ↓

THOMAS [17] 2.16 0.88 1.51 0.20 1.95 4.71 0.64
GoRela [9] 2.01 0.76 1.48 0.22 1.82 4.62 0.66
MTR [42] 1.98 0.73 1.44 0.15 1.74 4.39 0.58
GANet [48] 1.96 0.72 1.34 0.17 1.77 4.48 0.59
QML∗ [43] 1.95 0.69 1.39 0.19 1.84 4.98 0.62
BANet∗ [54] 1.92 0.71 1.36 0.19 1.79 4.61 0.60
QCNet (w/o ensemble) 1.91 0.65 1.29 0.16 1.69 4.30 0.59
QCNet (w/ ensemble) 1.78 0.62 1.19 0.14 1.56 3.96 0.55

Table 1. Quantitative results on the Argoverse 2 motion forecasting leaderboard [1] ranked by b-minFDE6. Baselines that are known to
have used ensembling are marked with symbol “*”. For each metric, the best result is in bold and the second best result is underlined.

Method b-minFDE6↓ minADE6↓ minFDE6↓ MR6↓

LaneGCN [31] 2.06 0.87 1.36 0.16
mmTransformer [32] 2.03 0.84 1.34 0.15
DenseTNT [19] 1.98 0.88 1.28 0.13
TPCN [50] 1.93 0.82 1.24 0.13
SceneTransformer [38] 1.89 0.80 1.23 0.13
HOME+GOHOME [15, 16] 1.86 0.89 1.29 0.08
HiVT [56] 1.84 0.77 1.17 0.13
MultiPath++ [46] 1.79 0.79 1.21 0.13
GANet [48] 1.79 0.81 1.16 0.12
PAGA [11] 1.76 0.80 1.21 0.11
DCMS [51] 1.76 0.77 1.14 0.11
Wayformer [37] 1.74 0.77 1.16 0.12
Ours 1.69 0.73 1.07 0.11

Table 2. Quantitative results on the Argoverse 1 motion forecast-
ing leaderboard [2]. The leaderboard is sorted by b-minFDE6.

Model Online Inference (ms) minADE6↓ minFDE6↓ MR6↓w/o reuse w/ reuse

QCNet (Lenc = 0) 8±1 1±0 0.76 1.33 0.18
QCNet (Lenc = 1) 64±1 10±1 0.74 1.30 0.17
QCNet (Lenc = 2) 82±1 13±1 0.73 1.27 0.16

Table 3. Models’ performance and inference latency evaluated on
the Argoverse 2 validation set. We use an A40 GPU to measure
encoders’ online inference latency in the densest traffic scene in-
volving 190 agents and 169 map polygons.

torized attention-based fusion blocks are employed, the en-
coder does not involve information interactions along dif-
ferent axes of the scene. Even so, the decoder has access
to all information required for predictions thanks to the
Mode2Scene layers. As shown in the first row of Tab. 3,
our model can offer solid prediction performance without
fusing the scene context. But after feeding our decoder with
the fused encodings, the model gains considerable improve-
ment over its non-fusion variant. Moreover, increasing the
number of fusion blocks yields better results on all met-
rics, demonstrating the effectiveness of factorized attention.
However, the resulting inference latency is not amenable to
real-time applications such as autonomous driving, making
this modeling choice less appealing for widespread adop-
tion. Fortunately, our query-centric paradigm allows the
reuse of computations from previous observation windows
during online prediction, which goes beyond agent-centric
approaches such as HiVT [56]. As shown in Tab. 3, caching

and reusing the previously computed encodings drastically
lowers the online inference latency in the densest traffic
scene. Such a “free lunch” also provides headroom to de-
sign a more advanced decoder for stronger performance.
Component Study of the Decoder. As demonstrated in
Tab. 4, all layers in the decoder contribute to the perfor-
mance to a certain degree. First, although the factorized
attention in the encoder has already brought context aware-
ness to the agent features, we find that using the target
agent’s history encodings alone is insufficient for accurate
trajectory proposals. We hypothesize that injecting the map
and social information into the anchor-free decoder can ex-
plicitly provide the queries with the future context, enabling
them to narrow the search space for initial trajectories. On
the other hand, the map and social information can also help
the anchor-based queries identify those unrealistic predic-
tions, such as trajectories that break the traffic rules or col-
lide with static objects on the road. As a result, the role
of our refinement module is more than simply trajectory
smoothing [23, 51]. Table 4 also shows that removing the
Mode2Mode self-attention in either the proposal or the re-
finement module will harm the long-term accuracy and the
diversity of multiple hypotheses.

Table 5 demonstrates the effects of the recurrent mech-
anism and the refinement module on different datasets. On
Argoverse 1, most agents merely exhibit trivial behavior,
and the scene context usually does not have significant vari-
ation within the 3-second prediction horizon. For this rea-
son, our design choices only bring marginal improvement
when evaluated on this dataset. However, on the more chal-
lenging Argoverse 2 dataset where the prediction horizon is
6 seconds, increasing the number of recurrent steps from 1
(i.e., no recurrence) to 3 leads to much better long-term per-
formance, and the refinement module offers a dramatic im-
provement in terms of both accuracy and multimodality. We
also notice that using much more recurrent steps is redun-
dant: when increasing the number from 3 to 6, the model
performance on Argoverse 2 cannot be further improved.

4.4. Qualitative Results

We present some qualitative results on the Argoverse 2
validation set. Comparing Fig. 4a and Fig. 4b, we can see
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Proposal Module Refinement Module b-minFDE6↓ minADE6↓ minFDE6↓ MR6↓Time Map Social Mode Time Map Social Mode

✓ ✓ 2.22 0.82 1.58 0.22
✓ ✓ ✓ 2.04 0.78 1.43 0.19
✓ ✓ ✓ 2.18 0.81 1.55 0.22
✓ ✓ ✓ 2.06 0.79 1.48 0.21
✓ ✓ ✓ ✓ 2.02 0.77 1.40 0.19

✓ ✓ ✓ ✓ ✓ ✓ 1.99 0.74 1.33 0.17
✓ ✓ ✓ ✓ ✓ ✓ ✓ 1.94 0.74 1.30 0.17
✓ ✓ ✓ ✓ ✓ ✓ ✓ 1.97 0.74 1.31 0.17
✓ ✓ ✓ ✓ ✓ ✓ ✓ 1.91 0.73 1.29 0.17
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1.90 0.73 1.27 0.16

Table 4. Ablation study on the components of the decoder. Experimental results are based on the Argoverse 2 validation set.

(a) w/o recurrence & w/o refinement (b) w/ recurrence & w/o refinement (c) w/ recurrence & w/ refinement
Figure 4. Qualitative results on the Argoverse 2 validation set. The target agents’ bounding boxes and ground-truth trajectories are shown
in purple, and models’ predictions are shown in pink.

Dataset #Recurrent Step Refinement b-minFDE6↓minFDE6↓MR6↓

1 (3 sec/step) × 1.58 0.92 0.09
Argoverse 1 2 (1.5 sec/step) × 1.57 0.90 0.08
(3-sec pred.) 3 (1 sec/step) × 1.56 0.90 0.08

3 (1 sec/step) ✓ 1.55 0.89 0.08

1 (6 sec/step) × 2.10 1.47 0.20
Argoverse 2 2 (3 sec/step) × 2.04 1.42 0.19
(6-sec pred.) 3 (2 sec/step) × 2.02 1.40 0.19

3 (2 sec/step) ✓ 1.90 1.27 0.16
6 (1 sec/step) ✓ 1.90 1.27 0.16

Table 5. Effects of the trajectory proposal and refinement modules
on datasets with varying difficulty levels and prediction horizons.

that the recurrent mechanism of the proposal module can
reduce the prediction error in the long term. Figure 4c fur-
ther demonstrates the effectiveness of the refinement mod-
ule, which improves the diversity of multiple hypotheses
and the smoothness of the predicted trajectories.

5. Conclusion
This paper introduces QCNet, a neural architecture that

overcomes some important challenges in trajectory predic-
tion. Powered by the design ethos of query-centric mod-
eling, QCNet maintains the representational capability of
factorized attention while enjoying much faster inference. It
achieves multimodal and long-term prediction by employ-
ing a recurrent, anchor-free trajectory proposal module and
an anchor-based refinement module. QCNet exhibits un-
precedented performance on large-scale trajectory predic-
tion datasets, demonstrating the effectiveness of its designs.
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