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Abstract

In biological research, fluorescence staining is a key

technique to reveal the locations and morphology of subcel-

lular structures. However, it is slow, expensive, and harm-

ful to cells. In this paper, we model it as a deep learning

task termed subcellular structure prediction (SSP), aiming

to predict the 3D fluorescent images of multiple subcellu-

lar structures from a 3D transmitted-light image. Unfortu-

nately, due to the limitations of current biotechnology, each

image is partially labeled in SSP. Besides, naturally, sub-

cellular structures vary considerably in size, which causes

the multi-scale issue of SSP. To overcome these challenges,

we propose Re-parameterizing Mixture-of-Diverse-Experts

(RepMode), a network that dynamically organizes its pa-

rameters with task-aware priors to handle specified single-

label prediction tasks. In RepMode, the Mixture-of-Diverse-

Experts (MoDE) block is designed to learn the generalized

parameters for all tasks, and gating re-parameterization

(GatRep) is performed to generate the specialized param-

eters for each task, by which RepMode can maintain a com-

pact practical topology exactly like a plain network, and

meanwhile achieves a powerful theoretical topology. Com-

prehensive experiments show that RepMode can achieve

state-of-the-art overall performance in SSP.

1. Introduction

Recent years have witnessed great progress in biological

research at the subcellular level [1,2,7,21,23,59,61], which

plays a pivotal role in deeply studying cell functions and

behaviors. To address the difficulty of observing subcellu-
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Figure 1. (a) Illustration of subcellular structure prediction (SSP),

which aims to predict the 3D fluorescent images of multiple sub-

cellular structures from a 3D transmitted-light image. This task

faces two challenges, i.e. (b) partial labeling and (c) multi-scale.

lar structures, fluorescence staining was invented and has

become a mainstay technology for revealing the locations

and morphology of subcellular structures [26]. Specifically,

biologists use the antibodies coupled to different fluores-

cent dyes to ªstainº cells, after which the subcellular struc-

tures of interest can be visualized by capturing distinct flu-

orescent signals [64]. Unfortunately, fluorescence staining

is expensive and time-consuming due to the need for ad-

vanced instrumentation and material preparation [29]. Be-

sides, phototoxicity during fluorescent imaging is detrimen-

tal to living cells [28]. In this paper, we model fluorescence
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staining as a deep learning task, termed subcellular struc-

ture prediction (SSP), which aims to directly predict the 3D

fluorescent images of multiple subcellular structures from a

3D transmitted-light image (see Fig. 1(a)). The adoption of

SSP can significantly reduce the expenditure on subcellular

research and free biologists from this demanding workflow.

Such an under-explored and challenging bioimage prob-

lem deserves the attention of the computer vision commu-

nity due to its high potential in biology. Specifically, SSP

is a dense regression task where the fluorescent intensities

of multiple subcellular structures need to be predicted for

each transmitted-light voxel. However, due to the limita-

tions of current biotechnology, each image can only obtain

partial labels. For instance, some images may only have the

annotations of nucleoli, and others may only have the anno-

tations of microtubules (see Fig. 1(b)). Moreover, different

subcellular structures would be presented at multiple scales

under the microscope, which also needs to be taken into ac-

count. For example, the mitochondrion is a small structure

inside a cell, while obviously the cell membrane is a larger

one since it surrounds a cell (see Fig. 1(c)).

Generally, there are two mainstream solutions: 1) Multi-

Net [5,32,33,47]: divide SSP into several individual predic-

tion tasks and employs multiple networks; 2) Multi-Head

[6, 9, 46]: design a partially-shared network composed of

a shared feature extractor and multiple task-specific heads

(see Fig. 2(a)). However, these traditional approaches or-

ganize network parameters in an inefficient and inflexible

manner, which leads to two major issues. First, they fail to

make full use of partially labeled data in SSP, resulting in

label-inefficiency. In Multi-Net, only the images contain-

ing corresponding labels would be selected as the training

set for each network and thus the other images are wasted,

leading to an unsatisfactory generalization ability. As for

Multi-Head, although all images are adopted for training,

only partial heads are updated when a partially labeled im-

age is input and the other heads do not get involved in train-

ing. Second, to deal with the multi-scale nature of SSP, they

require exhausting pre-design of the network architecture,

and the resultant one may not be suitable for all subcellular

structures, which leads to scale-inflexibility.

In response to the above issues, herein we propose Re-

parameterizing Mixture-of-Diverse-Experts (RepMode), an

all-shared network that can dynamically organize its pa-

rameters with task-aware priors to perform specified single-

label prediction tasks of SSP (see Fig. 2(b)). Specifically,

RepMode is mainly constructed of the proposed Mixture-of-

Diverse-Experts (MoDE) blocks. The MoDE block contains

the expert pairs of various receptive fields, where these task-

agnostic experts with diverse configurations are designed to

learn the generalized parameters for all tasks. Moreover,

gating re-parameterization (GatRep) is proposed to conduct

the task-specific combinations of experts to achieve efficient

expert utilization, which aims to generate the specialized

parameters for each task. With such a parameter organiz-

ing manner (see Fig. 2(c)), RepMode can maintain a practi-

cal topology exactly like a plain network, and meanwhile

achieves a theoretical topology with a better representa-

tional capacity. Compared to the above solutions, RepMode

can fully learn from all training data, since the experts are

shared with all tasks and thus participate in the training of

each partially labeled image. Besides, RepMode can adap-

tively learn the preference of each task for the experts with

different receptive fields, thus no manual intervention is re-

quired to handle the multi-scale issue. Moreover, by fine-

tuning few newly-introduced parameters, RepMode can be

easily extended to an unseen task without any degradation

of the performance on the previous tasks. Our main contri-

butions are summarized as follows:

• We propose a stronger baseline for SSP, named Rep-

Mode, which can switch different ªmodesº to predict

multiple subcellular structures and also shows its po-

tential in task-incremental learning.

• The MoDE block is designed to enrich the generalized

parameters and GatRep is adopted to yield the special-

ized parameters, by which RepMode achieves dynamic

parameter organizing in a task-specific manner.

• Comprehensive experiments show that RepMode can

achieve state-of-the-art (SOTA) performance in SSP.

Moreover, detailed ablation studies and further analy-

sis verify the effectiveness of RepMode.

2. Related Works

Partially labeled dense prediction. In addition to SSP,

many other dense prediction tasks could also face the chal-

lenge of partial labeling. In general, the previous methods

can be divided into two groups. The first one seeks for an

effective training scheme by adopting knowledge distilla-

tion [17, 72], learning cross-task consistency [36], design-

ing jointly-optimized losses [54], etc. The second one aims

to improve the network architecture with a dynamic seg-

mentation head [70], task-guided attention modules [62],

conditional tensor incorporation [15], etc. However, these

methods are primarily developed for large-scale datasets.

Compared to these well-explored tasks, SSP only has rel-

atively small datasets due to the laborious procedure of flu-

orescence staining. Thus, the training data of SSP should be

utilized in a more efficient way. In light of that, we adopt a

task-conditioning strategy in RepMode, where all parame-

ters are shared and thus can be directly updated using the su-

pervision signal of each label. Unlike other task-conditional

networks [15,55,62,70], our RepMode is more flexible and

capable of maintaining a compact topology.

Multi-scale feature learning. Multi-scale is a funda-

mental problem of computer vision, caused by the variety
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Figure 2. Overview of the proposed method. (a) Comparison of two mainstream solutions (i.e. Multi-Net and Multi-Head) and the proposed

method (i.e. RepMode) for SSP. (b) Illustration of our RepMode which includes two key components, i.e. the proposed MoDE block and

GatRep. (c) Diagram of how RepMode dynamically organizes its parameters in a MoDE block. Note that the gray region denotes the

convex hull decided by the expert kernels, and the convex hull is the area where the task-specific kernels would be situated.

in the size of the objects of interest. The common solu-

tions are adopting multi-resolution input [16,19,66,71], de-

signing parallel branches [3,25,37,39,57,74], fusing cross-

layer features [42, 44, 50, 56], performing hierarchical pre-

dictions [40, 41, 43], etc. These methods often adopt a pre-

defined architecture for all objects to extract multi-scale fea-

tures in a unified fashion. In contrast, RepMode learns the

dynamic combinations of the experts with different recep-

tive fields for each subcellular structure, and thus is capable

of learning multi-scale features in a task-specific manner.

Mixture-of-Experts. Mixture-of-Experts (MoE) typi-

cally consists of a gating module and multiple indepen-

dent learners (i.e. experts) [67]. For an input sample, MoE

would adaptively assemble the corresponding output of all

experts [10, 45, 48, 58] or only route it to a few specific ex-

perts [24, 31, 51, 53], which depends on the gating strategy.

Benefiting from its divide-and-conquer principle, MoE is

widely adopted in computer vision [10, 20, 48, 51, 63], nat-

ural language processing [8, 22, 53], and recommendation

systems [24, 45, 49, 58]. Our RepMode is established based

on the idea of MoE, but is further explored from the follow-

ing aspects: 1) Instead of performing input-aware gating,

RepMode only uses the task embedding for gating, aiming

to adjust its behavior for a specified task; 2) The experts of

RepMode can be combined together, which can efficiently

utilize multiple experts in an MoE-inspired architecture.

Structural re-parameterization. Different from other

re-parameterization (re-param) methods [18, 35, 52, 68],

structural re-param [13, 14] is a recent technique of equiv-

alently converting multi-branch network structures. With

this technique, multi-branch blocks [12±14, 60] are intro-

duced to plain networks for enhancing their performance.

However, these methods only achieve inference-time con-

verting, resulting in non-negligible training costs. There are

previous works [11, 27] accomplishing training-time con-

verting, but they require model-specific optimizer modifica-

tion [11] or extra parameters [27] and only explore its poten-

tial on one single task. In this work, we elegantly incorpo-

rate task-specific gating into structural re-param to achieve

both training- and inference-time converting for handling

multiple tasks, which is more cost-friendly and with better

applicability. Besides, dynamic convolutions [4, 38, 65, 73]

also can be roughly considered as re-param methods, which

aim to assemble convolutions with the same shape in an

input-dependent way. In contrast, using task-dependent gat-

ing, our RepMode can combine experts with diverse config-

urations to generate composite convolutional kernels, and

thus is with higher flexibility to model more situations.

3. Methodology

3.1. Problem definition

We start by giving a formal definition of SSP. Follow-

ing [47], we assume that each image has only one fluores-

cent label, which greatly relaxes the annotation requirement

and makes the setting of this task more general and chal-

lenging. Let D = {(xn,yn, ln)}
N
n=1

denotes a SSP dataset

with N samples. The n-th image xn ∈ In is associated with

the label yn ∈ In, where In = ❘Dn×Hn×Wn denotes the

image space and Dn ×Hn ×Wn is the image size. The la-

bel indicator ln ∈ L = {1, 2, ..., S} represents that yn is the

label of the ln-th subcellular structure, where S is the total

number of subcellular structure categories. In this work, our

goal is to learn a network F : I × L → I with the param-

eters θ from D. SSP can be considered as a collection of S

single-label prediction tasks, each of which corresponds to

one category of subcellular structures. To solve SSP, Multi-

Net and Multi-Head divide task-specific parameters from θ

for each task. In contrast, RepMode aims to share θ with all

tasks and dynamically organize θ to handle specified tasks.
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3.2. Network architecture

The backbone of RepMode is a 3D U-shape encoder-

decoder architecture mainly constructed of the downsam-

pling and upsampling blocks. Specifically, each downsam-

pling block contains two successive MoDE blocks to extract

task-specific feature maps and double their channel number,

followed by a downsampling layer adopting a convolution

with a kernel size of 2×2×2 and a stride of 2 to halve their

resolution. Note that batch normalization (BN) and ReLU

activation are performed after each convolutional layer. In

each upsampling block, an upsampling layer adopts a trans-

posed convolution with a kernel size of 2×2×2 and a stride

of 2 to upsample feature maps and halve their channel num-

ber. Then, the upsampled feature maps are concatenated

with the corresponding feature maps passed from the en-

coder, and the resultant feature maps are further refined by

two successive MoDE blocks. Finally, a MoDE block with-

out BN and ReLU is employed to reduce the channel num-

ber to 1, aiming to produce the final prediction. We adopt

such a common architecture to highlight the applicability

of RepMode and more details are provided in Appendix A.

Notably, MoDE blocks are employed in both the encoder

and decoder, which can facilitate task-specific feature learn-

ing and thus helps to achieve superior performance.

3.3. Mixture-of-Diverse-Experts block

To handle various prediction tasks of SSP, the represen-

tational capacity of the network should be strengthened to

guarantee its generalization ability. Thus, we propose the

MoDE block, a powerful alternative to the vanilla convo-

lutional layer, to serve as the basic network component of

RepMode. In the MoDE block, diverse experts are designed

to explore a unique convolution collocation, and the gating

module is designed to utilize the task-aware prior to pro-

duce gating weights for dynamic parameter organizing. We

delve into the details of these two parts in the following.

Diverse expert design. In the MoDE block, we aim to

achieve two types of expert diversity: 1) Shape diversity: To

tackle the multi-scale issue, the experts need to be equipped

with various receptive fields; 2) Kernel diversity: Instead of

irregularly arranging convolutions, it is a better choice to ex-

plore a simple and effective pattern to further enrich kernel

combinations. Given these guidelines, we propose to con-

struct expert pairs to constitute the multi-branch topology

of the MoDE block. The components of an expert pair are

3D convolutions (Conv) and 3D average poolings (Avgp).

Specifically, an expert pair contains a Conv K × K × K

expert and an Avgp K ×K ×K - Conv 1 × 1 × 1 expert,

and we utilize a stride of 1 and same-padding to maintain

the resolution of feature maps. Overall, the MoDE block is

composed of expert pairs with three receptive fields to attain

shape diversity (see Fig. 3(a)). When K = 1, since these

two experts are equal, only one is preserved for simplicity.

Conv 1×1×1

(a) Shape Diversity (b) Kernel Diversity
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Figure 3. (a) Expert pairs with a receptive field size of K = 5, 3, 1.

Note that each branch denotes an expert. (b) Examples of two

types of Conv kernels in an expert pair, including A-Conv and

normal Conv. Here we present the kernels of a 2D version with a

receptive field size of 3 for simplicity.

Notably, the Avgp K ×K ×K - Conv 1× 1× 1 expert is

essentially a special form of the Conv K ×K ×K expert.

To be specific, merging the serial Avgp K ×K ×K kernel

and Conv 1×1×1 kernel would result in a Conv kernel with

limited degrees of freedom (named as A-Conv). Compared

to normal Conv, A-Conv has only one learnable parame-

ter and thus acts like a learnable average pooling, which

enriches kernel diversity in the same shape (see Fig. 3(b)).

The combination of Conv and Avgp is also widely adopted

in previous works [13, 27], but we further explore such a

characteristic from the perspective of serial merging.

Gating module design. In order to perform a specified

single-label prediction task, the task-aware prior needs to be

encoded into the network, so that it can be aware of which

task is being handled and adjust its behavior to focus on the

desired task. Instead of embedding the task-aware prior by a

hash function [15] or a complicated learnable module [55],

we choose the most simple way, i.e. embed the task-aware

prior of each input image xn with the label indicator ln into

a S-dimensional one-hot vector pn, which is expressed as

pns =

{

1, if s = ln,

0, otherwise,
s = 1, 2, ..., S, (1)

where pns indicates the s-th entry of pn. Then, the task

embedding pn is fed into the gating module and the gating

weights G are generated by a single-layer fully connected

network (FCN) ϕ(·), shown as G = ϕ(pn) = {gt}
T
t=1

where T = 5. Note that we omit n in G for brevity. Here

gt ∈ ❘
CO represents the gating weights for the t-th experts,

which is split from G, and CO is the channel number of the

output feature maps. Finally, G would be further activated

as Ĝ = {ĝt}
T
t=1

by Softmax for the balance of the intensity

of different experts, which can be formulated as

ĝti =
exp (gti)

∑T

j=1
exp (gji)

, i = 1, 2, ..., CO, (2)

where gti (resp. ĝti) is the i-th entry of gt (resp. ĝt). With

the resultant gating weights Ĝ, RepMode can perform dy-

namic parameter organizing for these task-agnostic experts

conditioned on the task-aware prior.
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(a) complete utilization, (b) sparse routing, and (c) our GatRep.

3.4. Gating re-parameterization

In addition to studying expert configurations, how to ef-

ficiently utilize multiple experts is also worth further explo-

ration. The traditional manner is to completely utilize all

experts to process the input feature maps [10,45,48,58] (see

Fig. 4(a)). However, the output of all experts needs to be

calculated and stored, which would slow down training and

inference and increase the GPU memory utilization [14,69].

The advanced one is to sparsely route the input feature maps

to specific experts [24, 31, 51, 53] (see Fig. 4(b)). However,

only a few experts are utilized and the others remain un-

used, which would inevitably reduce the representational

capacity of MoE. To avoid these undesired drawbacks and

meanwhile preserve the benefits of MoE, we elegantly in-

troduce task-specific gating to structural re-param, and thus

propose GatRep to adaptively fuse the kernels of experts in

the MoDE block, through which only one convolution op-

eration is explicitly required (see Fig. 4(c)).

Preliminary. GatRep is implemented based on the ho-

mogeneity and additivity of Conv and Avgp, which are rec-

ognized in [13, 14]. The kernels of a Conv with CI input

channels, CO output channels, and K ×K ×K kernel size

is a fifth-order tensor W ∈ Z(K) = ❘
CO×CI×K×K×K ,

where Z(K) denotes this kernel space. Besides, the kernels

of an Avgp Wa ∈ ❘CI×CI×K×K×K can be constructed by

Wa
cI,c

′

I ,:,:,:
=







1

K3
, if cI = c′I,

0, otherwise,

(3)

where cI, c
′

I, :, :, : is the indexes of the tensor and cI, c
′

I =
1, ..., CI. Note that the Avgp kernel is fixed and thus un-

learnable. Moreover, we omit the biases here as a common

practice. Specifically, GatRep can be divided into two steps,

i.e. serial merging and parallel merging (see Fig. 5).

Step 1: serial merging. The first step of GatRep is to

merge Avgp and Conv into an integrated kernel. For brevity,

here we take an Avgp - Conv expert as an example. Let MI

denote the input feature maps. The process of producing the

output feature maps MO can be formulated as

MO = W ⊛ (Wa
⊛MI), (4)

Step 1:

Serial Merging
ReLU

Batch Norm

GatRep-Conv

Conv 3×3×3 Conv 5×5×5

Avgp 5×5×5

Conv 1×1×1

Conv 1×1×1

Gating
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Batch Norm
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A-Conv 3×3×3

0.7 × 0.3 ×+
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(a)

Figure 5. (a) Process of GatRep which includes two steps, i.e. (b)

serial merging and (c) parallel merging.

where ⊛ denotes the convolution operation. According to

the associative law, we can perform an equivalent transfor-

mation for Eq. (4) by first combining Wa and W. Such a

transformation can be expressed as

MO = (W ⊛Wa)
︸ ︷︷ ︸

We

⊛MI, (5)

which means that we first adopt W to perform a convolu-

tion operation on Wa, and then use the resultant kernel We

to process the input feature maps. With this transformation,

the kernels of Avgp and Conv can be merged as an inte-

grated one for the subsequent step.

Step 2: parallel merging. The second step of GatRep

is to merge all experts in a task-specific manner. We define

Pad(·,K ′) as a mapping function equivalently transferring

a kernel to the kernel space Z(K ′) by zero-padding, and

set K ′ = 5 which is the biggest receptive field size of these

experts. Let M̂O denote the final task-specific feature maps.

This transformation can be formulated as

M̂O =

(
T∑

t=1

ĝt ⊙ Pad(We
t,K

′)

)

︸ ︷︷ ︸

Ŵe

⊛MI, (6)

where ⊙ denotes the channel-wise multiplication and We
t is

the kernel of the t-th expert. Note that We
t is an integrated

kernel (resp. Conv kernel) for an Avgp - Conv expert (resp.

Conv expert). To be specific, the detailed pixel-level form is

provided in Appendix B. Finally, Ŵe is the resultant task-

specific kernel dynamically generated by GatRep.

4. Experiments

4.1. Experimental setup

We conduct the experiments based on the following ex-

perimental setup unless otherwise specified. Due to space

limitations, more details are included in Appendix C.
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Methods
Actin Filament Actom. Bundle Cell Membrane Desmosome DNA Endop. Reticulum Golgi Apparatus

MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE R2

Multi-Net [47] .4241 .4716 .5695 .7247 .4443 .2606 .5940 .4351 .3930 .8393 .5640 .0162 .5806 .5033 .3822 .4635 .4914 .5262 .8023 .5732 .0801

Multi-Head (Dec.) .4278 .4803 .5657 .7052 .4363 .2804 .5785 .4625 .4089 .8431 .5677 .0118 .5312 .4764 .4346 .4454 .4832 .5448 .7925 .5768 .0910

Multi-Head (Las.) .4648 .4978 .5281 .6697 .4222 .3168 .5568 .4441 .4310 .8402 .5637 .0148 .5088 .4824 .4581 .4372 .4697 .5531 .7918 .5807 .0921

CondNet [15] .4246 .4719 .5688 .6873 .4286 .2988 .5635 .4157 .4242 .8422 .5655 .0126 .4967 .4707 .4712 .4290 .4697 .5615 .7996 .5823 .0831

TSNs [55] .4279 .4779 .5656 .6691 .4111 .3174 .5309 .4346 .4575 .8392 .5630 .0160 .4974 .4682 .4702 .4362 .4785 .5543 .7892 .5777 .0949

PIPO-FAN [16] .4063 .4603 .5873 .6815 .4306 .3046 .5440 .4389 .4441 .8417 .5674 .0131 .4868 .4626 .4813 .4433 .4832 .5470 .7968 .5861 .0861

DoDNet [70] .4215 .4706 .5721 .6989 .4204 .2870 .5459 .4390 .4422 .8415 .5633 .0133 .5280 .4810 .4382 .4414 .4844 .5490 .7927 .5774 .0909

TGNet [62] .3917 .4535 .6023 .6843 .4213 .3018 .5856 .4227 .4015 .8392 .5654 .0160 .5011 .4746 .4666 .4441 .4806 .5460 .7870 .5774 .0973

RepMode .3936 .4558 .6004 .6572 .4103 .3295 .5443 .4136 .4437 .8358 .5619 .0199 .4852 .4598 .4831 .4046 .4445 .5865 .7792 .5694 .1064

Methods
Microtubule Mitochondria Nuclear Envelope Nucleolus Tight Junction All ∆Imp (%)

MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE R2

Multi-Net [47] .3682 .4348 .6296 .4684 .3921 .5172 .3014 .3006 .6954 .2164 .1789 .7826 .6474 .3369 .3370 .5341 .4269 .4337 0.000 0.000 0.000

Multi-Head (Dec.) .3932 .4594 .6044 .4545 .3888 .5315 .2687 .2895 .7284 .2114 .1762 .7877 .6396 .3252 .3451 .5226 .4258 .4456 2.149 0.272 2.752

Multi-Head (Las.) .3781 .4465 .6196 .4649 .3991 .5208 .2909 .3057 .7059 .2213 .1870 .7778 .6547 .3367 .3298 .5223 .4275 .4461 2.218 -0.12 2.868

CondNet [15] .3868 .4523 .6108 .4673 .4067 .5184 .2876 .3014 .7094 .2203 .1865 .7787 .6569 .3241 .3274 .5206 .4232 .4478 2.534 0.884 3.249

TSNs [55] .3407 .4235 .6572 .4625 .3956 .5233 .2904 .2991 .7064 .2116 .1751 .7874 .6479 .3320 .3367 .5113 .4192 .4572 4.263 1.804 5.437

PIPO-FAN [16] .3604 .4365 .6373 .4750 .4171 .5105 .2904 .3003 .7065 .2097 .1782 .7894 .6437 .3282 .3410 .5141 .4237 .4543 3.747 0.766 4.764

DoDNet [70] .3972 .4606 .6004 .4772 .4119 .5081 .2976 .3164 .6992 .2250 .1934 .7740 .6703 .3336 .3137 .5276 .4291 .4406 1.227 -0.49 1.607

TGNet [62] .3569 .4310 .6410 .4585 .3971 .5274 .2748 .2940 .7222 .2093 .1799 .7897 .6232 .3238 .3619 .5108 .4183 .4578 4.363 2.022 5.566

RepMode .3389 .4171 .6590 .4459 .3885 .5404 .2631 .2820 .7340 .1995 .1682 .7997 .6168 .3245 .3685 .4956 .4078 .4735 7.209 4.482 9.176

Table 1. Experimental results of the proposed RepMode and the comparing methods on twelve prediction tasks of SSP. The best perfor-

mance (lowest MSE and MAE, highest R2) is marked in bold. Note that ªAllº indicates the overall performance.

Datasets. For a comprehensive comparison, the dataset

is constructed from a dataset collection [47] containing

twelve partially labeled datasets, each of which corresponds

to one category of subcellular structures (i.e. one single-

label prediction task). All images are resized to make each

voxel correspond to 0.29 × 0.29 × 0.29 µm3. Moreover,

we perform per-image z-scored normalization for voxels to

eliminate systematic differences in illumination intensity.

For each dataset, we randomly select 25% samples for eval-

uation and then withhold 10% of the rest for validation.

Implementation details. Mean Squared Error (MSE) is

adopted as the loss function, which is commonly used to

train a regression model. Besides, Adam [34] is employed

as the optimizer with a learning rate of 0.0001. Each model

is trained for 1000 epochs from scratch and validation is

performed every 20 epochs. Finally, the validated model

that attains the lowest MSE is selected for evaluation on the

test set. In a training epoch, we randomly crop a patch with

a size of 32 × 128 × 128 from each training image as the

input with a batch size of 8, and random flip is performed

for data augmentation. In the inference stage, we adopt the

Gaussian sliding window strategy [30] to aggregate patch-

based output for a full prediction. To ensure fairness, the

same backbone architecture, training configuration, and in-

ference strategy are applied to all comparing models.

Evaluation metrics. In addition to MSE, Mean Abso-

lute Error (MAE) and Coefficient of Determination (R2) are

also used as the evaluation metrics. MAE measures absolute

differences and thus is less sensitive to outliers than MSE.

R2 measures correlations by calculating the proportion of

variance in a label that can be explained by its prediction.

For a clear comparison, we also present the relative overall

performance improvement over Multi-Net (i.e. ∆Imp).

4.2. Comparing to state-of-the-art methods

We compared our RepMode to the following methods: 1)

Multi-Net: [47]; 2) Multi-Head: include two variants, i.e.

multiple task-specific decoders (denoted by Dec.) or last

layers (denoted by Las.); 3) CondNet [15] and TSNs [55]:

two SOTA task-conditional networks for multi-task learn-

ing; 4) PIPO-FAN [16], DoDNet [70], and TGNet [62]:

three SOTA methods of a similar task, i.e. partially labeled

multi-organ and tumor segmentation (note that DoDNet and

TGNet also adopt task-conditioning strategies).

The experimental results on twelve tasks of SSP are re-

ported in Tab. 1. As recognized in [47], the performance

of Multi-Net is sufficient to assist with biological research

in some cases, thus it can be a reference of reliable met-

ric values for real-life use. Furthermore, two Multi-Head

variants can achieve better performance, which verifies the

importance of learning from the complete dataset. No-

tably, PIPO-FAN is an improved Multi-Head variant that

additionally constructs a pyramid architecture to handle the

multi-scale issue. The results show that such an architecture

can further improve performance but still can not address

this issue well. Moreover, the competitive performance of

CondNet and TSNs demonstrates that adopting an appropri-

ate task-conditioning strategy is beneficial. However, these
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Ablation Methods MSE MAE R2

Scope
only in Dec. .5097 .4139 .4590

only in Enc. .5079 .4184 .4607

Expert

w/o 1× 1× 1 expert pair .5027 .4106 .4662

w/o 3× 3× 3 expert pair .5080 .4141 .4605

w/o 5× 5× 5 expert pair .5017 .4108 .4672

w/o Conv expert .5631 .4346 .4042

w/o Avgp - Conv expert .5037 .4101 .4651

Average Pooling

w/o Avgp .4999 .4112 .4691

all use Avgp 3× 3× 3 .4974 .4072 .4716

all use Avgp 5× 5× 5 .4964 .4091 .4725

Gating

use Gauss. task embedding .5071 .4155 .4616

use two-layer FCN .4980 .4060 .4710

use Sigmoid activation .4992 .4094 .4698

Input-dep. gating .7958 .5527 .1619

Original RepMode .4956 .4078 .4735

Table 2. Ablation studies from four aspects. Note that ªMethodsº

denotes the variants of the proposed RepMode.

networks remain Multi-Head variants since multiple task-

specific heads are still required. As an advanced version of

DoDNet, TGNet additionally modulates the feature maps

in the encoder and skip connections, leading to more com-

petitive performance. It can be observed that, SSP is an

extremely tough task since it is hard to attain a huge perfor-

mance leap in SSP, even for those powerful SOTA methods

of related tasks. However, the proposed RepMode, which

aims to learn the task-specific combinations of diverse task-

agnostic experts, outperforms the existing methods on ten

of twelve tasks of SSP and achieves SOTA overall perfor-

mance. Notably, RepMode can even achieve 7.209% (resp.

4.482%, 9.176%) ∆Imp on MSE (resp. MAE, R2), which is

near twice the second best method (i.e. TGNet).

4.3. Ablation studies

To verify the effectiveness of the proposed RepMode,

we conduct comprehensive ablation studies totally includ-

ing four aspects, where the results are reported in Tab. 2.

Scope of use of the MoDE block. As we mentioned in

Sec. 3.2, we employ the MoDE block in both the encoder

and decoder of the network. Therefore, we change its scope

of use to explore its influence on performance. The results

show that employing it only in the encoder can achieve bet-

ter performance than only in the decoder, since the encoder

can extract task-specific features and pass them to the de-

coder through skip connections. Moreover, employing it in

both the encoder and decoder is superior since the whole

network can perform dynamic parameter organizing.

Effectiveness of the expert design. The MoDE block

is composed of three expert pairs, each of which contains a

Conv expert and an Avgp - Conv expert. It can be observed

that removing experts (especially the Conv experts) from

the MoDE block could cause a performance drop due to the

(a) Encoder (b) Decoder

Figure 6. Visualization of channel-wisely averaged gating weights

of two MoDE blocks, which are randomly selected from the en-

coder and decoder of a well-trained RepMode, respectively. The

results of subcellular structures shown in Fig. 1(c) are presented.

degradation of the representational capacity. Moreover, it

is also an interesting finding that the expert pair with the

commonly used 3× 3× 3 receptive field is most critical.

Average poolings matter. Avgp is one of the basic com-

ponents of the MoDE block. The results show that remov-

ing such an unlearnable component could also reduce per-

formance, which further verifies the effectiveness of the ex-

pert design. Besides, we can observe that setting the re-

ceptive fields of all Avgp to the same one could also cause

a performance drop. This is because being equipped with

different receptive fields could facilitate expert diversity.

Different gating strategies. For task-specific gating, the

one-hot task embedding is fed into the single-layer FCN fol-

lowed by Softmax activation. Accordingly, we conduct the

following modifications: 1) Use the task embedding with

each entry sampled from N (0, 1); 2) Use the two-layer

FCN with the hidden unit number set to 6; 3) Use Sigmoid

activation; 4) Input-dependent gating: input feature maps

are first processed by a global average pooling and then fed

into the gating module. The superior performance and sim-

plicity of the original gating approach demonstrate the ap-

plicability of RepMode. Notably, input-dependent gating

underperforms since an all-shared network can not be aware

of the desired task of input without access to any priors.

4.4. Further analysis

In this subsection, we perform further analysis of Rep-

Mode to further reveal its capability. Additional analysis

and discussion are provided in Appendix D.

Gating weights visualization. In the MoDE block, the

gating weights are produced for dynamic parameter orga-

nizing, through which the preference of each task for di-

verse experts can be learned. As shown in Fig. 6, the cell

membrane relatively prefers the Conv 5×5×5 expert while

the mitochondrion relatively prefers the Conv 1× 1× 1 one

as we expect. Besides, the preference of the mid-scale struc-

tures (i.e. nucleolus and nuclear envelope) is more variable.

Notably, the Avg - Conv experts also be assigned sufficient

weights, which verifies the effectiveness of the expert pairs.
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Transmitted-Light Image (Input) Fluorescent Image (Label) TGNet RepMode (Ours)

(a)

(b)

(c)

Figure 7. Examples of the prediction results on the test set, including (a) microtubule, (b) actin filament, and (c) DNA. We compare the

predictions of our RepMode with the ones of TGNet [62] which is a competitive method. Note that the dotted boxes indicate the major

prediction difference. More examples are provided in Appendix E.

Conv 3×3×3 Conv 5×5×5

Avgp 5×5×5

Conv 1×1×1

Conv 1×1×1

Gating

Avgp 3×3×3

Conv 1×1×1

Conv 3×3×3

Frozen 

Fine-Tuned

Figure 8. Diagram of the MoDE block for task-incremental learn-

ing. Note that here we employ an extra Conv 3× 3× 3 expert.

It can also be observed that the network pays more attention

to small-scale features in the decoder, which could be due

to the need for producing a detailed prediction.

Qualitative results. Subcellular structures are hard to be

distinguished in transmitted-light images (see Fig. 7). The

second best method (i.e. TGNet) suffers from incomplete

(see Fig. 7(a)) and redundant (see Fig. 7(b)) predictions, and

even yields inexistent patterns (see Fig. 7(c)). But relatively,

RepMode can produce more precise predictions for various

subcellular structures at multiple scales even though there

are some hard cases (see Fig. 7(a)&(b)). Such a practical

advance is crucial in biological research, since inaccurate

predictions at some key locations may mislead biologists

into making incorrect judgments.

RepMode as a better task-incremental learner. For

a well-trained RepMode, we fine-tuned a newly-introduced

expert and gating module for each MoDE block with the

other experts frozen, aiming to extend it to an unseen

task (see Appendix D.1 for more details). As we expect,

RepMode can preserve and transfer its domain knowledge

through the pretrained experts, which helps to achieve better

performance compared to the plain networks (see Tab. 3).

As long as the previous gating weights have been stored,

such a task-incremental learning manner would not cause

any degradation of the performance on the previous tasks.

Methods Strategies
Nucleolus Cell Membrane

MSE MAE R2 MSE MAE R2

Mutli-Net [47] Individual Training .2164 .1789 .7826 .5940 .4351 .3930

Multi-Head (Dec.) All Fine-Tuning .2121 .1811 .7870 .5339 .4097 .4543

RepMode Experts Frozen .2052 .1774 .7939 .5260 .4077 .4625

Table 3. Experimental results of task-incremental learning for two

basic subcellular structures. Note that the strategies of the experi-

mental methods for extending to a new task are presented.

5. Conclusions

In this paper, we focus on an under-explored and chal-

lenging bioimage problem termed SSP, which faces two

main challenges, i.e. partial labeling and multi-scale. In-

stead of constructing a network in a traditional manner, we

choose to dynamically organize network parameters with

task-aware priors and thus propose RepMode. Experiments

show that RepMode can achieve SOTA performance in SSP.

We believe that RepMode can serve as a stronger baseline

for SSP and help to motivate more advances in both the bi-

ological and computer vision community.
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