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Figure 1. Our shared Unified Driving Engine (UDE) can support both text-driven and audio-driven human motion generation. Left shows
an example of a motion sequence driven by a text description while Right shows an example driven by a LA Hiphop music clip.

Abstract

Generating controllable and editable human motion se-
quences is a key challenge in 3D Avatar generation. It has
been labor-intensive to generate and animate human mo-
tion for a long time until learning-based approaches have
been developed and applied recently. However, these ap-
proaches are still task-specific or modality-specific [1] [6]
[5] [18]. In this paper, we propose “UDE”, the first uni-
fied driving engine that enables generating human motion
sequences from natural language or audio sequences (see
Fig. 1). Specifically, UDE consists of the following key
components: 1) a motion quantization module based on
VQVAE that represents continuous motion sequence as dis-
crete latent code [33], 2) a modality-agnostic transformer
encoder [34] that learns to map modality-aware driving
signals to a joint space, and 3) a unified token transformer
(GPT-like [24]) network to predict the quantized latent code
index in an auto-regressive manner. 4) a diffusion motion
decoder that takes as input the motion tokens and decodes
them into motion sequences with high diversity. We evaluate
our method on HumanML3D [8] and AIST+ [19] bench-
marks, and the experiment results demonstrate our method
achieves state-of-the-art performance. Project website:
https://zixiangzhou916.github.io/UDE/

1. Introduction

Synthesizing realistic human motion sequences has been
a pilar component in many real-world applications. It is
labor-intensive and tedious, and requires professional skills
to achieve the creation of one single piece of motion se-
quence synthesis, making it hard to be democratized for
broad content generations. Recently, the emergence of mo-
tion capture and pose estimation [15] [38] [27] [36] have
made it possible to synthesize human motion sequences
from VTubers or source videos thanks to the advances of
deep learning. Although these approaches have simplified
the creation of motion sequences, actors or highly corre-
lated videos are still necessary, thus limiting the scalability
as well as the controllability.

The development of multi-modal machine learning paves
a new way to human motion synthesis [1] [6] [8] [12] [17]
[2]. For example, natural language descriptions could be
used to drive human motion sequences directly [1] [6] [8].
The language description is a straightforward representa-
tion for human users to control the synthesis. It provides
a semantic clue of what the synthesized motion sequence
should look like, and the editing could be conducted by sim-
ply changing the language description. Language, however,
does not cover the full domain of human motion sequences.
In terms of dancing motion synthesis, for example, the nat-
ural language is not sufficient to describe the dance rhythm.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5632



For such scenarios, audio sequences are used as guidance
to help motion synthesis, so the synthesized motion could
match the music beat rhythmically and choreography style.
However, these approaches are studied separately in prior
works. In many real-world applications, the characters are
likely to perform a complex motion sequence composed of
both rhythmic dances from music and certain actions de-
scribed by language, and smooth transition between mixed
modality inputs becomes vital important. As a result, multi-
modal motion consistency would become an urgent issue to
solve if employed siloed modality-specific models.

To address above mentioned problems, in this work, we
propose a Unified Driving Engine (UDE) which unifies the
human motion generation driven by natural language and
music clip in one shared model. Our model consists of
four key components. First, we train a codebook using
VQ-VAE. For the codebook, each code represents a certain
pattern of the motion sequence. Second, we introduce a
Modality-Agnostic Transformer Encoder (MATE). It takes
the input of different modalities and transforms them into
sequential embedding in one joint space. The third com-
ponent is a Unified Token Transformer (UTT). We feed
it with sequential embedding obtained by MATE and pre-
dict the motion token sequences in an auto-regressive man-
ner. The fourth component is a Diffusion Motion Decoder
(DMD). Unlike recent modality-specific works [30] [37],
our DMD is modality-agnostic. Given the motion token se-
quences, DMD decodes them to motion sequences in con-
tinuous space by the reversed diffusion process.

We summarize our contributions in four folds: 1) We
model the continuous human motion generation problem as
a discrete token prediction problem. 2) We unify the text-
driven and audio-driven motion generation into one sin-
gle unified model. By learning MATE, we can map in-
put sequences of different modalities into joint space. Then
we can predict motion tokens with UTT regardless of the
modality of input. 3) We propose DMD to decode the mo-
tion tokens to motion sequence. Compared to the decoder
in VQ-VAE, which generates deterministic samples, our
DMD can generate samples with high diversity. 4) We eval-
uate our method extensively and the results suggest that our
method outperforms existing methods in both text-driven
and audio-driven scenarios. More importantly, our experi-
ment also suggests that our UDE enables smooth transition
between mixed modality inputs.

2. Related Work

Text to Motion The recent success of multi-modal ma-
chine learning makes it possible to synthesize human mo-
tion from text descriptions. [1] proposed a method to gener-
ate human motion from natural language. They learn joint
embedding between language and poses with different en-
coders, and use a GRU-based motion decoder to map the

embedding to human motion. [6] further proposed to learn
a joint embedding among natural language, human upper
body, and lower body. They use a two-stream encoder to
map the upper body poses and lower body poses to the joint
embedding space, and a pre-trained BERT model [3] to en-
code the text description. In general, multiple motion se-
quences could be derived from a single text description. To
enable probabilistic text-guided synthesis, [22] proposed to
learn a joint distribution from motion sequence and natu-
ral language. Instead of learning a continuous latent space,
discrete latent space is also successfully verified in repre-
senting human motion [7]. In this work, motion sequences
are discretized into a codebook. A text-to-motion module
is proposed to predict motion code index from text descrip-
tions, and a motion-to-text module is used to introduce cy-
cle consistency. In addition, motion synthesis also benefits
from the recent development of multi-modal pre-training
such as CLIP [23]. The concept of CLIP is employed in [29]
to synthesize human motion from natural language. Re-
cently, Diffusion models have emerged as an alternative
in motion generation [30] [37]. They encode text descrip-
tions using pretrained models, and estimate the Gaussian
noise [37] and final results [30] directly at every reversed
diffusion step.

Music to Motion Music-to-motion, compared with text-
to-motion, has different philosophy. There is no strict map-
ping between music and motion, but the rhythm, beat, and
style [2] are critical points that build the correlation between
music and motion. [5] proposed a GAN-based method to
synthesize dance motion from music input. They use a CNN
encoder to extract music features and use an ST-GCN [35]
module to decode the dance motions. An auto-regressive
approach is introduced in [12], where the music sequence
is encoded by a transformer encoder at first. Then an
RNN-based decoder is employed to predict step-wise pose
given music feature and previous poses. Similarly, [25] [18]
synthesize dance poses auto-regressively, but with trans-
former [34] architectures. These approaches encode au-
dio sequence and previous motion sequence with different
transformer encoders, respectively, and a fusion module is
used to synthesize future poses conditioned on music and
dance poses. These two approaches are deterministic. To
introduce diversity, [32] proposed a normalizing-flow [26]
based approach. In this work, the same cross-modal fea-
ture described in [18] is used to extract the conditioned
feature, while a normalizing-flow module [10] is used to
generate poses given the cross-modal feature and random
noise. [16] proposed a GAN-based approach to synthesize
diverse dance motions conditioned on music input. They
use a transformer decoder to map the input music and seed
poses to long-range motion poses, where the dance genre
is constrained by mapping the genre to a style latent code.
A transformer encoder is used as a discriminator to distin-
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guish the synthesized motion between fake and real. In-
stead of representing the condition information with contin-
uous latent, [28] proposed to use a discrete representation.
Their approach first learns a codebook using VQ-VAE, then
a GPT-like transformer module is used to predict the motion
code index given music input. In addition, they proposed
to decompose a human pose into its upper body and lower
body parts, and the final synthesized pose is a composition
of upper body and lower body poses.

These methods, however, are all modality-specific. There
is a lack of a solution to unify the multi-modality driven
human motion generation tasks.

3. Method
The overview of our entire framework is illustrated in

Fig. 2, which contains four modules: 1) Motion Quantiza-
tion module, 2) Modality-Agnostic Transformer module, 3)
Unified Token Transformer module, and 4) Diffusion Mo-
tion Decoder module, which will be described in the fol-
lowing respectively.

3.1. Motion Quantization (MQ)

We learn a semantic-rich codebook by training a VQ-
VAE model. We denote a motion sequence as x ∈ RT×c,
where T is the length of the motion sequence, and c is the
dimension per frame. To learn the codebook Z = {zq|zq ∈
R

T q×d}, we train an encoder to map x to e ∈ RT ′×d. Given
the sequential embedding e ∈ RT ′×d, we quantize them by
replacing each ei with its nearest code zqj in Z as Eq. (1)

Q(ei) = argmin
zq
j∈Z

∥ei − zqj ∥ (1)

To reconstruct the motion from zq , we employ a decoder to
decode the sequential codes zq ∈ R

T ′×d back to motion
sequence x̃ = D(zq) ∈ R

T ′×d. The encoder, decoder,
and codebook are trained simultaneously by optimizing the
following loss function:

LV Q = Lrec(x̃, x)+β1∥sg[e]−Q(e)∥+β2∥e−sg[Q(e)]∥
(2)

In Eq.(2), Lrec(x̃, x) is the reconstruction term, which en-
courages the decoded x̃ to be close to x as much as possi-
ble. The second term, ∥sg[e]−Q(e)∥, is the codebook loss,
which encourages the zqj to move close to encoded embed-
ding ei. The third term ∥e− sg[Q(e)]∥ is commitment loss,
it encourages the embedding ei to stay close to correspond-
ing discrete codes zqj so that the training process could be
stabilized. Both the encoder and decoder adopt a 1D tem-
poral convolution architecture.

3.2. Motion-Agnostic Transformer Encoder(MATE)

MATE is designed to convert multi-modal input data to
modality-agnostic output. Our encoder takes as input two

different modalities, text descriptions, and audio sequences.
For text input, the CLIP text encoder [23] is used to extract
word-level embedding. We skip the last step in CLIP text
encoder, which is a max-pooling operation, to obtain the
word level sequential embedding of input text description
as ẽt = E(xt). For audio input, we simply apply a linear
layer to project the raw audio input sequential feature vec-
tors as ẽa = E(xa). For simplicity, we express our MATE
mapping as ẽk = E(xk), where xk stands for the input of
modality k, here k could either refer to audio or text. Before
feeding sequential feature vectors of each modality into the
model, we add learnable token embedding for each modal-
ity to them and also prepend learnable aggregation token
embedding to the feature sequence. Finally, we apply po-
sition encoding to the feature sequence to obtain the final
input sequence:

ẽ = [Tk
agg, ẽ

k
0 +Tk, ẽk1 +Tk, ..., ẽki +Tk, ..., ẽkI +Tk]+ epos

(3)
where in Eq (3), Tk

agg is the learnable aggregation token
embedding for modality k, and Tk is the learnable token
embedding added to feature sequence of modality k. The
transformer architecture follows [4], where n transformer
encoder layers are stacked and full self-attention mecha-
nism is employed. For the output sequence of length m, we
take the first element as the global embedding ẽglob, while
the rest m − 1 elements are sequential embedding ẽseq , re-
spectively.

3.3. Unified Token Transformer (UTT)

Our UTT adopts a stacked transformer encoder lay-
ers architecture with a causal attention mechanism. We
feed the embedding ẽglob and ẽseq to UTT as conditions,
as well as the embedding of target motion tokens ẽmot.
We concatenate them along temporal dimension as ein =
[ẽglob, ẽseq, ẽmot]. We employ causal self-attention in train-
ing the UTT to make sure the future information is inacces-
sible. However, we want the condition information always
be accessible during the training process, we don’t mask
the region of conditions, but only mask out the region cor-
responding to future motion tokens. Denote the condition as
ẽ0:Lcond and motion tokens embedding as ẽ0:Tmot, the attention
region of motion token embedding ẽimot is [ẽ0:Lcond, ẽ

<=i
mot ].

Then UTT transforms ein to token sequence zq ∈ RT×d

auto-regressively.
As shown in Fig. 2, we can inject z ∼ N (0, I) for diver-

sity. Given a sampled z, we map it to z̃ through a MLP, so
that z has the same dimension as ẽglob, then we get the new
global condition embedding as ẽz̃glob = z̃ + ẽglob. So the
new input to UTT now becomes ein = [ẽz̃glob, ẽseq, ẽmot].

We introduce a discriminator to help training the UTT
and MATE end-to-end. We use a conditional discriminator,
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Figure 2. Pipeline of our method. Left is the overview of our method. We learn a codebook by training a VQVAE we called Motion
Quantization (MQ). Then a Modality-Agnostic Transformer Encoder (MATE) takes as input text description or audio sequence and maps
them to sequential embedding ẽ in joint space. The sequential embedding ẽ is then fed to Unified Token Transformer Decoder (UTT) to
predict the token sequence z̃. Finally, we propose a Diffusion Motion Decoder (DMD) to map the token sequence z̃ to a motion sequence
with high diversity. The details of UTT and DMD are shown in the zoomed-in panels on the Right.

which takes as input the global embedding ẽglob and the mo-
tion sequence. Instead of predicting one score per sequence
as conventional discriminators do, we adopt the strategy de-
scribed in PatchGAN [13]. The motion sequence x ∈ RT×c

is fed to the discriminator and the sequential feature vector
ẽDx ∈ RT ′×c is extracted by a 1D temporal convolution ar-
chitecture, where T′ = T/4. We apply a linear layer to
the ẽglob to get ẽDglob = FC(ẽglob) so that both ẽDx and
ẽDglob have same dimension. Then we feed the added fea-
tures ẽD = ẽDglob + ẽDx to a two-layer transformer encoder
to compute its sequential embedding. For each embedding,
a linear projection is applied to transform it into a validity
score.

The overall objective of MATE and UTT is:

L = Lce + βadvLadv (4)

where Lce is the cross entropy loss to token prediction, and
Ladv is the adversarial loss on motion sequence.

Lce = −
I∑

i=1

p(zqi ) log qθ(z̃
q
i ) (5)

Ladv = −Ep∼Pgen,q∼Qdata
D(G(p), q) (6)

where in Eq (6), p ∼ Pgen is the generated sample distribu-
tion, and q ∼ Qdata is the real sample distribution, respec-
tively. βadv is the balancing weight.

3.4. Diffusion Motion Decoder (DMD)

The pre-trained VQ-decoder produces deterministic out-
puts given same input tokens x̃ = D(zq). However, di-
versity is also desirable at the token decoding stage. We
propose a diffusion motion decoder to replace the VQ-
decoder to introduce additional diversity. Unlike [30]
[37], which take as input text descriptions directly, making
them modality-specific. Our method is a modality-agnostic
model which takes as input discrete tokens as condition, re-
gardless what modality the raw input is. The diffusion pro-
cess [11] is a Markov noising process, starting from real
data X0, Gaussian noise is added at each step to convert X0

to XT ∼ N (0, I). This process is expressed as

q(Xt|Xt−1) = N (Xt;
√
1− βtXt−1, βI) (7)

The entire diffusion process could be formulated as

q(X1:T|X0) =

T∏
t=0

q(Xt|Xt−1) (8)

Letting αt = 1 − βt and α̃t =
t∏

i=1

αi, the noisy data at

arbitrary step t could be derived from X0 as

q(Xt|X0) = N (Xt;
√

α̃tX0, (1− α̃t)I) (9)

The reversed diffusion process attempts to gradually de-
noise Xt. In our context, this reversed diffusion process is
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Method Text Retrieval Acc. FID Diversity Multimodality Recon Acc.
Top-1 Acc. ↑ Top-5 Acc. ↑ FIDK ↓ FIDm ↓ Divk ↑ Divm ↑ MMk ↑ MMm ↑ APE ↓ AVE ↓ APE(root) ↓ AVE(root) ↓

GT 9.99 27.74 4.84 1.11 7.82 6.47 - - 0.00 0.00 0.00 0.00
TEMOS [22] 4.86 16.58 45.31 21.37 3.48 7.63 - - 0.24 0.03 0.50 0.38

MotionCLIP [29] 7.01 22.49 37.46 10.76 4.11 9.07 - - 0.26 0.03 0.52 0.37
TM2T [7] 7.76±1.12 22.54±1.67 13.25±1.136 6.39±0.938 4.78±0.289 6.34±0.117 2.63±2.464 2.17±2.118 0.19±0.0002 0.02±0.0000 0.44±0.0007 0.34±0.0014

Ours 8.21±1.00 26.06±1.33 19.35±0.548 2.67±0.190 6.75±0.049 7.82±0.107 2.34±1.123 2.51±0.605 0.19±0.0002 0.02±0.0000 0.44±0.0011 0.33±0.0016

Table 1. Quantitative results of text-to-motion task under various metrics. For fair comparison, we reproduce the results of [22] [29] [7]
on HumanML3D dataset [8] using same splits. The motion representation is the same as ours and trained using their official codes. For
ours, we generate 3 samples per input with UTT, and for each token sequence, we generate 30 samples with DMD. Then we report the
average metrics and 95% confidence interval(±). Bold indicates best results, and underlined indicates the second best.

Method Beat Align ↑ FID Diversity Multimodality Recon Acc.
FIDK ↓ FIDm ↓ Divk ↑ Divm ↑ MMk ↑ MMm ↑ APE ↓ AVE ↓ APE(root) ↓ AVE(root) ↓

GT 0.237 17.10 10.60 8.19 7.45 - - 0.00 0.00 0.00 0.00
FACT [18] 0.2209 35.35 22.11 5.94 6.18 - - 0.26 0.04 0.70 0.11

Bailando [28] 0.2332 28.16 9.62 7.83 6.34 - - 0.27 0.03 0.32 0.13
Ours 0.2311±0.01937 17.25±1.442 8.69±1.568 7.78±0.543 5.81±0.253 4.27±1.123 2.82±0.706 0.29±0.0010 0.03±0.0004 0.28±0.0312 0.12±0.0596

Table 2. Quantitative results of audio-to-motion task. For ours, we generate 3 samples per input with UTT, and for each token sequence,
we generate 30 samples with DMD. Then we report the average metrics and 95% confidence interval(±).

Method Text-to-Motion Audio-to-Motion
Top-1 Acc. ↑ Top-5 Acc. ↑ FIDK ↓ FIDm ↓ Divk ↑ Divm ↑

Ours (gru) 7.89 23.45 47.21 23.13 6.71 3.72
Ours (gpt) 8.11 25.01 28.44 15.70 6.13 4.07

Table 3. Ablation on architecture of Unified Token Trans-
former (UTT). Ours (gru) means the architecture of UTT is
GRU-based, and Ours (gpt) means we use GPT-based architecture
for UTT. Both architectures adopt a deterministic token prediction
strategy, indicating no injection of z ∼ N (0, I) during inference.

conditioned on cz̃ = Ez(zq), where zq is the predicted to-
kens in the codebook, and Ez(zq) extracts embedding from
the token sequence. We follow the strategy in [11] where
we predict the noise ϵ added to Xt as ϵt = ϵθ(Xt, t, cz̃).
Our diffusion motion decoder is shown in Fig. 2. It con-
sists of two parts. The first part is a token transformer en-
coder, which maps codebook token sequence to sequential
embedding as cz̃ = Ez(zq). The sequential embedding cz̃
is served as condition embedding. For each reversed dif-
fusion step t, the diffusion transformer decoder takes as in-
put the sequential embedding cz̃ , the embedding of timestep
embT , and the noisy data Xt, and predicts the noise as
ϵt = ϵθ(cz̃, embT ,Xt), where θ are learnable parameters
of the diffusion transformer decoder. We train the diffusion
motion decoder by optimizing the following objective as

Ldiff = Et∈[1,T ],X0∼q(X0),ϵ∼N (0,I)[∥ϵ− ϵθ(cz̃, embT ,Xt)∥]
(10)

4. Experiments

We train MQ, DMD, and MATE + UTT seperately, and
evaluate it on two types of tasks: text-to-motion generation
and audio-to-motion generation, which will be described in
detail.

4.1. Datasets

As there is no public dataset that supports text-driven and
audio-driven motion generation simultaneously, we use two
separate datasets in our experiment. The first dataset is Hu-
manML3D [8], which is a text-to-motion dataset built upon
AMASS dataset [20] and HumanAct12 [9]. It provides a
wide range of motion-language pairs which cover ordinary
activities, such as ‘jumping’, ‘walking’, ‘running’, etc. The
second dataset is AIST++ [18], a large-scale dance motion
dataset built from [31]. It contains 1409 sequences of dance
motions, covering 10 different dance genres with hundreds
of choreographies.

4.2. Implementation Details

Data Preprocessing. The raw motion format of Hu-
manML3D follows the SMPL skeleton with 22 joints, while
the format of AIST++ follows the SMPL skeleton with
24 joints, preprocessing is conducted to unify their for-
mat. For each dataset, we use [21] to convert their motion
representation to SMPL skeleton with 24 joints represen-
tation. Furthermore, we normalize each motion sequence
by transforming the initial pose heading toward the same
direction. For audio preprocessing, a public toolbox, Li-
brosa [14], is used to extract the audio features. The feature
consists of Mel Frequency Cepstral Coefficients (MFCC),
MFCC delta, constant-Q chromagram, tempogram, and on-
set strength. For each audio feature sequence, it is repre-
sented as a T × 438 matrix.

Motion Quantization. The codebook size is set to 2048×
1024, where the number of discrete tokens is 2048, and the
dimension of each token is 1024. For VQ-encoder and VQ-
decoder, three-layer temporal 1D convolution networks are
adopted. We set β1 = 1, and β2 = 1.
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'a person is walking up stairs 
and holding onto the rail.'

' a person raises their arms out 
to their sides lowers them back 
down and then leading with 
their left arm and leg gets 
down on their hands and knees 
before raising up and standing 
on their knees.'

'a person walks forward 
unbalanced and almost falls 
over.'
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Figure 3. Qualitative comparison with existing methods on Text-to-Motion (Left) and Audio-to-Motion (Right) tasks. Left shows the
comparison between ours and [22] [29] [7] driven by the same text descriptions. Right shows the comparison between ours and [18] [28].
We appropriately adjust the position of each pose for better visualization.

Method Text-to-Motion Audio-to-Motion
Top-1 Acc. ↑ Top-5 Acc. ↑ FIDK ↓ FIDm ↓ Divk ↑ Divm ↑ FIDK ↓ FIDm ↓ Divk ↑ Divm ↑

ours 8.11 25.01 27.66 4.92 4.28 6.77 28.44 15.70 6.13 4.07
ours+z 8.33 25.78 26.93 4.49 5.05 7.63 27.99 15.26 6.32 4.14

Table 4. Ablation on diversity at token prediction. We validate the performance our Unified Token Transformer (UTT) with or without
injecting z ∼ N (0, I), where ours means deterministic prediction, and ours+z means probabilistic prediction mode. For ours+z, we
generate 30 samples per input and measure the average metrics.

Modality-Agnostic Transformer Encoder. For the text
encoder, we use the pre-trained CLIP text encoder, for au-
dio encoder, a 1-layer FC is adopted. For inputs of both
modalities, we project them to the dimension of 256. The
number of transformer encoder layers is set to 6, the number
of attention heads is 8 and the hidden dimension is 1024.

Unified Token Transformer. We set the number of trans-
former encoder layers to 8 and set the hidden dimension to
1024. For the loss, we set βadv = 1.

Diffusion Motion Decoder. For condition encoder Ez , the
number of encoder layers is 8, and the number of layers of
the decoder is also set to 8. For both encoder and decoder,
the hidden dimension is 1024, and the number of attention
heads is 8. The number of diffusion steps is set to 1000 in

our experiments.

Learning rate and Optimizer. For all stages, we use
Adam as our optimizer with a learning rate of 0.0001.

4.3. Evaluation Metrics

Text-to-Motion Evaluation Metrics. We evaluate our
method on text-to-motion tasks with five types of metrics.
1) Text Retrieval Accuracy. We evaluate the correlation be-
tween motion sequence and text description by Top-1 Acc,
and Top-5 Acc. respectively. Following [29], we train a mo-
tion encoder with a contrastive learning paradigm to make
the embedding of paired motion and text description close
to each other. During the evaluation, we compute the em-
bedding of paired motion and text description, and another

Method Text-to-Motion Audio-to-Motion
Top-1 Acc. ↑ Top-5 Acc. ↑ FIDK ↓ FIDm ↓ Divk ↑ Divm ↑ FIDK ↓ FIDm ↓ Divk ↑ Divm ↑

vq-decoder 8.11 25.01 27.66 4.92 4.28 6.77 28.44 15.70 6.13 4.07
diffusion-decoder 8.12 25.18 23.93 3.15 6.98 7.17 18.43 10.39 6.84 5.03

Table 5. Ablation on diversity at token decoding. We compare the performance of token decoding using our Diffusion Motion Decoder
(DMD) and pretrained VQ-Decoder. For fair comparison, both experiments take input as the token sequence predicted by our GPT-based
UTT without injecting z ∼ N (0, I). For DMD, we generate 30 samples per input.
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randomly select 60 irrelevant text descriptions from testset.
Then we calculate the similarity between motion embed-
ding and 61 text embedding. If the paired text’s embed-
ding is the most similar one among these text embedding,
it is considered as Top-1 Acc., similar for Top-5 Acc. 2)
Frechet Inception Distance (FID). FID measures the simi-
larity between two distributions, and we use a pre-defined
model to extract features. Here we define FIDk to measure
the kinetic feature, and FIDm to measure the manual de-
fined geometric feature. 3) Diversity. We measure the diver-
sity of the kinetic and geometric features. The features are
extracted by the same model as FID does. 4) Multimodality.
We measure the average variance of the feature of motion
sequences generated by single driven signal. The features
are extracted same as before. 5) Reconstruction Accuracy.
We measure the average joints positions distance and root
trajectory distance [22] between ground truth samples and
generated samples to indicate how close the generated sam-
ples are to the ground truth samples in terms of pose geom-
etry.

‘a person stands still and then 
bounces their hand as if playing with 
a yo-yo.’

‘a person walks turns around and 
then walks back.’

‘the person walks forward very slow.’
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Figure 4. Diversity of Text-to-Motion. Each column shows 3
samples generated by the same text descriptions. We observe that
our method generates motion sequences with high diversity while
maintaining the semantic meaning of the driving text descriptions.

Audio-to-Motion Evaluation Metrics. We evaluate our
method on audio-to-motion tasks with four types of met-
rics. 1) Beat Align. We measure how close are gener-
ated motion is to the driving audio sequence in terms of
rhythmic beat. The Beat Alignment Score is calculated as:
1

|Ba|
∑

ta∈Ba exp
{
−mintm∈Bm ∥tm−ta∥2

2σ2

}
, where Bm and

Ba correspond to the motion beat and audio beat, respec-
tively. For FID, Diversity, and Reconstruction Accuracy,
we follow the same definition as described in the text-to-
motion section.

4.4. Results

We compare our method with several state-of-the-art
methods. For text-to-motion, we compare ours with

a Middle Hiphop music a Locking music a Krump music
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Figure 5. Diversity of Audio-to-Motion. We show results driven
by 3 different music clips. 3 samples are generated for each clip.
For better visualization, we evenly extract 8 frames per sample and
display them in a grid format. As observed, our method generates
audio-driven motion sequences with high diversity.

TEMOS [22], MotionCLIP [29], and TM2T [7]. For audio-
to-motion, we compare with FACT [18] and Bailando [28].

Quantitative Comparison. Tab. 1 and Tab. 2 summa-
rize the quantitative comparison results. 1) For the text-
to-motion task, Tab. 1 shows that our method outperforms
all the competitive prior methods on Text Retrieval Acc. and
Recon Acc. metrics. Specifically, our results significantly
outperform all prior methods on Text Retrieval Acc., which
indicates our method generates semantically more corre-
lated samples among all of them. Thanks to our probabilis-
tic token prediction(UTT) and token decoding(DMD), our
method achieves the significantly higher kinetic feature di-
versity among all methods. 2) Tab. 2 shows that our method
achieves much better results in terms of FIDk and FIDm.
The significant improvement of FID scores of ours indicat-
ing the samples generated by our method show best kinetic
and geometric quality among all. Also, ours achieves sec-
ond best on Divk score, slightly lower than [28]. It indicates
that our method is also able to generate audio-driven motion
with competitive kinetic diversity.

Qualitative Comparison. Fig. 3 shows the qualitative
comparison between ours and the prior methods. 1) For
the text-to-motion task, our method shows the best qual-
ity and semantic correlation. i.e., for the sample-driven
by text ’a person raises their arms out to their sides
lowers them back down and then leading with their left
arm and leg gets down on their hands and knees before
raising up and standing on their knees.’, which describes
a very complex scenario, the results generated by [22]
fails to show the action ’standing on their knees’, and [29]
only shows the action ’raises their arms out to their sides’,
the results of [7], similarly, only shows the action
’raises their arms out to their sides’, while ours shows the
full action sequence described in the text description. 2) For
the audio-to-motion task, ours also shows the highest qual-
ity and correlation compared with [18] and [28]. For exam-
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ple, when driven by Locking music, the motion sequence
of [28] repeats a similar pattern, and the motion sequence
of [18] looks like the person is dancing to a Ballet style mu-
sic, but not a Locking style music, while ours shows diverse
poses and maintains the high correlation to the driving mu-
sic style at the same time.

Diversity. Fig. 4 and Fig. 5 show the qualitative results
on text-driven and audio-driven task, respectively. For each
figure, we show 3 samples generated by the same driving
input. We can observe that our method generates motion se-
quences with high diversity while maintaining semantic cor-
relation as well. For example the samples driven by text ’the
person walks forward very slowly’. The motion sequences
correctly match the text input while displaying different de-
tails even for such simple scenario. Fig. 5 shows the evenly
cropped poses of the results of the audio-driven task. We
show results driven by 3 different types of music, and for
each music sequence, 3 samples are shown. As we can see,
our method generates motion sequences with high quality
and diversity.

Smooth Transition We also generate motion sequences
conditioned on text description and music clip sequentially,
and we show the results in our supplementary material (Fig.
1).
4.5. Ablation Study

We conduct ablation studies on (1) design of UTT, (2)
deterministic v.s. probabilistic generation of UTT, and (3)
diversity of DMD compared with VQ-Decoder.

Variants of Unified Token Transformer. We explore the
design of UTT with two different architectures, GRU-based
and GPT-based, where GPT-based is the model adopted in
our work. We don’t inject random noise z ∼ N (0, I) to
eliminate randomness. Tab. 3 shows the quantitative com-
parison between these designs. We can observe that the
GPT-based achieves better results on both text-to-motion
task and audio-to-motion task. For text-to-motion task,
GPT-based method achieves higher text retrieval accuracy,
meaning that the samples are more semantically correlated
to the input text. In addition, GPT-based method also out-
performs on FIDs remarkably on audio-to-motion task, in-
dicating that its capacity in generating more realistic motion
to audio. This is likely because a token can attend to all its
previous tokens in GPT-based approach, making its long-
term generation more stable and semantically correlated.

Diversity at Unified Token Transformer. We explore the
diversity of token prediction of Unified Token Transformer
UTT. We adopt the VQ-Decoder as our token decoder to
eliminate the influence of diversity at token decoding to our
final results. For probabilistic prediction mode(ours+z), we
generate 30 samples for each input and measure the average
metrics. And for deterministic prediction mode(ours), we
only generate 1 sample for each input. Tab. 4 summarizes

the quantitative results. It shows that our UTT with proba-
bilistic generation achieves better results compared with de-
terministic generation. Specifically, on text-to-motion task,
ours+z outperforms on Top-1 Acc. and Top-5 Acc., and
also achieves higher Divk and Divm scores, respectively, as
expected. For audio-to-motion task, ours+z also achieves
better results compared with ours. For FIDk and FIDm

metrics, probabilistic generation mode brings better kinetic
quality (28.44 vs 27.99) and geometric quality (15.70 vs
15.26). It also shows that injecting z ∼ N (0, I) to to-
ken prediction stage brings slightly higher kinetic diversity
DIVk and geometric diversity DIVm, respectively. The
quantitative comparison shows that injecting z ∼ N (0, I)
to UTT not only brings motion quality gain but also brings
higher diversity, as expected.

Diversity at Diffusion Motion Decoder. We explore the
performance of our DMD at token decoding in terms of the
motion quality and diversity, compared with VQ-Decoder.
In this experiment, we adopt the GPT-based UTT and don’t
inject z ∼ N (0, I) to eliminate randomness at token pre-
diction stage. We compare the motion decoding between
our probabilistic generation module DMD and determinis-
tic generation module VQ-Decoder. Tab. 5 summarizes the
comparison results. For the text-to-motion task, we can ob-
serve that DMD achieves slightly higher text retrieval accu-
racy. It also outperforms on FIDk, FIDm, Divk and Divm
largely. The similar trends is observed on audio-to-motion
task, where DMD outperforms on FIDk and FIDm signifi-
cantly. For FIDk, DMD reduces it by 35%(28.44 to 18.43),
and for FIDm, DMD also brings 33% quality gain(15.70 to
10.39). In terms of Diversity, DMD also brings noticeable
performance gain. The comparison suggests that our DMD
design plays a vital role in generating diversity while main-
taining high sample quality. It is especially obvious that this
design performs better on audio-to-motion task.

5. Discussion

In this paper, we propose a Unified Driving Engine for
human motion generation. Our method unifies text-driven
and audio-driven human motion generation tasks into one
model. We learn a semantic-rich codebook to represent var-
ious patterns of human motions and propose a Modality-
Agnostic Transformer Encoder to map inputs of different
modalities into a joint space. We propose a Unified Token
Transformer to predict motion tokens with high diversity,
and finally, we propose Diffusion Motion Decoder to bring
additional diversity to the token decoding process. Exper-
iments show that our method achieves state-of-the-art per-
formance on text-to-motion and audio-to-motion tasks, re-
spectively. Our current method can be regarded as a late fu-
sion mechanism, it would be interesting to explore an early
fusion between different modalities in future work.

5639



References
[1] Chaitanya Ahuja and Louis-Philippe Morency. Lan-

guage2pose: Natural language grounded pose forecasting.
In 2019 International Conference on 3D Vision (3DV), pages
719–728. IEEE, 2019. 1, 2

[2] Kang Chen, Zhipeng Tan, Jin Lei, Song-Hai Zhang, Yuan-
Chen Guo, Weidong Zhang, and Shi-Min Hu. Choreomaster:
choreography-oriented music-driven dance synthesis. ACM
Transactions on Graphics (TOG), 40(4):1–13, 2021. 1, 2

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 2

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 3

[5] Joao P Ferreira, Thiago M Coutinho, Thiago L Gomes,
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