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Abstract

Recently, CLIP has been applied to pixel-level zero-shot
learning tasks via a two-stage scheme. The general idea is
to first generate class-agnostic region proposals and then
feed the cropped proposal regions to CLIP to utilize its
image-level zero-shot classification capability. While ef-
fective, such a scheme requires two image encoders, one
for proposal generation and one for CLIP, leading to a
complicated pipeline and high computational cost. In this
work, we pursue a simpler-and-efficient one-stage solu-
tion that directly extends CLIP’s zero-shot prediction ca-
pability from image to pixel level. Our investigation starts
with a straightforward extension as our baseline that gen-
erates semantic masks by comparing the similarity between
text and patch embeddings extracted from CLIP. However,
such a paradigm could heavily overfit the seen classes and
fail to generalize to unseen classes. To handle this is-
sue, we propose three simple-but-effective designs and fig-
ure out that they can significantly retain the inherent zero-
shot capacity of CLIP and improve pixel-level generaliza-
tion ability. Incorporating those modifications leads to
an efficient zero-shot semantic segmentation system called
ZegCLIP. Through extensive experiments on three public
benchmarks, ZegCLIP demonstrates superior performance,
outperforming the state-of-the-art methods by a large mar-
gin under both “inductive” and “transductive” zero-shot
settings. In addition, compared with the two-stage method,
our one-stage ZegCLIP achieves a speedup of about 5 times
faster during inference. We release the code at https:
//github.com/ZiqinZhou66/ZegCLIP.git.

1. Introduction
Semantic segmentation is one of the fundamental tasks

in the computer vision field, which aims to predict the

category of each pixel of an image [7, 15, 31, 41]. Ex-

tensive works have been proposed [8, 26, 30], e.g., Fully

Convolutional Networks [29], U-net [38], DeepLab fam-

ily [4–6] and more recently Vision Transformer based meth-

ods [16, 53, 58].
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Figure 1. Quantitative improvements achieved by our proposed

designs on VOC dataset. (1)(2) represents our one-stage Base-
line model of different versions (Fix or Fine-Tune CLIP image en-

coder), while (3)-(5) shows the effectiveness of applying our pro-

posed designs, i.e., Deep Prompt Tuning (DPT), Non-mutually
Exclusive Loss (NEL), Relationship Descriptor (RD), on base-

line model step by step. We highlight that our designs can dramat-

ically increase the segmentation performance on unseen classes.

However, the success of the deep semantic segmentation

models heavily relies on the availability of a large amount

of annotated training images, which involves a substantial

amount of labor. This gives rise to a surging interest in low-

supervision-based semantic segmentation approaches, in-

cluding semi-supervised [7], weakly-supervised [48], few-

shot [46], and zero-shot semantic segmentation [3, 34, 44].

Among them, zero-shot semantic segmentation is partic-

ularly challenging and attractive since it is required to di-

rectly produce the semantic segmentation results based on

the semantic description of a given class. Recently, the pre-

trained vision-language model CLIP [36] has been adopted

into various dense prediction tasks, such as referring seg-

mentation [43], semantic segmentation [33], and detection

[14]. It also offers a new paradigm and has made a break-

through for zero-shot semantic segmentation. Initially built

for matching text and images, CLIP has demonstrated a re-

markable capability for image-level zero-shot classification.

However, zsseg [49] and Zegformer [12] follow the com-

mon strategy that needs two-stage processing that first gen-

erates region proposals and then feeds the cropped regions

to CLIP for zero-shot classification. Such a strategy re-

quires two image encoding processes, one for generating

proposals and one for encoding each proposal via CLIP.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Table 1. Differences between our approach and related zero-shot

semantic segmentation methods based on CLIP.

Methods
Need an extra CLIP as an image Can do

image encoder? -level classifier? inductive?

zsseg [49] � � �

ZegFormer [12] � � �

MaskCLIP+ [56] � � �

ZegCLIP (Ours) � � �

This design creates additional computational overhead and

cannot leverage the knowledge of the CLIP encoder at the

proposal generation stage. Besides, MaskCLIP+ [56] uti-

lizes CLIP to generate pseudo labels of novel classes for

self-training but will be invalid if the unseen class names

in inference are unknown in the training stage (“inductive”

zero-shot setting).

This paper pursues simplifying the pipeline by directly

extending the zero-shot capability of CLIP from image-

level to pixel-level. The basic idea of our method is straight-

forward: we use a lightweight decoder to match the text

prompts against the local embeddings extracted from CLIP,

which could be achieved via the self-attention mechanism in

a transformer-based structure. We train the vanilla decoder

and fix or fine-tune the CLIP image encoder on a dataset

containing pixel-level annotations from a limited number

of classes, expecting the text-patch matching capability can

generalize to unseen classes. Unfortunately, this basic ver-

sion tends to overfit the training set: while the segmentation

results for seen classes generally improve, the model fails

to produce reasonable segments on unseen classes. Sur-

prisingly, we discover such an overfitting issue can be dra-

matically alleviated by incorporating three modified design

choices and report the quantitative improvements in Fig. 1.

The following highlights our key discoveries:

Design 1: Using Deep Prompt Tuning (DPT) instead of

fine-tuning or fixing for the CLIP image encode. We find

that fine-tuning could lead to overfitting to seen classes

while prompt tuning prefers to retain the inherent zero-shot

capacity of CLIP.

Design 2: Applying Non-mutually Exclusive Loss (NEL)
function when performing pixel-level classification but gen-

erating the posterior probability of one class independent of

the logits of other classes.

Design 3: Most importantly and our major innovation —

introducing a Relationship Descriptor (RD) to incorporate

the image-level prior into text embedding before matching

text-patch embeddings from CLIP can significantly prevent

the model from overfitting to the seen classes.

By incorporating those three designs into our one-stage
baseline, we create a simple-but-effective zero-shot seman-

tic segmentation model named ZegCLIP. Tab. 1 summa-

rizes the differences between our proposed method and ex-

isting approaches based on CLIP. More details can be found

in Appendix. We conduct extensive experiments on three

public datasets and show that our method outperforms the

state-of-the-art methods by a large margin in both the “in-

ductive” and “transductive” settings.

2. Related Works
Pre-trained Vision Language Models [19, 22, 36, 40]

which connects the image representation with text em-

bedding have achieved significant performance on various

downstream tasks, like image retrieval [28], dense predic-

tion [37], visual referring expression [43], visual question

answering [21] and so on. CLIP [36] as one of the most pop-

ular vision-language models is pre-trained via contrastive

learning on 400 million text-image pairs and shows power-

ful zero-shot classification ability. In this work, we explore

how to adapt CLIP’s pre-trained vision-language knowl-

edge from image-level into pixel-level prediction efficiently.

Semantic Segmentation as a fundamental dense pre-

diction task in computer vision requires annotating each

pixel of the input image. Previous work follows two prin-

ciples: 1) Directly considering semantic segmentation as

per-pixel classification task [29, 39, 45, 52, 55]; 2) De-

coupling the mask generation and the semantic classifica-

tion [8, 9, 51]. Both methods achieve significant progress

with a pre-defined closed set of semantic classes.

Zero-shot Semantic Segmentation remains an impor-

tant but challenging task due to the inevitable imbalance

problem in seen classes. The target model is required to

segment unseen classes after training on seen classes with

annotated labels. Previous works like SPNet [44], ZS3 [3],

CaGNet [17], SIGN [10], Joint [1] and STRICT [34] fol-

low the strategy that improves the generalization ability of

semantic mapping from seen classes to unseen classes.

As the popular pre-trained vision-language model CLIP

shows the powerful ability of zero-shot classification, it has

been also applied in zero-shot semantic segmentation re-

cently. Zegformer [12] and zsseg [49] develop an extensive

proposal generator and use CLIP to classify each region and

then ensemble the predicting results. Although it remains

CLIP’s zero-shot ability at the image level, the computa-

tional cost increases inevitably due to classifying each pro-

posal. MaskCLIP+ [56] creatively applies CLIP to gener-

ate pseudo annotations on novel classes (“transductive”) for

self-training. It has achieved competitive performance but

will be invalid in “inductive” setting where the names of

unseen classes in inference are unavailable while training.

Fine-tuning and Prompt Tuning are different methods

to update the parameters of pre-trained model when adopt

on downstream tasks. Intuitively, fine-tuning [18,42] is able

to achieve significant performance in fully supervised learn-

ing tasks, but is challenged by transfer learning. Recently,

prompting tuning that freezes the pre-trained model while

introducing a set of learnable prompts [2] provides an al-

ternative way. It has achieved satisfied performance in both
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Figure 2. Overall of our proposed ZegCLIP. Our method modifies a One-Stage Baseline framework of matching text and patch em-

beddings from CLIP to generate semantic masks. The key contribution of our work is three simple-but-effective designs (labeled as the

red circles 1,2,3 in the figure). Incorporating these three designs into our proposed one-stage baseline framework can upgrade the poorly

performed baseline method to a strong zero-shot segmentation model.

NLP tasks [24, 27, 35] and CV tasks [47, 50, 57]. Visual

Prompt Tuning [20] proposes an effective solution that in-

serts trainable parameters in each layer of the transformer.

Self-training in Zero-shot Segmentation introduces

another setting of zero-shot semantic segmentation called

“transductive”. Unlike the traditional “inductive” setting

where the novel class names and annotations are both un-

available in the training stage, [34] proposed that self-

training via pseudo labels on unlabeled pixels benefits solv-

ing the imbalance problem. In such “transductive” situa-

tion, both the ground truth of seen classes, as well as pseudo

labels of unseen classes, will be utilized to supervise the

target model for self-training [17,49,56] which can achieve

better performance.

3. Method

3.1. Problem Definition

Our proposed method follows the generalized zero-shot

semantic segmentation (GZLSS) [44], which requires to

segment both seen classes Cs and unseen classes Cu after

only training on a dataset with pixel-annotations of seen

part. In the training stage, the model generates per-pixel

classification results from the semantic description of all

seen classes. In the testing stage, the model is expected

to produce segmentation results for both known and novel

classes. Note that Cs ∩ Cu = � and the labels of Cu are un-

available while training. The key problem of zero-shot seg-

mentation is that merely training on seen classes inevitably

leads to overbias on known categories while inference.

This naturally corresponds to the “inductive” zero-shot

segmentation setting, in which both unseen class names

and images are not accessible during training. Besides “in-

ductive” zero-shot segmentation, there is a “transductive”

zero-shot learning setting, which assumes that the names

of unseen classes are known before the testing stage. They

[17,56] suppose that the training images include the unseen

objects, and only ground truth masks for these regions are

not available. Our method can easily be extended to both

settings and achieve excellent performance.

3.2. Baseline: One-stage Text-Patch Matching

As the large-scale pre-trained model CLIP shows im-

pressive zero-shot classification ability, recent methods ex-

plore applying CLIP to zero-shot segmentation by propos-

ing a two-stage paradigm. In stage 1, they train a class-

agnostic generator and then leverage CLIP as a zero-shot

image-level classifier by matching the similarity between

text embeddings and [cls] token of each proposal in stage 2.

While effective, such a design requires two image encoding

processes and brings expensive computational overhead.

To simplify the two-stage pipeline when adapting CLIP

to zero-shot semantic segmentation, in this work, we aim to

cope with the critical problem that how to transfer CLIP’s

powerful generalization capability from image to pixel level

classification effectively. Motivated by the observation of

recent work [56] that the text embedding can be implic-

itly matchable to patch-level image embeddings, we build

a one-stage baseline by adding a vanilla light-weight trans-

former as a decoder inspired by [13, 51]. Then we formu-

late semantic segmentation as a matching problem between

a representative class query and the image patch features.
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Formally, let’s denote the C class embeddings as T =
[t1, t2, ..., tC ] ∈ R

C×d, with d is the feature dimension of

CLIP model, ti representing the ith class, and the N patch

tokens of an image as H = [h1,h2, ...,hN ] ∈ R
N×d, with

hj denoting the jth patch.

Then we apply linear projections φ to generate

Q(query), K(key) and V(value) as:

Q = φq(T) ∈ R
C×d

K = φk(H) ∈ R
N×d,V = φv(H) ∈ R

N×d.
(1)

The semantic masks could be calculated by the scaled dot-

product attention which is the intermediate product of the

multi-head attention model (MHA):

Masks =
QKT

√
dk

∈ R
C×N , (2)

where
√
dk is the dimension of the keys as a scaling factor

and the final segmentation results are obtained by applying

Argmax operation on the class dimension of Masks. The

detailed architecture of the decoder has been shown on the

right of Fig. 2, which consists of three layers of transform-

ers.

How to update the CLIP image encoder: The patch fea-

ture representation is generated by the CLIP image encode.

How to update the CLIP image encoder, e.g., how to calcu-

late H, is an important factor. In our baseline approaches,

we consider H is obtained from a parameter fixed CLIP

or a parameter tunable CLIP, denoted as Baseline-Fix and

Baseline-FT separately. Later in SubSec. 3.3, we will dis-

cuss Deep Prompt Tuning (DPT), which turns out to be a

better way to adapt the CLIP for zero-shot segmentation.

How to train the segmentation model: To properly train

the decoder and (optionally) the CLIP model, we apply the

commonly used softmax operator to convert the logits cal-

culate from Eq. 2 to the posterior probability. Exclusive

Loss (EL) like Cross-entropy is then used as the objective

function. Later in SubSec. 3.4, we will point out this seemly

straightforward strategy can be potentially harmful for gen-

eralization.

Design of query embedding T: The query embeddings

T are the key to our approach. In our baseline model, we

use the embeddings from the CLIP text encoder. However,

as will be pointed out in SubSec. 3.5, such a choice might

cause severe overfitting and we propose a relationship de-

scriptor by using the relationship between text and image

token as class queries. In SubSec. 4.5-A, we further explore

other choices of T. Please refer to the relevant sections for

more details.

As shown in Fig. 1-(1)(2) and Tab. 5, our baseline model

turns out to perform poorly in practice, especially for the

unseen classes. It seems that the model overfits severely to

the seen classes and forgets the zero-shot learning capabil-

ity of CLIP during training. Fortunately, we identify three
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Figure 3. The architecture of deep prompt tuning.

simple-but-effective designs that can dramatically alleviate

this issue, as will be described in the subsequent sections.

3.3. Design 1: Deep Prompt Tuning (DPT)

The first design modification is to use deep prompt tun-

ing (DPT) [57] for the CLIP backbone rather than fine-

tuning CLIP. As described in Sec. 2, prompt tuning [47] is a

recently proposed scheme for adapting a pre-trained trans-

former model to a target domain. It has become a compet-

itive alternative to fine-tuning in the transfer learning set-

ting [20]. In this work, we explore deep prompt tuning to

adapt CLIP for zero-shot image segmentation. Prompt tun-

ing fixes the original parameters of CLIP and adds learn-

able prompt tokens as additional input for each layer. Since

the zero-shot segmentation model is trained on a limited

number of seen classes, directly fine-tuning the model tends

to overfit the seen classes as the model parameters are ad-

justed to optimize the loss only for the seen classes. Conse-

quently, knowledge learned for vision concepts unseen from

the training set might be discarded in fine-tuning. Prompt

tuning could potentially alleviate this issue since the origi-

nal parameters are intact during training.

Formally, we denote the input embeddings from the l-
th MHA module of the ViT-based image encoder in CLIP

as {gl,hl
1,h

l
2, · · · ,hl

N}, where gl denotes the [CLS] token

embedding and Hl = {hl
1,h

l
2, · · · ,hl

N} denotes the im-

age patch embeddings. Deep prompt tuning appends learn-

able tokens Pl = {pl
1,p

l
2, · · · ,pl

M} to the above token

sequence in each ViT layer of CLIP image encoder. Then

the l-th MHA module process the input token as:

[gl, _ ,Hl] = Layerl([gl−1,Pl−1,Hl−1]) (3)

where the output embeddings of {pl
1, · · · ,pl

M} are dis-

carded (denoted as _) and will not feed into the next layer.

Therefore, {pl
1,p

l
2, · · · ,pl

M} merely acts as a set of learn-

able parameters to adapt the MHA model.

As shown in Fig. 1-(3) and Tab. 5, compared with fine-

tuning, deep prompt tuning on CLIP image encoder can

achieve similar performance on seen classes but improve

the segmentation results on unseen significantly.
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3.4. Design 2: Non-mutually Exclusive Loss (NEL)

The general practice of semantic segmentation models

treats it as a per-pixel multi-way classification problem, and

Softmax operation is used to calculate the posterior proba-

bility, followed by using mutually Exclusive Loss (EL) like

Cross Entropy as the loss function. However, Softmax es-

sentially assumes a mutually exclusive relationship between

the to-be-classified classes: a pixel has to belong to one of

the classes of interest. Thus only the relative strength of log-

its, i.e., the ratio of logits, matters for posterior probability

calculation. However, when applying the model to unseen

classes, the class space will be different from the training

scenario, making the logit of an unseen class poorly cali-

brated with the other unseen classes.

To handle this issue, we suggest avoiding the mutual-

exclusive mechanism during training time and using Non-

mutually Exclusive Loss (NEL), more specifically, Sigmoid

and Binary Cross Entropy (BCE) loss to ensure the segmen-

tation result for each class is independently generated. In

addition, we use the focal loss [25] variation of the BCE

loss and combine it with an extra dice loss [32,54] as previ-

ous work [9]:

Lfocal = − 1

hw

hw∑

i=1

(1−yi)
γ×ŷlog(yi)+yγi ×(1−ŷi)log(1−yi),

(4)

Ldice = 1− 2
∑hw

i=1 yiŷi∑hw
i=1 y

2
i +

∑hw
i=1 ŷ

2
i

, (5)

L = α · Lfocal + β · Ldice, (6)

where γ = 2 balances hard and easy samples and {α, β} are

coefficients to combine focal loss and dice loss. As shown

in Fig. 1-(4) and Tab. 5, compared with CE, BCE performs

better on unseen classes, and the focal loss and dice loss

on BCE [9] boost the performance furthermore as demon-

strated in SubSec. 4.5-C.

3.5. Design 3: Relationship Descriptor (RD)

In the above design, the class embeddings extracted from

the CLIP text encoder will match against the patch embed-

dings from the CLIP image encoder in the decoder head.

While being quite intuitive, we find this design could lead

to severe overfitting. We postulate that this is because the

matching capability between the text query and image pat-

terns is only trained on the seen-class datasets.

This motivates us to incorporate the matching capability

learned from the original CLIP training into the transformer

decoder. Specifically, we noticed that CLIP calculates the

matching score between a text prompt and an image by

tc�g =

d∑

j

tcjgj =

d∑

j

rcj , (7)

where tc ∈ R
d denotes a text embedding for the cth class

and tj is its j-th dimension; g is the image embedding ([cls]

token); rcj = tcjgj . We postulate that rc = [rc1, r
c
2, · · · , rcd]

characterizes how the image and text, i.e., the text prompt

for representing class c, are matched, and call it text-image

Relationship Descriptor (RD) denoted as R ∈ R
C×d for

all C classes in this work. Then we concatenate RDs with

the original text embedding T ∈ R
C×d as image-specific

text queries T̂ = {t̂1, t̂2, ..., t̂C} ∈ R
C×2d for the trans-

former decoder. Specifically, with this scheme, the input

text query of transformer decoder for each class becomes:

t̂ = concat[r, t] = concat[t� g, t], (8)

where � is the Hadamard product. Note that, we apply

learnable linear projection layers on both T̂ and H to make

them has the same feature dimension.

We compare the effectiveness of applying the relation-

ship description shown in Fig. 1-(5) as well as in Tab. 5. As

seen, it can dramatically improve the segmentation results

on both seen and unseen categories. In SubSec. 4.5-A, we

further discuss the effect of using different combination for-

mats of element-wise operations for text-image matching in

the relationship descriptor and text queries T̂.

4. Experiments
4.1. Datasets

To evaluate the effectiveness of our proposed method,

we conducted extensive experiments on three public bench-

mark datasets, including PASCAL VOC 2012, COCO-Stuff

164K, and PASCAL Context. The unseen classes of each

dataset are shown in the Appendix according to previous

works [12, 17, 49, 56]. The details of the datasets are elabo-

rated as follows:

PASCAL VOC 2012 contains 10,582 augmented images

for training and 1,449 for validation. We also ignore the

“background” category and use 15 classes as the seen part

and 5 classes as the unseen part.

COCO-Stuff 164K is a large-scale dataset that contains

171 categories with 118,287 images for training and 5,000

for testing. The whole dataset is divided into 156 seen

classes and 15 unseen classes.

PASCAL Context includes 60 classes with 4,996 for train-

ing and 5,104 for testing. The dataset is divided into 50

known classes (including “background”) and the rest 10

classes as used as unseen classes in the test set.

4.2. Evaluation Metrics

Following previous works, we measure pixel-wise clas-

sification accuracy (pAcc) and the mean of class-wise inter-

section over union (mIoU) on both seen and unseen classes,

denoted as mIoU(S) and mIoU(U), respectively. We also

evaluate the harmonic mean IoU (hIoU ) among seen and

unseen classes.
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Table 2. Comparison with the state-of-the-art methods on PASCAL VOC 2012, COCO-Stuff 164K, and PASCAL Context datasets. “ST”

represents applying self-training via generating pseudo labels on all unlabeled pixels, while “�”+“ST” denotes that pseudo labels are

merely annotated on unseen pixels excluding the ignore part.

Methods
PASCAL VOC 2012 COCO-Stuff 164K PASCAL Context

pAcc mIoU(S) mIoU(U) hIoU pAcc mIoU(S) mIoU(U) hIoU pAcc mIoU(S) mIoU(U) hIoU
Inductive

SPNet [44] - 78.0 15.6 26.1 - 35.2 8.7 14.0 - - - -
ZS3 [3] - 77.3 17.7 28.7 - 34.7 9.5 15.0 52.8 20.8 12.7 15.8

CaGNet [17] 80.7 78.4 26.6 39.7 56.6 33.5 12.2 18.2 - 24.1 18.5 21.2
SIGN [10] - 75.4 28.9 41.7 - 32.3 15.5 20.9 - - - -
Joint [1] - 77.7 32.5 45.9 - - - - - 33.0 14.9 20.5

ZegFormer [12] - 86.4 63.6 73.3 - 36.6 33.2 34.8 - - - -
zsseg [49] 90.0 83.5 72.5 77.5 60.3 39.3 36.3 37.8 - - - -

ZegCLIP (Ours) 94.6 91.9 77.8 84.3 62.0 40.2 41.4 40.8 76.2 46.0 54.6 49.9
Transductive

SPNet+ST [44] - 77.8 25.8 38.8 - 34.6 26.9 30.3 - - - -
ZS5 [3] - 78.0 21.2 33.3 - 34.9 10.6 16.2 49.5 27.0 20.7 23.4

CaGNet+ST [17] 81.6 78.6 30.3 43.7 56.8 35.6 13.4 19.5 - - - -
STRICT [34] - 82.7 35.6 49.8 - 35.3 30.3 34.8 - - - -
zsseg+ST [49] 88.7 79.2 78.1 79.3 63.8 39.6 43.6 41.5 - - - -

ZegCLIP+ST (Ours) 95.1 91.8 82.2 86.7 68.8 40.6 54.8 46.6 77.2 46.6 65.4 54.4
�MaskCLIP+ [56] - 88.8 86.1 87.4 - 38.1 54.7 45.0 - 44.4 66.7 53.3

�ZegCLIP+ST (Ours) 96.2 92.3 89.9 91.1 69.2 40.7 59.9 48.5 77.3 46.8 68.5 55.6
Fully Supervised

ZegCLIP (Ours) 96.3 92.4 90.9 91.6 69.9 40.7 63.2 49.6 77.5 46.5 78.7 56.9

4.3. Implementation Details
Our proposed method is implemented based on the open-

source toolbox MMSegmentation [11] with PyTorch 1.10.1.

All experiments we provided are based on the pre-trained

CLIP ViT-B/16 model and conducted on 4 Tesla V100

GPUs, and the batch size is set to 16 with 512x512 as

the resolution of images. For “inductive” zero-shot learn-

ing, the total training iterations are 20K for PASCAL VOC

2012, 40K for PASCAL Context, and 80K for COCO-Stuff

164K. In the “transductive” setting, we train our ZegCLIP

model on seen classes in the first half of training iterations

and then apply self-training via generating pseudo labels in

the rest of iterations. The optimizer is set to AdamW with

the default training schedule in the MMSeg toolbox.

4.4. Comparison with State-of-the-art methods
To demonstrate the effectiveness of our method, the eval-

uation results compared with previous state-of-the-art meth-

ods are reported in Tab. 2. We also provide the fully super-

vised learning results as the upper bound to show the per-

formance gap between fully-supervised segmentation and

zero-shot segmentation results on unseen classes. The qual-

itative results on COCO-Stuff 164K are shown in Fig. 4 and

more visualization results are provided in Appendix.

From Tab. 2, we can see that our proposed method

achieves significant performance under the “inductive” set-

ting and outperforms previous works, especially for unseen

classes. This clearly demonstrates the superior generaliza-

tion capability of our method over the previous approaches.

In addition, we also find our approach excels in the “trans-

ductive” setting, although our method is not specifically de-

signed for that setting. As seen, our model dramatically im-

Table 3. Efficiency comparison with different metrics. All mod-

els are evaluated on a single 1080Ti GPU. #Params represents the

number of learnable parameters in the whole framework.

Datasets Methods #Params(M) ↓ Flops(G) ↓ FPS ↑
VOC

ZegFormer [12] 60.3 1829.3 1.7

ZegCLIP 13.8 110.4 9.0

COCO
ZegFormer [12] 60.3 1875.1 1.5

ZegCLIP 14.6 123.9 6.7

proves the performance on unseen classes while maintain-

ing excellent performance on seen part after self-training.

Fig. 4 shows the segmentation results of the Baseline-

Fix version and our proposed ZegCLIP on seen and un-

seen classes. After applying our designs, ZegCLIP shows

impressive segmentation ability on both seen and unseen

classes and can clearly distinguish similar unseen cate-

gories, for example, the unseen “tree”, “grass” and “play-

ingfield” categories in (1).

In addition, to demonstrate the efficiency of our pro-

posed method, we compare the number of learnable param-

eters and inference speed between our one-stage ZegCLIP

and typical two-stage method Zegformer [12] in Tab. 3. Our

proposed method achieves significant performance while

only requiring approximately 14M learnable parameters

with 117 Flops(G) on average which is only 23% and 6%
of [12], respectively. In terms of frames Per Second (FPS),

our method can achieve a speedup of about 5 times faster

during inference compared with two-stage method.

4.5. Ablation Study
A. Effect of different formats of text query t̂

In this work, we propose an important design called Re-

lationship Descriptor (RD) as described in SubSec. 3.5. In

this module, we combine the queried text embeddings T
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Figure 4. Qualitative results on COCO-Stuff 164K. (a) are the original testing images; (b) represent the performance of our proposed

one-stage baseline (fine-tuning the image encoder); (c) are the visualization results of our proposed ZegCLIP; (d) are the ground truths of

each image. Note that the white and red tags represent seen and unseen classes separately.

with image [cls] token g extract from CLIP to generate

text-image description T̂ before feeding the queries into the

segment decoder. Such image-specific queries can dramat-

ically improve the zero-shot segmentation performance on

unseen classes. To further explore the effect of different

element-wise operations in the relationship descriptor, we

conduct various formats of T̂ on VOC and report the results

in Tab. 4. For the image-specific text query of each class t̂,

it can be formulated as shown in the second column.

We can see, the dot product and the absolute difference

between text embedding t and [cls] token g can provide

more general information, but the sum and concatenate op-

erations perform poorly on both seen and unseen classes.

This is understandable since dot product and absolute dif-

ference characterize the relationship between the image and

text encoding, which is in line with the interpretation made

in SubSec. 3.5. The red line in Tab. 4 is the format of t̂ we

finally chose in our ZegCLIP model.

B. Detailed results of applying designs on baseline
To demonstrate the effectiveness of our proposed de-

signs, We further report the improvements of applying de-

signs on our Baseline model in Tab. 5. It shows that fixed

CLIP (Baseline-Fix) with a learnable segment decoder fails

to achieve satisfactory performance on both seen and un-

seen classes due to weak image representation for the dense

Table 4. Effect of different formats of text queries t̂.

dim format of t̂ pAcc mIoU(S) mIoU(U) hIoU

512

t 86.8 89.5 33.7 49.0
t�g 93.1 90.2 68.4 77.8
|t-g| 92.4 90.6 64.2 75.1
t-g 88.7 87.9 46.5 60.8
t+g 82.2 89.9 13.9 24.1

512*2

[t, g] 88.9 88.8 39.3 54.5
[t�g, t] 94.6 91.9 77.8 84.3
[|t-g|, t] 90.9 91.5 54.2 68.1

[t�g, t+g] 88.3 90.0 38.0 53.4
[t+g, t] 82.8 89.4 20.7 33.6

[t�g, |t-g|] 94.1 91.2 73.9 81.6
512*3 [t�g, |t-g|, t] 93.4 91.6 67.3 77.6

prediction task. Meanwhile, fine-tuning CLIP (Baseline-

FT) performs better on seen classes but deteriorates on un-

seen classes dramatically. It seems that the zero-shot trans-

fer learning ability of CLIP is destroyed after updating on

seen classes. Changing objective functions from mutual

exclusive into Non-mutually Exclusive Loss (NEL, De-
sign 2) also leads to significant performance boost both in

seen and unseen scenarios. The most dramatic improve-

ment comes from Relationship Descriptor (RD, Design
3) which almost doubles the unseen performance in many

cases. Finally, we noticed that Deep Prompt Tuning (DPT,
Design 1) works well with NEL (Design 2) and RD (Design

3). If we replace DPT by fine-tuning CLIP and combine

it with NEL and RD, the issue of overfitting seen classes

11181



Table 5. Quantitative results on VOC and COCO dataset to demonstrate the effectiveness of our proposed three designs.

method PASCAL VOC 2012 COCO-Stuff 164K
pAcc mIoU(S) mIoU(U) hIoU pAcc mIoU(S) mIoU(U) hIoU

Baseline-Fix 69.3 71.1 16.3 26.5 33.3 17.1 15.4 16.2
Baseline-Fix + NEL 85.5 85.2 36.6 51.2 52.4 31.7 20.8 25.1
Baseline-Fix + RD 86.0 82.5 46.6 59.6 41.0 23.3 23.4 23.3

Baseline-Fix + NEL + RD 89.6 83.3 66.4 73.9 53.7 32.3 32.5 32.4

Baseline-FT 77.3 76.5 13.8 23.4 48.4 32.4 17.5 22.7
Baseline-FT + NEL 83.8 84.1 27.5 41.4 56.5 39.9 25.4 31.0
Baseline-FT + RD 79.4 77.8 20.7 32.7 54.0 39.6 22.4 28.6

Baseline-FT + NEL + RD 89.6 90.2 42.4 57.7 60.2 42.7 22.3 29.3

Baseline-DPT 76.2 75.9 28.3 41.2 39.0 22.5 17.5 19.7
Baseline-DPT + NEL 89.2 89.9 40.4 55.7 58.5 38.0 27.4 31.8
Baseline-DPT + RD 85.5 81.0 55.2 65.7 46.4 28.4 27.8 28.1

Baseline-DPT + NEL + RD (ZegCLIP) 94.6 91.9 77.8 84.3 62.0 40.2 41.4 40.8

0
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80

m
Io

U
(%

)

Basline-Fix+NEL+RD Basline-FT+NEL+RD Basline-DPT+NEL+RD (ZegCLIP) Basline-DPT+NEL+RD (ZegCLIP) + ST
Figure 5. Detailed performance on unseen classes of COCO datasets. Note that “ST” represents self-training in “transductive” setting.

remain. In conclusion, our proposed method can ensure

semantic segmentation performance while maintaining the

powerful ability of CLIP and achieving excellent perfor-

mance on seen and unseen classes simultaneously.

C. Effect of advanced loss function
As we described in Subsec 3.4, we propose that apply-

ing non-mutually exclusive objective functions like using

binary cross entropy (BCE) with sigmoid performs better

on zero-shot semantic segmentation. To better handle the

imbalance problem among categories, we further combine

BCE with focal loss [25] and dice loss [23] according to

[9, 51] as Eq. 6, and the results of applying such two ver-

sions of the loss function, denoted as “plain” and “plus”,

are reported separately in Tab. 6. We can see that the “plus”

loss function achieves better performance on both seen and

unseen classes on VOC, COCO, and Context datasets.

Table 6. Comparison of introducing advanced loss function. Note

that “plain” represents merely Binary Cross Entropy (BCE), while

“plus” means adding focal loss on BCE and dice loss

dataset loss pAcc mIoU(S) mIoU(U) hIoU

VOC plain 93.4 89.7 73.6 80.9
plus 94.6 91.9 77.8 84.3

COCO plain 59.8 38.8 39.0 38.9
plus 62.0 40.2 41.4 40.8

Context plain 75.3 43.5 50.0 46.5
plus 76.2 46.0 54.6 49.9

D. Generalization ability to other datasets
To further explore the generalization ability of our pro-

posed method, we conduct extra experiments in Tab. 7.

We apply the pre-trained model of the source dataset via

supervised learning on seen classes and evaluate the seg-

mentation results on both seen and unseen classes of tar-

get datasets. Our method shows better cross-domain gen-

eralization capability compared with the latest related work

Zegformer which is also based on the CLIP model.

Table 7. Generalization ability to other datasets.

source target method pAcc mIoU mAcc

COCO

Context
Zegformer [12] 56.8 36.1 64.0

ZegCLIP 60.9 41.2 68.4

�ZegCLIP+ST 68.4 45.8 70.9

VOC
Zegformer [12] 92.8 85.6 92.7

ZegCLIP 96.9 93.6 96.4

�ZegCLIP+ST 97.2 94.1 96.7

5. Conclusion
In this work, we propose an efficient one-stage straight-

forward zero-shot semantic segmentation method based

on the pre-trained vision-language CLIP. To transfer the

image-wise classification ability to dense prediction tasks

while maintaining the advanced zero-shot knowledge, we

figure out three designs to achieve competitive results on

seen classes while extremely improving the performance on

novel classes. Our proposed method relay on text embed-

dings as queries that are very flexible to cope with both “in-

ductive” and “transductive” zero-shot settings. To demon-

strate the effectiveness of our method, we conduct exten-

sive performance on three public benchmark datasets and

outperform previous state-of-the-art methods. Meanwhile,

our one-stage framework shows about 5 times faster com-

pared with two-stage methods while inference. In general,

our work explores how to leverage the pre-trained vision-

language model CLIP into semantic segmentation and suc-

cessfully utilize its zero-shot knowledge in downstream

tasks which may provide inspiration for future research.
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