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Abstract

Image restoration under multiple adverse weather con-
ditions aims to remove weather-related artifacts by using a
single set of network parameters. In this paper, we find that
image degradations under different weather conditions con-
tain general characteristics as well as their specific charac-
teristics. Inspired by this observation, we design an efficient
unified framework with a two-stage training strategy to ex-
plore the weather-general and weather-specific features.
The first training stage aims to learn the weather-general
features by taking the images under various weather con-
ditions as inputs and outputting the coarsely restored re-
sults. The second training stage aims to learn to adaptively
expand the specific parameters for each weather type in
the deep model, where the requisite positions for expand-
ing weather-specific parameters are automatically learned.
Hence, we can obtain an efficient and unified model for im-
age restoration under multiple adverse weather conditions.
Moreover, we build the first real-world benchmark dataset
with multiple weather conditions to better deal with real-
world weather scenarios. Experimental results show that
our method achieves superior performance on all the syn-
thetic and real-world benchmarks. Codes and datasets are
available at this repository.

1. Introduction
Adverse weather conditions, such as rain, haze, and

snow, are common climatic phenomena in our daily life.
They often lead to the poor visual quality of captured im-
ages and primarily deteriorate the performance of many
outdoor vision systems, such as outdoor security cameras
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Figure 1. Illustration of the proposed method and the currently ex-
isting solutions. (a) The weather-specific methods; (b) the method
of [41]; (c) methods of [6, 69]; (d) our method, which learns the
weather-specific and weather-general features in an efficient man-
ner to remove multiple weather-related artifacts.

and automatic driving [53, 107]. To make these systems
more robust to various adverse weather conditions, many
restoration solutions have been proposed, such as deraining
[16,17,25,40,72,73,82,83], dehazing [1,23,49,65,80,84],
desnowing [4, 51, 97], and raindrop removal [22, 59, 96].
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Albeit these approaches exhibit promising performance
in the given weather situation, they are only applicable
to certain typical weather scenarios. However, it is in-
evitable to tackle various kinds of weather in the applica-
tion of outdoor vision intelligent systems. Consequently,
as shown in Fig. 1 (a), multiple sets of weather-specific
model parameters are required to deal with various condi-
tions, which brings additional computational and storage
burdens. Hence, it is vitally requisite to develop a uni-
fied model capable of addressing various types of adverse
weather conditions via a single set of network parameters.

Recently, several methods [6, 41, 69] adopt a single set
of network parameters to remove different weather-related
artifacts. However, these solutions contain limitations for
practical deployment and applications. Firstly, some meth-
ods [6,69] fail to consider the specific characteristics of each
weather condition in their proposed unified models, limit-
ing their restoration performance on specific weather con-
ditions. Secondly, as shown in Fig. 1 (b), although Li et
al. [41] tackle the differences and similarities of weather
degradation with multiple individual encoders and a shared
decoder. Such multiple fixed encoders may largely in-
crease network parameters. Thirdly, existing unified mod-
els [6, 41, 69] often require a large number of parameters,
limiting the model efficiency. Lastly, current state-of-the-
art methods [6, 41, 69] mainly employ synthesized datasets
in their training phase, causing apparent performance drops
in real-world scenarios.

In this paper, we argue that images with different weather
distortions contain general characteristics as well as their
specific characteristics. According to the atmosphere scat-
tering model [55, 57], due to the attenuation and scattering
effects, these weather disturbances often share some sim-
ilar visual degradation appearances, e.g., low contrast and
color degradation. Meanwhile, the typical type of weather
distortion has its unique characteristics. For example, rainy
images often suffer from occlusion by rain steaks with dif-
ferent shapes and scales [32, 82]; haze exhibits global dis-
tortions on the entire images [34, 65]. Pioneer works also
have devised many specific priors [23,72,80,83,97] for dif-
ferent weather conditions, which motivates us to explore
weather-general and weather-specific features to perform
image restoration under multiple weather conditions.

To achieve this, we design an efficient unified frame-
work for multiple adverse weather-related artifacts removal
by exploring both weather-general and weather-specific fea-
tures. The training procedure of our framework consists
of two stages. The first training stage aims to learn the
general features by taking various images under different
weather conditions as the inputs and outputting coarse re-
sults for multiple weather conditions. In the second train-
ing stage, we devise a regularization-based optimization
scheme, which learns to adaptively expand the specific pa-

rameters for each weather type in the deep model. Note that
these requisite positions to expand weather-specific parame-
ters could be learned automatically, thus avoiding redundant
parameters pre-designed by researchers. Hence, we are able
to obtain an efficient and unified model for image restora-
tion under multiple adverse weather conditions. Further-
more, we newly construct the first real-world benchmark
dataset with multiple weather conditions to better deal with
various weather-related artifacts in real-world scenarios.

The contributions of this paper could be summarized as:

• We reveal that image degradations under different
weather conditions contain both general and specific
characteristics, which motivates us to design a uni-
fied deep model by exploring the weather-general and
weather-specific features for removing weather-related
artifacts under multiple weather conditions.

• We present a two-stage training strategy to learn the
weather-general and weather-specific features auto-
matically. Moreover, the weather-specific features are
adaptively added at the learned positions, which makes
our model efficient and effective.

• In order to better deal with real-world weather con-
ditions, we construct the first real-world benchmark
dataset with multiple weather conditions. Addition-
ally, experimental results validate the superiority of our
proposed method on various benchmarks.

2. Related Work

Single image restoration under different weather condi-
tions have been extensively studied in previous literatures,
including deraining [16, 17, 19, 25, 26, 32, 40, 43, 72, 73, 78,
79, 82, 83, 86, 95, 104], dehazing [1, 10, 12, 23, 45, 49, 50,
65, 80, 84, 90, 98], desnowing [4, 51, 97], and raindrop re-
moval [22, 59, 62, 96].

Rain removal. The effects of rainy weather on images
are usually divided into rain streaks and rain drops. For
rain streak removal, [16] first applies the convolutional neu-
ral network on deraining, followed by GAN [94] and re-
current network [43]. Researchers look for better ways to
understand and represent rain streaks [2, 7, 32, 40, 74, 81,
91, 101, 106], for more delicate detail recovery [11, 89],
and for wider applicability under severe weather condi-
tion [40, 82]. Besides, many studies introduce the adver-
sarial learning [40], transfer learning [27, 87], frequency
priors [21, 28, 29, 103] and data generation to improve the
models’ performance.

The degradation of raindrops is different from that of
streaks. Thus, they are usually treated separately. There are
approaches including CNN [15], attention map [59], and
mathematical descriptions [22, 63] on raindrop removal.
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Haze removal. [23] proposes a simple prior of hazy images.
[1, 65, 93] applies various methods for dehazing, followed
by GAN [61, 84] and fusion-based strategy [66], attention-
based model with trainable pre-treatment part [49], dense
feature fusion [13], and the combination of CNN and trans-
former [20]. [38, 80] consider various priors and model-
ing of raindrops. Proposed learning methods include con-
trastive regularization [77] and multi-guided bilateral learn-
ing [102]. [44] pays attention to colorful haze removal.
There are also works pursuing stronger utilization and gen-
eralization on datasets [8, 46, 85].
Snow removal. [51] designs a two-stage network to deal
with different types of snow, while [4] considers the veiling
effect. [31] proposes a pyramid-structure model with lateral
connections. [5] uses dual-tree wavelet transform. [97] in-
troduces semantics and depth prior to snowfall removal.
Multiple weather-related artifacts removal. Different
from the above typical single weather removal task, all-
weather-removal is required to recover the clear images
with a single set of network parameters under multiple
kinds of weather conditions. Moreover, due to the differ-
ences among different tasks, all-weather-removal is obvi-
ously more challenging than the single image restoration
task. Li et al. [41] explore the differences and similarities
of each weather degradation by designing an all-in-one net-
work with multiple encoders. [6] combines the two-stage
knowledge and multi-contrastive learning strategy to handle
the weather removal problem. [69] propose a transformer-
based network with learnable specific weather queries to
handle the weather removal in a unified model. The method
[41] and our method both consider the differences and sim-
ilarities among different weathers. However, unlike [41]
using the specific weather parameters at the fixed encoder
positions, our method could adaptively expand the specific
parameters for a certain weather type at the learned network
positions, which is more flexible and efficient.
Multi-task learning (MTL). MTL mainly focuses on
handling multiple tasks in a single network, which is exten-
sively studied in the high-level [48, 71, 100, 105] and low-
level vision tasks [3, 42]. Recently, methods [3, 42] attempt
to exploit the transformers and pre-training scheme to han-
dle multiple image restoration tasks, including deraining,
denoising, and super-resolution. However, the correlation
among these tasks is limited, while different weather degra-
dations exist with apparent similarities to a certain extent.

3. Motivation
Weather-distorted images are often captured in outdoor

environments. Here, we would like to further analyze the
general and specific characteristics of different weather con-
ditions from the following two perspectives.

The degradation in bad weathers. Different weather ef-
fects, i.e., rain, haze, and snow, are mainly caused by the
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Figure 2. (a) Illustration of the atmosphere scattering model
[54, 56] in various weather conditions. (b) Real-world scenes of
different weather conditions.
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Figure 3. Similarity visualizations among different layers of mul-
tiple pre-trained models for deraining, dehazing, and desnowing.
(a) The similarity of Rain and Snow models; (b) the similarity of
Rain and Haze models; (c) similarity of Haze and Snow models.
The values on two axes (0-80) indicate the position order of differ-
ent network layers, where we uniformly sampled 80 layers.

various particles involved in the transparent medium (air
space) based on the atmosphere optics. The atmosphere
scattering model [54,56] describes the imaging formulation
in bad weather conditions, which reveals that the received
irradiance of a certain scene point from the photographic
sensor is the summation of the direct transmission (attenua-
tion) and the airlight, respectively:

E = E∞ρe−βd︸ ︷︷ ︸
Direct transmission

+E∞
(
1− e−βd

)︸ ︷︷ ︸
Airlight

, (1)

where E∞ denotes the sky intensity; ρ denotes the normal-
ized radiance of the certain scene point; βd denotes the op-
tical distance of a certain scene point. Here we refer readers
to [55–57] for more details. In Fig. 2 (a), we also provide
the illustration of Eq. (1), in which the former term (di-
rect transmission) describes the attenuation effect of the ob-
ject light travel through the atmosphere, and the latter term
(airlight) reveals the scattering of illumination by different
involved particles in the atmosphere space.

According to the above physical imaging model, differ-
ent weather effects share general characteristics. In detail,
during the imaging process, particles of different weathers
unavoidably modulate the light transmitting from the cer-
tain scene point to the sight of observers. The scattering
light integration along the light propagation path [54] may
unavoidably change the brightness of different weather con-
ditions (Fig. 2 (b)). Thus, images under different adverse
weathers exist common degradation, such as low contrast
and subtle color distortion.

Besides, there also exist weather-specific characteristics
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Figure 4. The overall illustration of our method. (a) and (b) illustrate the first and second training stages of our framework, respectively;
(c) illustrates the inference stage of our framework. For simplicity, skip connections are omitted.

in each weather condition. For instance, the particle type of
haze is aerosol, and haze is assumed as the entire image cor-
ruption [1,68]. Rain is constituted of water drops, and rainy
images suffer from occlusion by the large motion-blurred
particles with different shapes and scales. In contrast, irreg-
ular particle trajectories and opaque snowflakes are com-
monly seen in snowfall images. These differences among
multiple weather types will cause interference when remov-
ing multiple weather-related artifacts. Hence, many more
accurate physical models [4, 39, 75, 81] of various weather
conditions based on Eqn. 1 are appeared, which further in-
corporate the typical weather priors into their models.

Analysis of feature representations. To study the fea-
ture representations in deep networks for different weather-
related artifacts removal, we individually train the models
on different weather datasets using the UNet-based struc-
ture network [67]. Then, we adopt centered kernel align-
ment (CKA) [9, 36, 37, 42, 58] to measure the similarity of
feature representations in deep networks, which have been
pre-trained on the different weather datasets.

The similarity visualizations across hidden layers of dif-
ferent networks are shown in Fig. 3. The internal repre-
sentations learned on the rain dataset seem similar to the
counterparts on the snow dataset. One plausible reason is
that many snowfall images often resemble rainy images re-
garding appearances of degradation. While from Fig. 3 (b)
and (c), the layers of the dehazing model have more similar
patterns to the layers of deraining or desnowing models at
the shallow and deep layers. Although networks are trained
with different weather datasets, similar representations still
exist at the sub-set of network positions.

Above observations motivate us to expand parameters
for different weather types in an adaptive manner, which is
flexible and efficient for multiple weather artifacts removal.

4. Methodology
To explore weather-specific and weather-general fea-

tures for multiple weather removal tasks, we construct a
unified network architecture based on the U-Net [67]. Ad-
ditionally, as shown in Fig. 4, we devise a novel two-stage
training strategy, where we separately learn weather-general
features and weather-specific features in the first and second
training stages. Then, we elaborate the implementation de-
tails of our method. Without loss of generality, we assume
that weather types include rain, snow, and haze.

4.1. Weather-General Feature Learning

We employ the shared backbone network to learn the
weather-general features. Specifically, various types of
weather images are adopted to jointly update the shared
backbone network, which helps the network to learn the
weather-general feature representations. The forward pro-
cess at this stage could be formulated as

X̂ρ = f (Xρ; θshare) , (2)

where Xρ and X̂ρ denote the input and recovered images of
weather type ρ; θshare denotes the general sharing param-
eters for all weather types, which are jointly optimized by
multiple weather datasets.

In addition, the aforementioned Eq. (1) reveals that the
bad weather degradation is largely related to the depth of
corresponding scenes. Hence, we introduce the depth in-
formation in our framework to optimize the network. We
adopt the depth consistency loss Ldepth, which fully ex-
ploits the general depth auxiliary information among dif-
ferent adverse weathers. Hence, the final loss function of
the first training stage is formulated as follows:

Ls1 = Lcontent(X̂ρ, Yρ) + λdepth||D(X̂ρ)−D(Yρ)||1 ,
(3)
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where Lcontent denotes the L1 and perceptual losses [33];
X̂ρ and Yρ indicate the outputs and labels of the weather ρ;
D(·) denotes the pre-trained depth estimation network [47],
and λdepth denotes the balanced weight.

4.2. Weather-Specific Feature Learning

Adopting the shared parameters to deal with different
weather conditions often degrades the restoration perfor-
mance on each weather due to the interference issues of
different sub-tasks. A straightforward solution is to insert
the specific parameters for each weather condition across
the network layers. Without loss of generality, such net-
work expansion manner of the specific parameter θρ for the
weather type ρ (ρ ∈ [Rain,Haze, Snow]) is defined as

θiρ = θishare +∆θiρ , (4)

where θishare denotes the general sharing weights at the net-
work layer i; ∆θiρ denotes the specific weights of weather
type ρ at the layer i (i = 1, 2, . . . , N , N is the total number
of network layers).

However, such a simple and fixed network expansion
paradigm exists limitations. First, according to the analysis
in Sec. 3, the fixed form of expansion for different weathers
is redundant and inflexible, leading to heavy computation
overhead. Second, when the weather types increase, the
fixed expansion manner will introduce the massive network
parameters. A problem naturally arises: how to efficiently
and flexibly explore weather-specific features to boost the
network performance on a certain weather type?

In this regard, we devise the regularization-based opti-
mization scheme to achieve adaptive weather-specific pa-
rameters expansion for different weather types. In detail,
we take the pre-trained model at the first stage as the basic
model, where the parameters (θshare) are shared in different
weather conditions. To learn the weather-specific features,
we first keep the parameters θshare frozen during this sec-
ond training stage. Then, we introduce the weather-specific
parameters ∆θρ and learnable scoring variable Si

ρ for the
typical weather ρ at the network layer i. Hence, in our
method, the parameters of the typical weather type ρ at the
layer i could be reorganized as

θiρ = θishare + Fτ (S
i
ρ) ∗∆θiρ , (5)

where Si
ρ is the learnable scoring variable, which is used to

assess the necessity to expand parameters at the layer i. An
indicator function Fτ (·) is designed to determine whether
to add the new parameters or not, which is defined as

Fτ (S
i
ρ) =

{
1 if Si

ρ ≥ τ ,

0 otherwise ,
(6)

where τ is the threshold hyperparameter. Only if Si
ρ is

larger than the threshold τ , the new parameters will be al-

lowed to add to the deep network. Here, we study the con-
volution operators with the kernel sizes of 1 × 1 or 3 × 3
as the newly added weather-specific parameters (please see
Sec. 6.4 for the detailed ablation study).

Lastly, the overall loss function of the second training
stage could be formulated as follows:

Ls2 =
∑
ρ

(
Lcontent(X̂ρ, Yρ) + λreg

N∑
i=1

∣∣Si
ρ

∣∣
1

)
,

(7)
where Lcontent denotes the MAE and perceptual losses
[33]; X̂ρ and Yρ indicates the restored outputs and ground
truths of the weather ρ; λreg denotes the hyperparameter
of the regularization term. As described in Eq. (7), we in-
troduce the sparsity regularization of Si

ρ in the objective
functions, which guides the network to automatically dis-
cover the network positions where we need to add weather-
specific parameters. Experimental results also reveal that
adding relatively small weather-specific parameters to the
learned positions will significantly improve model perfor-
mance (see Sec. 6.4 for details). Therefore, our network
could flexibly learn the weather-specific parameters and ef-
ficiently handle various weather conditions.
4.3. Inference Stage

Fig. 4 (c) illustrates the inference stage of our method.
The learned model comprises the weather-general parame-
ters for different weathers and the adaptive weather-specific
parameters for each typical weather at the sub-set of net-
work positions. For example, taking an image with a certain
type of weather (e.g., haze) as the input, the image will pass
through the parameters in black and blue color. Note that
these positions marked “NULL” indicates that these param-
eters are unnecessary and the forward propagation will not
pass through these layers.

5. Real-World Datasets for Multiple Weather-
Related Artifacts Removal

Current all-weather-removal approaches rely on syn-
thetic datasets to train their models, which limits their gen-
eralization capability to deal with real-world scenarios. To
this regard, we construct the first real-world benchmark
datasets under various weather conditions, including haze,
rain, and snow. For dehazing, we directly employ the ex-
isting real-world dehazing dataset [99]. For deraining, we
construct the SPA+ dataset based on the previous SPA [73]
dataset. SPA is the first large-scale real-world dataset with
paired images. However, SPA still contains two evident is-
sues: (i) many images with sparse rain steaks and repeated
background scenes; and (ii) existing images with the same
scenes in both training and testing sets. To solve these is-
sues, we first merge the images with repeated background
scenes and densify the rain streaks. Then, we remove the
images with the same scenes from the training set.
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Figure 5. (a) and (b) illustrate the visual samples of the real-world
dehazing dataset [99] and our proposed RealSnow, respectively.
(c) exhibits the same scenes with sparse rains occur multiple times
in SPA and corresponding merged images in our proposed SPA+.

Table 1. Illustration of three dataset settings for the weather re-
moval task (R: Rain; RD: RainDrop; S: Snow; H: Haze).

Setting Weather Types Datasets Training Configurations

[Setting 1]
(Synthetic) (R, RD, H)

Outdoor-Rain [40] Uniformly sampling
9000 images pairsRainDrop [59]

Snow100K [51]

[Setting 2]
(Synthetic) (R, S, H)

Rain1400 [17] Uniformly sampling
5000 images pairsRESIDE [39]

Snow100K [51]

[Setting 3]
(Real) (R, S, H)

SPA+ Uniformly sampling
160000 images patchesRealSnow

REVIDE [99]

In addition, inspired by [73], we build the first real-world
desnowing dataset by using the background-static videos to
acquire real-world snowing image pairs. The proposed real-
world snow dataset, named RealSnow, has 1890 image
pairs in total, where 1650 image pairs are used for train-
ing, and 240 image pairs are for evaluation. These im-
ages are acquired from 126 background-static videos with
a wide variety of urban or natural background scenarios,
e.g., buildings, cars, statues, trees, and roads. These scenes
include varying degrees of snowfall densities and illumina-
tions (e.g., day and night). RealSnow also contains various
resolutions, and the average resolution is 1208 × 646. The
example images from our dataset are shown in Fig. 5.

6. Experiments
6.1. Implementation Details

We implement our method on Pytorch platform. Adam
optimizer [35] is adopted. At the first stage, our model
is trained for 100 epochs, and the initial learning rate is
2 × 10−4, which is adjusted with the cosine annealing
scheme [52]. In the second stage, our model is trained for
another 100 epochs, and the initial learning rate is 1×10−4,
which is also adjusted with the cosine annealing scheme.
The patch size is set as 224 × 224. Additionally, hyperpa-
rameters are empirically set as: τ = 0.1, λdepth = 0.02,
and λreg = 0.08.

Table 2. [Setting 1] Comparisons on the Outdoor-Rain [40].

Type Method Venue PSNR ↑ SSIM ↑

Deraining
pix2pix [30] CVPR ′ 17 19.09 0.71
HRGAN [40] CVPR ′ 19 21.56 0.86
MPRNet [92] CVPR ′ 21 21.90 0.85

Multi-
Tasks

All-in-One [41] CVPR ′ 20 24.71 0.90
TransWeather [69] CVPR ′ 22 23.18 0.84

Chen et al. [6] CVPR ′ 22 23.94 0.85
Ours - 25.31 0.90

Table 3. [Setting 1] Comparisons on the RainDrop dataset [59].

Type Method Venue PSNR ↑ SSIM ↑

RainDrop
Removal

Pix2pix [30] CVPR ′ 17 28.02 0.85
Attn.GAN [59] CVPR ′ 18 30.55 0.90
Quan et al. [63] ICCV ′ 19 31.44 0.93

CCN [62] CVPR ′ 21 31.34 0.95

Multi-
Tasks

All-in-One [41] CVPR ′ 20 31.12 0.93
TransWeather [69] CVPR ′ 22 28.98 0.90

Chen et al. [6] CVPR ′ 22 30.75 0.91
Ours - 31.31 0.93

Table 4. [Setting 1] & [Setting 2] Comparisons on the
SnowTest100k-L (S-L) dataset [51].

Type Method Venue PSNR ↑ SSIM ↑

Desnowing

DetailsNet [17] CVPR ′ 17 19.18 0.75
DesnowNet [51] TIP ′ 18 27.17 0.90

JSTASR [4] ECCV ′ 20 25.32 0.81
DDMSNET [97] TIP ′ 21 28.85 0.88

Multi-
Tasks

(Setting 1)

All-in-One [41] CVPR ′ 20 28.33 0.88
TransWeather [69] CVPR ′ 22 27.80 0.85

Chen et al. [6] CVPR ′ 22 29.27 0.88
Ours - 29.71 0.89

Multi-
Tasks

(Setting 2)

TransWeather [69] CVPR ′ 22 26.17 0.88
Chen et al. [6] CVPR ′ 22 28.71 0.88

Ours - 29.42 0.89

Table 5. [Setting 2] Comparisons on the RESIDE dataset [39].

Type Method Venue PSNR ↑ SSIM ↑

Dehazing

EPDN [61] CVPR ′ 19 23.82 0.89
PFDN [14] ECCV ′ 20 31.45 0.97
KDDN [24] CVPR ′ 20 33.49 0.97

MSBDN [13] CVPR ′ 20 33.79 0.98
FFA-Net [60] AAAI ′ 20 34.98 0.99

AECRNet [77] CVPR ′ 21 35.61 0.98
MPRNet [92] CVPR ′ 21 31.31 0.97

Multi-
Tasks

All-in-One [41] CVPR ′ 20 30.49 0.95
TransWeather [69] CVPR ′ 22 27.66 0.95

Chen et al. [6] CVPR ′ 22 30.76 0.97
Ours - 30.85 0.98

6.2. Benchmark Datasets
To verify the effectiveness of our method, we employ

three dataset settings, which are presented in Tab. 1. Pre-
vious all-weather-removal methods [6,41,69] only perform
their methods on the settings of the synthetic datasets, e.g.,
[Setting 1] and [Setting 2]. Moreover, we construct the first
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Figure 6. Visualization comparisons with previous all-weather-removal methods under multiple real-world weather conditions.

Table 6. [Setting 2] Comparisons on the Rain1400 dataset [17].

Type Method Venue PSNR ↑ SSIM ↑

Deraining

JORDER [82] CVPR ′ 17 31.28 0.92
PReNet [64] CVPR ′ 19 31.88 0.93

DRD-Net [11] CVPR ′ 20 29.65 0.88
MSPFN [32] CVPR ′ 20 29.24 0.88

DualGCN [18] AAAI ′ 21 30.50 0.91
JRJG [88] CVPR ′ 21 31.18 0.91

MPRNet [92] CVPR ′ 21 31.53 0.96

Multi
Task

All-in-One [41] CVPR ′ 20 30.82 0.90
TransWeather [69] CVPR ′ 22 29.14 0.89

Chen et al. [6] CVPR ′ 22 31.75 0.91
Ours - 32.49 0.93

Table 7. Comparisons results on the datasets of [Setting 3].
Datasets Method Venue PSNR ↑ SSIM ↑

SPA+
TransWeather [69] CVPR ′ 22 33.64 0.93

Chen et al. [6] CVPR ′ 22 37.32 0.97
Ours - 38.94 0.98

RealSnow
TransWeather [69] CVPR ′ 22 29.16 0.82

Chen et al. [6] CVPR ′ 22 29.37 0.88
Ours - 29.46 0.85

REVIDE [99]
TransWeather [69] CVPR ′ 22 17.33 0.82

Chen et al. [6] CVPR ′ 22 20.10 0.85
Ours - 20.44 0.87

Table 8. Ablation study of our training strategy using the PNSR
metric on the Datasets of [Setting 1].
Models Experiment settings Rain RainDrop S-L

Model-1 Ours-Stage 1 (4.98 M) 25.04 30.88 29.13
Model-2 Ours-Stage 2 (5.97 M) 25.31 31.31 29.71
Model-3 Random Expansion of specific #Param. 25.14 30.96 29.28

Model-4
Enlarging #Param. of Model-1

(6.79 M) 25.22 30.99 29.42

Table 9. Ablation study of the parameters expansion types.

Type Setting 1 Setting 2

Rain RainDrop S-L Rain1400 RESIDE S-L

1× 1 30.31 31.31 29.71 32.49 30.85 29.43
3× 3 30.52 31.52 29.86 32.75 30.90 29.69

real-world benchmark dataset for image restoration under
multiple weather conditions of real scenes ([Setting 3]).

For fair comparisons, we follow [6,41] to uniformly sam-
ple images/patches from the dataset for network training.
Meanwhile, except for RealSnow in [Setting 3], we adopt
the corresponding test datasets that have already been pre-
divided by the pioneer works [17, 39, 40, 51, 59, 73].

Table 10. Ablation study of losses on the Datasets of [Setting 1].
lcontent ldepth Outdoor-Rain RainDrop Snow100K-L

Stage 1 ✓ 24.96 30.79 29.00
✓ ✓ 25.04 30.88 29.13

Table 11. Model efficiency comparisons.
Methods All-in-One Chen et al. TransWeather Ours

# Param (M: 106) 44.00 28.71 38.05 5.97
Inference Time (s) - 0.067 0.026 0.030
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Figure 7. Ablation study of the regularization term λreg .

6.3. Comparison with the State-of-the-art Methods
Similar to [41, 69], we adopt the Peak Signal-to-Noise

Ratio (PSNR) and the structural similarity (SSIM) [76] to
evaluate the restoration performance of different models.
PSNR and SSIM are calculated along the RGB channels.

In Tables 2 3 4 5 6 7, we report the qualitative com-
parison results among different methods, including both
all-weather-removal and typical-weather-removal methods.
Obviously, our method achieves superior performance in
terms of all metrics on all datasets compared with all-
weather-removal methods. In particular, our method sur-
passes TransWeather [69]1 by nearly two dB on multiple
datasets under different weather conditions.

Moreover, we provide visual comparisons on the real-
world scenarios of various kinds of weather in Fig. 6. It
is evident that our results successfully preserve background
details and remove multiple weather artifacts. In contrast,
the apparent artifacts still exist in the results of [69].

6.4. Ablation Study
We further conduct ablation studies to validate the effects

of each component in our method.
Ablation study of the two-stage training strategy. We
set up three models with the following configurations: (i)
Model-1 adopts the first training stage, and the network
only learns the weather-general parameters; (ii) Model-2

1The authors have updated their results in the new arxiv version.
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Figure 8. Visualization of the learned positions of expanded pa-
rameters. ‘1’: expansion and ‘0’: non-expansion.

(a)  t-SNE from weather-general features (b)  t-SNE from weather-specific features 

Figure 9. Visualization of t-SNE from learned weather-general
and weather-specific features with our proposed training strategy.

adopts two training stages, and we fix the weather-general
parameters and learn the weather-specific parameters; (iii)
Model-4 expands the weather-specific parameters with the
random sampling positions strategy. (iv) Model-4 enlarges
the parameters of Model-1, and the network only learns the
weather-general parameters.

As reported in Tab. 8, the performance of Model-2 per-
forms is significantly improved after the second training
stage, showing the effectiveness of our training strategy.
For fair comparisons, note that Model-3 enlarges the net-
work parameters by directly increasing the channel dimen-
sions. Compared to Model-3 and Model-4, Model-2 adopts
the adaptive parameters expansion strategy with fewer pa-
rameters but delivers better restoration performance.

Ablation study of expansion ratios. As described in
Sec. 4.1, we introduce a sparsity regularization in the objec-
tive function during the second training stage. It guides our
network to discover effective positions where to expand the
weather-specific parameters. Consequently, the expansion
ratio is defined as the ratio of the number of learned posi-
tions to the total number of positions. The expansion ratios
mainly depend on the coefficient of the regularization term
λreg. Consequently, we could adjust the λreg to achieve
a trade-off between the model efficiency and the number
of expansions. Using smaller λreg usually achieves better
model performance while leading to larger expansion ra-
tios. Meanwhile, larger expansion ratios often require more
weather-specific parameters, bringing more computational
overhead. In Fig.7, we present the model performance un-
der different values of λreg . Considering the model effi-

ciency, we set the default value of λreg as 0.08. Moreover,
we visualize the learned positions in Fig.8. The middle
layers have a stronger response to haze, since the middle
features of the haze model are largely different from other
weather types from Fig. 3.

Ablation study of the parameters expansion types. We
also study two weather-specific parameter types: convolu-
tion layers with the kernel size of 3 × 3 and 1 × 1. As
shown in Tab. 9, we report the performance of these two
types under a similar expansion ratio condition. Obviously,
given the similar expansion ratios of parameters, using 3×3
convolutions slightly performs better than the 1× 1 convo-
lutions but requires more network parameters. Hence, we
adopt convolutions with kernel size of 1 × 1 as the default
throughout the experiments.

Ablation study of losses. We validate the effectiveness of
loss functions in Tab. 10, indicating that the auxiliary depth
information improves the restoration performance.

Ablation study of feature representations. Fig. 9 visu-
alizes the t-SNE results [70] of the weather-general and
weather-specific features from the last layer of our network.
It indicates that our strategy can learn uniformly weather-
general and distinctively weather-specific features.

Efficiency comparisons. In Tab. 11, we further conduct
comparisons of the network parameters and the average in-
ference times among all-weather-removal methods. Our
method uses much fewer network parameters than others
but achieves better performance, as shown in Sec. 6.3.
Moreover, our method only takes 0.03 seconds to process an
image with the resolution of 256×256 on a single NVIDIA
Geforce GTX 1080 Ti GPU.

7. Conclusion
This work formulates an efficiently unified model to

remove weather-related artifacts under multiple adverse
weather conditions. To achieve this, we design a two-stage
training strategy, which first optimizes the network to learn
weather-general features and then to learn the weather-
specific features. More importantly, our method expands
the network parameters to generate weather-specific fea-
tures adaptively, thus reducing the computation overhead
of our model. Moreover, we construct the first real-world
dataset with multiple adverse weather conditions to promote
the further research on the real-world scenarios. Various ex-
periments demonstrate the superiority of our method over
other state-of-the-art methods.
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