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Abstract

Endeavors have been recently made to leverage the vi-
sion transformer (ViT) for the challenging unsupervised
domain adaptation (UDA) task. They typically adopt the
cross-attention in ViT for direct domain alignment. However,
as the performance of cross-attention highly relies on the
quality of pseudo labels for targeted samples, it becomes
less effective when the domain gap becomes large. We solve
this problem from a game theory’s perspective with the pro-
posed model dubbed as PMTrans, which bridges source and
target domains with an intermediate domain. Specifically,
we propose a novel ViT-based module called PatchMix that
effectively builds up the intermediate domain, i.e., proba-
bility distribution, by learning to sample patches from both
domains based on the game-theoretical models. This way,
it learns to mix the patches from the source and target do-
mains to maximize the cross entropy (CE), while exploiting
two semi-supervised mixup losses in the feature and label
spaces to minimize it. As such, we interpret the process of
UDA as a min-max CE game with three players, including
the feature extractor, classifier, and PatchMix, to find the
Nash Equilibria. Moreover, we leverage attention maps from
ViT to re-weight the label of each patch by its importance,
making it possible to obtain more domain-discriminative
feature representations. We conduct extensive experiments
on four benchmark datasets, and the results show that
PMTrans significantly surpasses the ViT-based and CNN-
based SoTA methods by +3.6% on Office-Home, +1.4% on
Office-31, and +17.7% on DomainNet, respectively. https:
//vlis2022.github.io/cvpr23/PMTrans

1. Introduction
Convolutional neural networks (CNNs) have achieved

tremendous success on numerous vision tasks; however, they

still suffer from the limited generalization capability to a new

domain due to the domain shift problem [50]. Unsupervised

domain adaptation (UDA) tackles this issue by transferring
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Figure 1. The classification accuracy of our PMTrans surpasses the

SoTA methods by +17.7% on the most challenging DomainNet

dataset. Note that the target tasks treat one domain of DomainNet

as the target domain and the others as the source domains.

knowledge from a labeled source domain to an unlabeled

target domain [30]. A significant line of solutions reduces

the domain gap based on the category-level alignment which

produces pseudo labels for the target samples, such as metric

learning [14,53], adversarial training [12,17,34], and optimal

transport [44]. Furthermore, several works [11, 36] explore

the potential of ViT for the non-trivial UDA task. Recently,

CDTrans [45] exploits the cross-attention in ViT for direct

domain alignment, buttressed by the crafted pseudo labels

for target samples. However, CDTrans has a distinct limita-

tion: as the performance of cross-attention highly depends

on the quality of pseudo labels, it becomes less effective

when the domain gap becomes large. As shown in Fig. 1,

due to the significant gap between the domain qdr and the

other domains, aligning distributions directly between them

performs poorly.

In this paper, we probe a new problem for UDA: how
to smoothly bridge the source and target domains by con-
structing an intermediate domain with an effective ViT-
based solution? The intuition behind this is that, compared

to direct aligning domains, alleviating the domain gap be-

tween the intermediate and source/target domain can facili-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. PMTrans builds up the intermediate domain (green

patches) via a novel PatchMix module by learning to sample

patches from the source (blue patches) and target (pink patches)

domains. PatchMix tries to maximize the CE (↑) between the

intermediate domain and source/target domain, while the feature

extractor and classifier try to minimize it (↓) for aligning domains.

tate domain alignment. Accordingly, we propose a novel and

effective method, called PMTrans (PatchMix Transformer)

to construct the intermediate representations. Overall, PM-

Trans interprets the process of domain alignment as a min-

max cross entropy (CE) game with three players, i.e., the

feature extractor, a classifier, and a PatchMix module, to find

the Nash Equilibria. Importantly, the PatchMix module is

proposed to effectively build up the intermediate domain, i.e.,

probability distribution, by learning to sample patches from

both domains with weights generated from a learnable Beta

distribution based on the game-theoretical models [1, 3, 28],

as shown in Fig. 2. That is, we aim to learn to mix patches

from two domains to maximize the CE between the inter-

mediate domain and source/target domain. Moreover, two

semi-supervised mixup losses in the feature and label spaces

are proposed to minimize the CE. Interestingly, we conclude
that the source and target domains are aligned if mixing
the patch representations from two domains is equivalent
to mixing the corresponding labels. Therefore, the domain

discrepancy can be measured based on the CE between the

mixed patches and mixed labels. Eventually, the three play-

ers have no incentive to change their parameters to disturb

CE, meaning the source and target domains are well aligned.

Unlike existing mixup methods [38, 47, 49], our proposed

PatchMix subtly learns to combine the element-wise global

and local mixture by mixing patches from the source and tar-

get domains for ViT-based UDA. Moreover, we leverage the

class activation mapping (CAM) from ViT to allocate the se-

mantic information to re-weight the label of each patch, thus

enabling us to obtain more domain-discriminative features.

We conduct experiments on four benchmark datasets, in-

cluding Office-31 [33], Office-Home [40], VisDA-2017 [32],

and DomainNet [31]. The results show that the performance

of PMTrans significantly surpasses that of the ViT-based

[36, 45, 46] and CNN-based SoTA methods [18, 29, 35] by

+3.6% on Office-Home, +1.4% on Office-31, and +17.7%
on DomainNet (See Fig. 1), respectively.

Our main contributions are four-fold: (I) We propose a

novel ViT-based UDA framework, PMTrans, to effectively

bridge source and target domains by constructing the inter-

mediate domain. (II) We propose PatchMix, a novel module

to build up the intermediate domain via the game-theoretical

models. (III) We propose two semi-supervised mixup losses

in the feature and label spaces to reduce CE in the min-max

CE game. (IV) Our PMTrans surpasses the prior methods

by a large margin on three benchmark datasets.

2. Related Work
Unsupervised Domain Adaptation. The prevailing UDA

methods focus on domain alignment and learning discrim-

inative domain-invariant features via metric learning, do-

main adversarial training, and optimal transport. Firstly,

the metric learning-based methods aim to reduce the do-

main discrepancy by learning the domain-invariant feature

representations using various metrics. For instance, some

methods [14, 25, 26, 52] use the maximum mean discrepancy

(MMD) loss to measure the divergence between different do-

mains. In addition, the central moment discrepancy (CMD)

loss [48] and maximum density divergence (MDD) loss [16]

are also proposed to align the feature distributions. Secondly,

the domain adversarial training methods learn the domain-

invariant representations to encourage samples from different

domains to be non-discriminative with respect to the domain

labels via an adversarial loss [13, 42, 43]. The third type

of approach aims to minimize the cost transported from the

source to the target distribution by finding an optimal cou-

pling cost to mitigate the domain shift [6, 7]. Unfortunately,

these methods are not robust enough for the noisy pseudo

target labels for accurate domain alignment. Different from
these mainstream UDA methods and [2], we interpret the
process of UDA as a min-max CE game and find the Nash
Equilibria for domain alignment with an intermediate do-
main and a pure ViT-based solution.
Mixup. It is an effective data augmentation technique to

prevent models from over-fitting by linearly interpolating

two input data. Mixup types can be categorized into global

mixup (e.g., Mixup [49] and Manifold-Mixup [41]) and local

mixup (CutMix [47], saliency-CutMix [38], TransMix [5],

and Tokenmix [22]). In CNN-based UDA tasks, several

works [29, 42, 43] also use the mixup technique by linearly

mixing the source and target domain data. In comparison, we
unify the global and local mixup in our PMTrans framework
by learning to form a mixed patch from the source/target
patch as the input to ViT. We learn the hyperparameters of
the mixup ratio for each patch, which is the first attempt
to interpolate patches based on the distribution estimation.
Accordingly, we propose PatchMix which effectively builds
up the intermediate domain by sampling patches from both
domains based on the game-theoretical models.
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Transformer. Vision Transformer(ViT) [39] has recently

been introduced to tackle the challenges in various vision

tasks [4, 23]. Several works have leveraged ViT for the non-

trivial UDA task. TVT [46] proposes an adaptation module

to capture domain data’s transferable and discriminative fea-

tures. SSRT [36] proposes a framework with a transformer

backbone and a safe self-refinement strategy to handle the

issue in case of a large domain gap. More recently, CD-

Trans [45] proposes a two-step framework that utilizes the

cross-attention in ViT for direct feature alignment and pre-

generated pseudo labels for the target samples. Differently,
we probe to construct an intermediate domain to bridge the
source and target domains for better domain alignment. Our
PMTrans effectively interprets the process of domain align-
ment as a min-max CE game, leading to a significant UDA
performance enhancement.

3. Methodology
In UDA, denote a labeled source set Ds = {(xs

i ,y
s
i )}ns

i=1

with i-th sample xs
i and its corresponding one-hot label

ys
i and an unlabeled target set Dt =

{
xt
j

}nt

j=1
with j-th

sample xt
j , ns and nt as the size of samples in the source

and target domains, respectively. Note that the data in two

domains are sampled from two different distributions, and

we assume that the two domains share the same label space.

Our goal is to address the significant domain divergence

issue and smoothly transfer the knowledge from the source

domain to the target domain. Firstly, we define and introduce

PatchMix, and interpret the process of UDA as a min-max

CE game. Secondly, we describe the proposed PMTrans

which smoothly aligns the source and target domains by

constructing an intermediate domain via a three-player game.

3.1. PMTrans: Theoretical Analysis

3.1.1 PatchMix

Definition 1 (PatchMix): Let Pλ be a linear interpolation
operation on two pairs of randomly drawn samples (xs,ys)
and (xt,yt). Then with λk ∼ Beta(β, γ), it interpolates
the k-th source patch xs

k and target patch xt
k to reconstruct

a mixed representation with n patches.

xi = Pλ(x
s,xt), xi

k = λk � xs
k + (1− λk)� xt

k,

yi = Pλ(y
s,yt) =

(
∑n

k=1 λk)y
s + (

∑n
k=1(1− λk))y

t

n
.

(1)

where xi
k is the k-th patch of xi, and � denotes multi-

plication. In Definition. 1, each image xi of the interme-

diate domain composes the sampled patches xk from the

source/target domain. Here, λk ∈ [0, 1] is the random mix-

ing proportion that denotes the patch-level sampling weights.

Furthermore, we calculate the image-level importance by

aggregating patch weights
∑n

k=1(1− λk), which is utilized

to interpolate their labels. As a result, we mix both sam-

ples (xs,ys) and (xt,yt) to construct a new intermediate

domain Di =
{(

xi
l,y

i
l

)}ni

l=1
. To align the source and target

domains, we need to evaluate the gap numerically. In de-

tail, let PS and PT be the empirical distributions defined by

Ds and Dt, respectively. The domain divergence between

source and target domains can be measured as

D(PS , PT ) = inf
f∈F,c∈C,Pλ∈P

E
(xs,ys),(xt,yt)

�
(
c
(Pλ

(
f(xs), f

(
xt

)))
,Pλ

(
ys,yt

))
,
(2)

where F denotes a set of encoding functions i.e., the feature
extractor and C denotes a set of decoding functions i.e. the
classifier. Let P be the set of functions to generate the
mixup ratio for building the intermediate domain. Then we
can reformulate Eq. 2 as

D (PS , PT ) = inf
hs
1,...,h

s
ns

∈Hs,ht
1,...,h

t
nt

∈Ht

1

ns × nt

ns∑
i

nt∑
j{

inf
c∈C

∫ 1

0

�
(
f
(Pλ

(
hs

i ,h
t
j

))
,Pλ

(
ys
i ,y

t
j

))
p(λ)dλ

}
,

(3)

where � is CE loss, hs
i = f(ssi ) and ht

j = f(xt
j). Note

Hs and Ht denote the representation spaces with dimension-

ality dim(H) for source and target domains, respectively.

Letf� ∈ F , c� ∈ C, and Pλ
� ∈ P be minimizers of Eq. 2.

Theorem 1 (Domain Distribution Alignment with Patch-
Mix): Let d ∈ N to represent the number of classes con-
tained in three sets Ds, Dt, and Di. If dim(H) ≥ d − 1,
Pλ

′�(c�(f�(xi)),y
s) + (1 − Pλ

′)�(c�(f�(xi)),y
t) = 0,

then D (PS , PT ) = 0 and the corresponding minimizer c�

is a linear function from H to R
d. Denote the scaled mixup

ratio sampled from a learnable Beta distribution as P ′
λ.

Theorem. 1 indicates that the source and target domains
are aligned if mixing the patches from two domains is
equivalent to mixing the corresponding labels. Therefore,

minimizing the CE between the mixed patches and mixed

labels can effectively facilitate domain alignment. For the
proof of Theorem. 1, refer to the suppl. material.

3.1.2 A Min-Max CE Game

We interpret UDA as a min-max CE game among three

players, namely the feature extractor (F), classifier (C), and

PatchMix module (P), as shown in Fig. 3. To specify each

player’s role, we define ωF ∈ ΩF , ωC ∈ ΩC , and ωP ∈ ΩP
as the parameters of F , C, and P , respectively. The joint

domain is defined as Ω = ΩF × ΩC × ΩP and their joint

parameter set is defined as ω = {ωF ,ωC ,ωP}. Then we

use the subscript −m to denote all other parameters/players

except m, e.g., ω−C = {ωF ,ωP}. In our game, m-th player

is endowed with a cost function Jm and strives to reduce its

cost, which contributes to the change of CE. Each player’
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Figure 3. Overview of the proposed PMTrans framework. It consists of three players: the PatchMix module empowered by a patch

embedding (Emb) layer and a learnable Beta distribution (Beta), ViT encoder, and classifier.

cost function Jm is represented as

JF (ωF ,ω−F ) := LS
cls(ωF ,ωC) + αCEs,i,t(ω),

JC (ωC ,ω−C) := LS
cls(ωF ,ωC) + αCEs,i,t(ω),

JP (ωP ,ω−P) := −αCEs,i,t(ω),

(4)

where α is the trade-off parameter, � is the supervised

classification loss for the source domain, and CEs,i,t(ω)
is the discrepancy between the intermediate domain and the

source/target domain. The definitions of LS
cls(ωF ,ωC) and

CEs,i,t(ω) are shown in Sec. 3.2. As illustrated in Eq. 4, the

game is essentially a min-max process, i.e., a competition

for the player P against both players F and C. Specifically,

as depicted in Fig. 3, P strives to diverge while F and C try

to align domain distributions, which is a min-max process on

CE. In this min-max CE game, each player behaves selfishly

to reduce its cost function, and this competition will possibly

end with a situation where no one has anything to gain by

changing only one’s strategy. This situation is called Nash

Equilibrium (NE) in game theory.

Definition 2 (Nash Equilibrium): The equilibrium states
each player’s strategy is the best response to other players.
And a point ω∗ ∈ Ω is Nash Equilibrium if

∀ωm ∈ Ωi, ∀m ∈ {F , C,P}, s.t.Jm(ω∗
m,ω∗

−m) ≤ Jm(ωm,ω∗
−m).

Intuitively, in our case, NE means that no player has the

incentive to change its own parameters, as there is no addi-

tional pay-off.

3.2. The Proposed Framework

Overview. Fig. 3 illustrates the framework of our proposed

PMTrans, which consists of a ViT encoder, a classifier, and a

PatchMix module. PatchMix module is utilized to maximize

the CE between the intermediate domain and source/target

domain, conversely, two semi-supervised mixup losses in

the feature and label spaces are proposed to minimize CE.

Finally, a three-player game containing feature extractor,

classifier, and PatchMix module, minimizes and maximizes

the CE for aligning distributions between the source and

target domains.

PatchMix. As shown in Fig. 3, the PatchMix module is

proposed to construct the intermediate domain, buttressed by

Definition. 1. In detail, the patch embedding layer in Patch-

Mix transforms input images from source/target domains

into patches. And the ViT encoder aims to extract features

from the patch sequences. The classifier maps the outputs of

ViT encoder to make predictions, each of which is exploited

to select the feature map to re-weight the patch sequences.

The PatchMix with a learnable Beta distribution aims to

maximize the CE between the intermediate and source/target

domain, and is presented as follows.

When exploiting PatchMix to construct the intermediate

domain, it is worth noting that not all patches have equal

contributions for the label assignment. As Chen et al. [5]

observed, the mixed image has no valid objects due to the

random process while there is still a response in the label

space. To remedy this issue, we re-weight Pλ(y
s,yt) in

Definition. 1 with the normalized attention score ak. For the

implementation details of attention scores, refer to the suppl.
material. The re-scaled Pλ(y

s,yt) is defined as

Pλ(y
s,yt) = λsys + λtyt,

where

λs =

∑n
k=1 λka

s
k∑n

k=1 λkas
k +

∑n
k=1(1− λk)at

k

,

λt =

∑n
k=1(1− λk)a

t
k∑n

k=1 λkas
k +

∑n
k=1(1− λk)at

k

.
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Figure 4. (a) The illustration of two proposed semi-supervised

losses. (b) Label similarity yis and yit. Better viewed in color.

Semi-supervised mixup loss. As PatchMix tries to

maximize the CE between the intermediate domain and

source/target domain, we now need to find a way to min-

imize the CE in the game. Intuitively, we propose two

semi-supervised mixup losses in the feature and label spaces

to minimize the discrepancy between features of mixing

patches and corresponding mixing labels based on Theo-

rem. 1. The objective of the proposed PMTrans is show in

Fig. 4 (a) and consists of a classification loss of source data

and two semi-supervised mixup losses.

1) Label space: As introduced in Theorem. 1, we apply

a supervised mixup loss in the label space to measure the

domain divergence based on the CE loss between the mixing

logits and corresponding mixing labels (See green arrow in

Fig. 4 (a)).

LI,S
l (ω) = E(xi,yi)∼Diλ

s�
(
C
(
F

(
xi

))
,ys

)
,

LI,T
l (ω) = E(xi,yi)∼Diλ

t�
(
C
(
F

(
xi

))
, ŷt

)
,

where ŷt is the pseudo label for target data. For conve-

nience, we utilize the method, commonly used in [20,21], to

generate pseudo labels ŷt for samples via k-means cluster.

2) Feature space: Nonetheless, the supervised loss alone

in the label space is not sufficient to diminish the domain

divergence due to the less reliable pseudo labels of the target

data. Therefore, we further propose to minimize the dis-
crepancy between the similarity of the features and the
similarity of labels in the feature space for aligning the in-

termediate and source/target domain without the supervised

information of the target domain. The experimental results

in Tab. 5 validate its effectiveness.

Specifically, we first compute the cosine similarity be-

tween the intermediate domain and source/target domain in

the feature space. The feature similarity is defined as

d(xi,xs) = cos(F (
xi
)
,F (xs)),

where cos denotes the cosine similarity. As shown in
Fig. 4(b), for the source domain, we exploit the ground-truth

to calculate the label similarity, yis = ys(ys)ᵀ, as a binary
matrix to represent whether samples share the same labels.
For example, the intermediate image is constructed by sam-
pling patches from the source image, e.g., clock; therefore,
the label similarity is set as 1 if it is calculated between the
intermediate image and the source class ‘clock’, otherwise,
it is set as 0. Then, we utilize the CE to measure the domain
discrepancy based on the difference between the feature sim-
ilarity and label similarity. The supervised mixup loss in the
feature space (See red arrow in Fig. 4 (a)) is formulated as

LI,S
f (ωF ,ωP) = E(xi,yi)∼Diλ

s�
(
d(xi,xs),yis

)
.

Moreover, for the intermediate and target domains, due to
lack of supervision, we utilize identity matrix yit as the label
similarity. For example, in Fig. 4 (b), as the intermediate
image is built by sampling patches from the target image,
e.g., bottle; therefore, the label similarity between the in-
termediate image and the corresponding target image is set
as 1 and vice versa. To measure the divergence between
the intermediate and target domains in the feature space, we
propose an unsupervised mixup loss as

LI,T
f (ωF ,ωP) = E(xi,yi)∼Diλ

t�
(
d(xi,xt),yit

)
,

Finally, the two semi-supervised mixup losses in the fea-

ture and label spaces are formulated as

Lf (ωF ,ωP) = LI,S
f (ωF ,ωP) + LI,T

f (ωF ,ωP),

Ll(ω) = LI,S
l (ω) + LI,T

l (ω).

Moreover, the classification loss is applied to the labeled

source domain data (See blue arrow in Fig. 4 (a)) and is

formulated as

LS
cls(ωF ,ωC) = E(xs,ys)∼Ds� (C (F (xs)) ,ys) .

A Three-Player Game. Finally, the min-max CE game aims

to align distributions in the feature and label spaces. The

total CE between the intermediate domain and source/target

domain is

CEs,i,t(ω) = Lf (ωF ,ωP) + Ll(ω).

We adopt the random mixup-ratio from a learnable Beta

distribution in our PatchMix module to maximize the CE

between the intermediate domain and source/target domain.

Moreover, the feature extractor and classifier have the same

objective to minimize the CE between the intermediate do-

main and source/target domain. Therefore, the total objective

of PMTrans is achieved by reformulating Eq. 4 as

J (ω) := LS
cls(ωF ,ωC) + αCEs,i,t(ω),

where α is trade-off parameter. After optimizing the objec-

tive, the PatchMix module with the ideal Beta distribution

will not maximize the CE anymore. Meanwhile, the feature

extractor and classifier have no incentive to change their

parameters to minimize the CE. Finally, the discrepancy be-

tween the intermediate domain and source/target domain

is nearly zero, further indicating that the source and target

domains are well aligned.
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Method A→ C A→ P A → R C → A C → P C → R P→ A P→ C P→ R R→ A R→ C R→ P Avg

ResNet-50

R
es

N
et

44.9 66.3 74.3 51.8 61.9 63.6 52.4 39.1 71.2 63.8 45.9 77.2 59.4

MCD 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1

MDD 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1

BNM 56.7 77.5 81.0 67.3 76.3 77.1 65.3 55.1 82.0 73.6 57.0 84.3 71.1

FixBi 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7

TVT

V
iT

74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6

Deit-based 61.8 79.5 84.3 75.4 78.8 81.2 72.8 55.7 84.4 78.3 59.3 86.0 74.8

CDTrans-Deit 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5

PMTrans-Deit 71.8 87.3 88.3 83.0 87.7 87.8 78.5 67.4 89.3 81.7 70.7 92.0 82.1

ViT-based 67.0 85.7 88.1 80.1 84.1 86.7 79.5 67.0 89.4 83.6 70.2 91.2 81.1

SSRT-ViT 75.2 89.0 91.1 85.1 88.3 89.9 85.0 74.2 91.2 85.7 78.6 91.8 85.4

PMTrans-ViT 81.2 91.6 92.4 88.9 91.6 93.0 88.5 80.0 93.4 89.5 82.4 94.5 88.9

Swin-based

S
w

in 72.7 87.1 90.6 84.3 87.3 89.3 80.6 68.6 90.3 84.8 69.4 91.3 83.6

PMTrans-Swin 81.3 92.9 92.8 88.4 93.4 93.2 87.9 80.4 93.0 89.0 80.9 94.8 89.0

Table 1. Comparison with SoTA methods on Office-Home. The best performance is marked as bold.

Method A → W D→ W W→ D A→ D D→ A W→ A Avg

ResNet-50

R
es

N
et

68.9 68.4 62.5 96.7 60.7 99.3 76.1

BNM 91.5 98.5 100.0 90.3 70.9 71.6 87.1

MDD 94.5 98.4 100.0 93.5 74.6 72.2 88.9

SCDA 94.2 98.7 99.8 95.2 75.7 76.2 90.0

FixBi 96.1 99.3 100.0 95.0 78.7 79.4 91.4

TVT

V
iT

96.4 99.4 100.0 96.4 84.9 86.0 93.9

Deit-based 89.2 98.9 100.0 88.7 80.1 79.8 89.5

CDTrans-Deit 96.7 99.0 100.0 97.0 81.1 81.9 92.6

PMTrans-Deit 99.0 99.4 100.0 96.5 81.4 82.1 93.1

ViT-based 91.2 99.2 100.0 90.4 81.1 80.6 91.1

SSRT-ViT 97.7 99.2 100.0 98.6 83.5 82.2 93.5

PMTrans-ViT 99.1 99.6 100.0 99.4 85.7 86.3 95.0

Swin-based

S
w

in 97.0 99.2 100.0 95.8 82.4 81.8 92.7

PMTrans-Swin 99.5 99.4 100.0 99.8 86.7 86.5 95.3

Table 2. Comparison with SoTA methods on Office-31. The best

performance is marked as bold.

4. Experiments

4.1. Datasets and implementation

Datasets. To evaluate the proposed method, we conduct

experiments on four popular UDA benchmarks, including

Office-Home [40], Office-31 [33], VisDA-2017 [32], and

DomainNet [31]. The details of the datasets and transfer
tasks on these datasets can be found in the suppl. material.
Implementation. In all experiments, we use the Swin-based

transformer [24] pre-trained on ImageNet [9] as the back-

bone for our PMTrans. The base learning rate is 5e−6 with

a batch size of 32, and we train models by 50 epochs. For

VisDA-2017, we use a lower learning rate 1e−6. We adopt

AdamW [27] with a momentum of 0.9, and a weight decay of

0.05 as the optimizer. Furthermore, for fine-tuning purposes,

we set the classifier (MLP) with a higher learning rate 1e−5

for our main tasks and learn the trade-off parameter adap-

tively. For a fair comparison with prior works, we also con-

duct experiments with the same backbone Deit-based [37] as

CDTrans [45], and ViT-based [11] as SSRT [36] on Office-

31, Office-Home, and VisDA-2017. These two studies are

trained for 60 and 100 epochs separately.

4.2. Results

We compare PMTrans with the SoTA methods, including

ResNet-based and ViT-based methods. The ResNet-based

methods are FixBi [29], MCD [34], SWD [15], SCDA [19],

BNM [8], and MDD [51]. The ViT-based methods are SSRT

[36], CDTrans [45], and TVT [46].

For the ResNet-based methods, we utilize ResNet-50 as

the backbone for the Office-Home, Office-31, and Domain-

Net datasets, and we adopt ResNet-101 for VisDA-2017

dataset. Note that each backbone is trained with the source

data only and then tested with the target data.

Results on Office-Home. Tab. 1 shows the quantitative re-

sults of methods using different backbones. As expected,

our PMTrans framework achieves noticeable performance

gains and surpasses TVT, SSRT, and CDTrans by a large

margin. Importantly, our PMTrans achieves an improve-

ment more than 5.4% accuracy over the Swin backbone and

yields 89.0% accuracy. Interestingly, our proposed PMTrans

can decrease the domain divergence effectively with Deit-

based and ViT-based backbones. The results indicate that our

method can obtain more robust transferable representations

than the CNN-based and ViT-based methods.

Results on Office-31. Tab. 2 shows the quantitative compar-

ison with the CNN-based and ViT-based methods. Overall,

our PMTrans achieves the best performance on each task

with 95.3% accuracy and outperforms the SoTA methods

with identical backbones. Numerically, PMTrans noticeably

surpasses the SoTA methods with an increase of +1.4% accu-

racy over TVT, +2.7% accuracy over CDTrans, and +1.8%
accuracy over SSRT, respectively.

Results on VisDA-2017. As shown in Tab. 3, our PMTrans

achieves 88.0% accuracy and outperforms the baseline by

11.2%. In particular, for the ‘hard’ categories, such as ”per-

son”, our method consistently achieves a much higher per-

formance boost from 29.0% to 70.3%. These improvements

indicate that our method shows an excellent generalization

capability and achieves comparable performance (88.0%)
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Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg

ResNet-50

R
es

N
et

55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

BNM 89.6 61.5 76.9 55.0 89.3 69.1 81.3 65.5 90.0 47.3 89.1 30.1 70.4

MCD 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

SWD 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4

FixBi 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 97.2 94.2 90.9 25.7 87.2

TVT

V
iT

82.9 85.6 77.5 60.5 93.6 98.2 89.4 76.4 93.6 92.0 91.7 55.7 83.1

Deit-based 98.2 73.0 82.5 62.0 97.3 63.5 96.5 29.8 68.7 86.7 96.7 23.6 73.2

CDTrans-Deit 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4

PMTrans-Deit 98.2 92.2 88.1 77.0 97.4 95.8 94.0 72.1 97.1 95.2 94.6 51.0 87.7

ViT-based 99.1 60.7 70.1 82.7 96.5 73.1 97.1 19.7 64.5 94.7 97.2 15.4 72.6

SSRT-ViT 98.9 87.6 89.1 84.8 98.3 98.7 96.3 81.1 94.8 97.9 94.5 43.1 88.8
PMTrans-ViT 98.9 93.7 84.5 73.3 99.0 98.0 96.2 67.8 94.2 98.4 96.6 49.0 87.5

Swin-based

S
w

in 99.3 63.4 85.9 68.9 95.1 79.6 97.1 29.0 81.4 94.2 97.7 29.6 76.8

PMTrans-Swin 99.4 88.3 88.1 78.9 98.8 98.3 95.8 70.3 94.6 98.3 96.3 48.5 88.0

Table 3. Comparison with SoTA methods on VisDA-2017. The best performance is marked as bold.

MCD clp inf pnt qdr rel skt Avg SWD clp inf pnt qdr rel skt Avg BNM clp inf pnt qdr rel skt Avg

clp - 15.4 25.5 3.3 44.6 31.2 24.0 clp - 14.7 31.9 10.1 45.3 36.5 27.7 clp - 12.1 33.1 6.2 50.8 40.2 28.5

inf 24.1 - 24.0 1.6 35.2 19.7 20.9 inf 22.9 - 24.2 2.5 33.2 21.3 20.0 inf 26.6 - 28.5 2.4 38.5 18.1 22.8

pnt 31.1 14.8 - 1.7 48.1 22.8 23.7 pnt 33.6 15.3 - 4.4 46.1 30.7 26.0 pnt 39.9 12.2 - 3.4 54.5 36.2 29.2

qdr 8.5 2.1 4.6 - 7.9 7.1 6.0 qdr 15.5 2.2 6.4 - 11.1 10.2 9.1 qdr 17.8 1.0 3.6 - 9.2 8.3 8.0

rel 39.4 17.8 41.2 1.5 - 25.2 25.0 real 41.2 18.1 44.2 4.6 - 31.6 27.9 rel 48.6 13.2 49.7 3.6 - 33.9 29.8

skt 37.3 12.6 27.2 4.1 34.5 - 23.1 skt 44.2 15.2 37.3 10.3 44.7 - 30.3 skt 54.9 12.8 42.3 5.4 51.3 - 33.3

Avg 28.1 12.5 24.5 2.4 34.1 21.2 20.5 Avg 31.5 13.1 28.8 6.4 36.1 26.1 23.6 Avg 37.6 10.3 31.4 4.2 40.9 27.3 25.3

CGDM clp inf pnt qdr rel skt Avg MDD clp inf pnt qdr rel skt Avg SCDA clp inf pnt qdr rel skt Avg

clp - 16.9 35.3 10.8 53.5 36.9 30.7 clp - 20.5 40.7 6.2 52.5 42.1 32.4 clp - 18.6 39.3 5.1 55.0 44.1 32.4

inf 27.8 - 28.2 4.4 48.2 22.5 26.2 inf 33.0 - 33.8 2.6 46.2 24.5 28.0 inf 29.6 - 34.0 1.4 46.3 25.4 27.3

pnt 37.7 14.5 - 4.6 59.4 33.5 30.0 pnt 43.7 20.4 - 2.8 51.2 41.7 32.0 pnt 44.1 19.0 - 2.6 56.2 42.0 32.8

qdr 14.9 1.5 6.2 - 10.9 10.2 8.7 qdr 18.4 3.0 8.1 - 12.9 11.8 10.8 qdr 30.0 4.9 15.0 - 25.4 19.8 19.0

rel 49.4 20.8 47.2 4.8 - 38.2 32.0 rel 52.8 21.6 47.8 4.2 - 41.2 33.5 rel 54.0 22.5 51.9 2.3 - 42.5 34.6

skt 50.1 16.5 43.7 11.1 55.6 - 35.4 skt 54.3 17.5 43.1 5.7 54.2 - 35.0 skt 55.6 18.5 44.7 6.4 53.2 - 35.7

Avg 36.0 14.0 32.1 7.1 45.5 28.3 27.2 Avg 40.4 16.6 34.7 4.3 43.4 32.3 28.6 Avg 42.6 16.7 37.0 3.6 47.2 34.8 30.3

CDTrans clp inf pnt qdr rel skt Avg SSRT clp inf pnt qdr rel skt Avg PMTrans clp inf pnt qdr rel skt Avg

clp - 29.4 57.2 26.0 72.6 58.1 48.7 clp - 33.8 60.2 19.4 75.8 59.8 49.8 clp - 34.2 62.7 32.5 79.3 63.7 54.5

inf 57.0 - 54.4 12.8 69.5 48.4 48.4 inf 55.5 - 54.0 9.0 68.2 44.7 46.3 inf 67.4 - 61.1 22.2 78.0 57.6 57.3

pnt 62.9 27.4 - 15.8 72.1 53.9 46.4 pnt 61.7 28.5 - 8.4 71.4 55.2 45.0 pnt 69.7 33.5 - 23.9 79.8 61.2 53.6

qdr 44.6 8.9 29.0 - 42.6 28.5 30.7 qdr 42.5 8.8 24.2 - 37.6 33.6 29.3 qdr 54.6 17.4 38.9 - 49.5 41.0 40.3

rel 66.2 31.0 61.5 16.2 - 52.9 45.6 rel 69.9 37.1 66.0 10.1 - 58.9 48.4 rel 74.1 35.3 70.0 25.4 - 61.1 53.2

skt 69.0 29.6 59.0 27.2 72.5 - 51.5 skt 70.6 32.8 62.2 21.7 73.2 - 52.1 skt 73.8 33.0 62.6 30.9 77.5 - 55.6

Avg 59.9 25.3 52.2 19.6 65.9 48.4 45.2 Avg 60.0 28.2 53.3 13.7 65.3 50.4 45.2 Avg 67.9 30.7 59.1 27.0 72.8 56.9 62.9

Table 4. Comparison with SoTA methods on DomainNet. The best performance is marked as bold.

with the SoTA methods (88.7%). PMTrans also surpasses

the SoTA methods on several sub-categories, such as ”horse”

and ”sktbrd”. In particular, it is shown that the SoTA meth-

ods, e.g., CDTrans and SSRT, achieve better results on this

dataset. The reason is that CDTrans and SSRT are trained

with a batch size of 64 while PMTrans’s batch size is 32. It

indicates that when the input size is much bigger, the input

can represent the data distributions better. A detailed abla-
tion study for this issue can be found in the suppl. material..
Results on DomainNet. PMTrans achieves a very high av-

erage accuracy on the most challenging DomainNet dataset,

as shown in Tab. 4. Overall, our proposed PMTrans outper-

forms the SoTA methods by +17.7% accuracy. Incredibly,

PMTrans surpasses the SoTA methods in all the 30 sub-
tasks, which demonstrates the strong ability of PMTrans

to alleviate the large domain gap. Moreover, transferring

knowledge is much more difficult when the domain gap be-

comes significant. When taking more challenging qdr as
the target domain while others as the source domain, our

PMTrans achieves an average accuracy of 27.0%, while ViT-
based SSRT and CDTrans only achieve an average accuracy
of 13.7% and 19.6%, respectively. The comparisons on Do-

mainNet dataset demonstrate that our PMTrans yields the

best generalization ability for the challenging UDA problem.

4.3. Ablation Study

Semi-supervised mixup loss. As shown in Tab. 5, Swin

with the semi-supervised mixup loss in the feature and la-

bel spaces outperforms the counterpart built on Swin with

only source training by +1.0% and +4.3% on Office-Home

dataset, respectively. The results indicate the effectiveness of

the semi-supervised mixup loss for diminishing the domain

discrepancy. Moreover, we observe that the CE loss yields

better performance on the label space than that on the feature

space. The reason is that the CE loss on the label space

utilizing the class information performs better than on the

feature space without the class information.
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Figure 5. t-SNE visualizations for task A→C on the Office-Home dataset. Source and target instances are shown in blue and red, respectively.

LS
cls Lf Ll A→ C A→ P A → R C → A C → P C → R P→ A P→ C P→ R R→ A R→ C R→ P Avg

� 72.7 87.1 90.6 84.3 87.3 89.3 80.6 68.6 90.3 84.8 69.4 91.3 83.6

� � 73.9 87.5 91.0 85.3 87.9 89.9 82.8 72.1 91.2 86.3 74.1 92.4 84.6

� � 79.2 91.8 92.3 88.0 92.6 93.0 87.1 77.8 92.5 88.2 78.4 93.9 87.9

� � � 81.3 92.9 92.8 88.4 93.4 93.2 87.9 80.4 93.0 89.0 80.9 94.8 89.0

Table 5. Effect of semi-supervised loss. The best performance is marked as bold.

Method A→ C A→ P A → R C → A C → P C → R P→ A P→ C P→ R R→ A R→ C R→ P Avg

Beta(1,1) 79.9 92.0 92.3 88.6 92.6 92.4 86.9 79.0 92.4 88.2 79.3 94.0 88.1

Beta(2,2) 79.9 92.1 92.7 88.4 92.4 92.7 86.9 79.5 92.1 88.1 79.6 94.3 88.2

Learning 81.3 92.9 92.8 88.4 93.4 93.2 87.9 80.4 93.0 89.0 80.9 94.8 89.0

Table 6. Effect of learning parameters. The best performance is marked as bold.

Method A→ C A→ P A → R C → A C → P C → R P→ A P→ C P→ R R→ A R→ C R→ P Avg

Mixup 79.4 92.4 92.6 87.5 92.8 92.4 86.8 80.3 92.5 88.2 79.7 95.4 88.3

CutMix 79.2 91.2 92.2 87.6 91.8 91.8 86.0 77.8 92.6 88.2 78.4 94.1 87.6

PatchMix 81.3 92.9 92.8 88.4 93.4 93.2 87.9 80.4 93.0 89.0 80.9 94.8 89.0

Table 7. Effect of PatchMix. The best performance is marked as bold.

Learning hyperparameters of mixup. Tab. 6 shows the

ablation results for the effects of learning hyperparameters

of the Beta distribution on the Office-Home. We compare

the learning hyperparameters of mixup with fixed parame-

ters, such as Beta(1,1) and Beta(2,2). The proposed method

achieves +0.9% and +0.8% accuracy increment compared

with that based on Beta(1,1) and Beta(2,2). The results

demonstrate that learning to estimate the distribution to build

up the intermediate domain facilitates domain alignment.

PatchMix. Comparisons of PMTrans with Mixup [49] and

CutMix [47] are shown in Tab. 7. PMTrans outperforms

Mixup and CutMix by +0.7% and +1.4% accuracy on the

Office-Home dataset, demonstrating that PatchMix can cap-

ture the global and local mixture information better than the

global mixture Mixup and local mixture CutMix methods.

Visualization. In Fig. 5, we visualize the features learned by

Swin-based, PMTrans-Swin, PMTrans-ViT, and PMTrans-

Deit on task A → C from the Office-Home dataset via the

t-SNE [10]. Compared with Swin-based and PMTrans-Swin,

our PMTrans model can better align the two domains by con-

structing the intermediate domain to bridge them. Moreover,

comparisons between PMTrans with different transformer

backbones reveal that PMTrans works successfully with dif-

ferent backbones on UDA tasks. Due to the page limit, more
experiments and analyses can be found in the suppl. material.

5. Conclusion and Future Work
In this paper, we proposed a novel method, PMTrans,

an optimization solution for UDA from a game perspective.

Specifically, we first proposed a novel ViT-based module

called PatchMix that effectively built up the intermediate

domain to learn discriminative domain-invariant represen-

tations for domains. And the two semi-supervised mixup

losses were proposed to assist in finding the Nash Equilib-

ria. Moreover, we leveraged attention maps from ViT to re-

weight the label of each patch by its significance. PMTrans

achieved the SoTA results on four benchmark UDA datasets,

outperforming the SoTA methods by a large margin. In the

near future, we plan to implement our PatchMix and the two

semi-supervised mixup losses to solve self-supervised and

semi-supervised learning problems. We will also exploit

our method to tackle the challenging downstream tasks, e.g.,

semantic segmentation and object detection.
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