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Figure 1. Current state-of-the-art MoCap-based action recognition methods first convert body markers into a human body mesh, which
is used to predict a standardized 3D skeleton. The 3D skeleton is used as input for action recognition models (dashed line). We propose
a method that directly models the dynamics of raw mesh sequences (solid line). Our method saves the manual effort to derive skeleton
representation, and achieves superior recognition performance by leveraging surface motion and body shape knowledge from meshes.

Abstract
We study the problem of human action recognition using

motion capture (MoCap) sequences. Unlike existing tech-
niques that take multiple manual steps to derive standard-
ized skeleton representations as model input, we propose
a novel Spatial-Temporal Mesh Transformer (STMT) to di-
rectly model the mesh sequences. The model uses a hier-
archical transformer with intra-frame off-set attention and
inter-frame self-attention. The attention mechanism allows
the model to freely attend between any two vertex patches
to learn non-local relationships in the spatial-temporal do-
main. Masked vertex modeling and future frame prediction
are used as two self-supervised tasks to fully activate the
bi-directional and auto-regressive attention in our hierar-
chical transformer. The proposed method achieves state-of-
the-art performance compared to skeleton-based and point-
cloud-based models on common MoCap benchmarks. Code
is available at https://github.com/zgzxy001/
STMT.

1. Introduction
Motion Capture (MoCap) is the process of digitally

recording the human movement, which enables the fine-

†Equal Contribution.

grained capture and analysis of human motions in 3D space
[40, 50]. MoCap-based human perception serves as key
elements for various research fields, such as action recog-
nition [15, 46–48, 50, 57], tracking [47], pose estimation
[1, 27], imitation learning [76], and motion synthesis [47].
Besides, MoCap is one of the fundamental technologies to
enhance human-robot interactions in various practical sce-
narios including hospitals and manufacturing environment
[22, 28, 41, 43, 45, 77]. For example, Hayes [22] classi-
fied automotive assembly activities using MoCap data of
humans and objects. Understanding human behaviors from
MoCap data is fundamentally important for robotics per-
ception, planning, and control.

Skeleton representations are commonly used to model
MoCap sequences. Some early works [3, 29] directly used
body markers and their connectivity relations to form a
skeleton graph. However, the marker positions depend on
each subject (person), which brings sample variances within
each dataset. Moreover, different MoCap datasets usu-
ally have different numbers of body markers. For exam-
ple, ACCAD [48], BioMotion [64], Eyes Japan [15], and
KIT [42] have 82, 41, 37, and 50 body markers respec-
tively. This prevents the model to be trained and tested on
a unified framework. To use standard skeleton representa-
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tions such as NTU RGB+D [58], Punnakkal et al. [50] first
used Mosh++ to fit body markers into SMPL-H meshes, and
then predicted a 25-joint skeleton [33] from the mesh ver-
tices [54]. Finally, a skeleton-based model [60] was used
to perform action recognition. Although those methods
achieved advanced performance, they have the following
disadvantages. First, they require several manual steps to
map the vertices from mesh to skeleton. Second, skeleton
representations lose the information provided by original
MoCap data (i.e., surface motion and body shape knowl-
edge). To overcome those disadvantages, we propose a
mesh-based action recognition method to directly model
dynamic changes in raw mesh sequences, as illustrated in
Figure 1.

Though mesh representations provide fine-grained body
information, it is challenging to classify high-dimensional
mesh sequences into different actions. First, unlike struc-
tured 3D skeletons which have joint correspondence across
frames, there is no vertex-level correspondence in meshes
(i.e., the vertices are unordered). Therefore, the local con-
nectivity of every single mesh can not be directly aggre-
gated in the temporal dimension. Second, mesh repre-
sentations encode local connectivity information, while ac-
tion recognition requires global understanding in the whole
spatial-temporal domain.

To overcome the aforementioned challenges, we pro-
pose a novel Spatial-Temporal Mesh Transformer (STMT).
STMT leverages mesh connectivity information to build
patches at the frame level, and uses a hierarchical trans-
former which can freely attend to any intra- and inter-frame
patches to learn spatial-temporal associations. The hierar-
chical attention mechanism allows the model to learn patch
correlation across the entire sequence, and alleviate the re-
quirement of explicit vertex correspondence. We further de-
fine two self-supervised learning tasks, namely masked ver-
tex modeling and future frame prediction, to enhance the
global interactions among vertex patches. To reconstruct
masked vertices of different body parts, the model needs to
learn prior knowledge about the human body in the spatial
dimension. To predict future frames, the model needs to
understand meaningful surface movement in the temporal
dimension. To this end, our hierarchical transformer pre-
trained with those two objectives can further learn spatial-
temporal context across entire frames, which is beneficial
for the downstream action recognition task.

We evaluate our model on common MoCap benchmark
datasets. Our method achieves state-of-the-art performance
compared to skeleton-based and point-cloud-based models.
The contributions of this paper are three-fold:

• We introduce a new hierarchical transformer architec-
ture, which jointly encodes intrinsic and extrinsic rep-
resentations, along with intra- and inter-frame atten-
tion, for spatial-temporal mesh modeling.

• We design effective and efficient pretext tasks, namely
masked vertex modeling and future frame prediction,
to enable the model to learn from the spatial-temporal
global context.

• Our model achieves superior performance compared
to state-of-the-art point-cloud and skeleton models on
common MoCap benchmarks.

2. Related Work
Action Recognition from Depth and Point Cloud.

3D action recognition models have achieved promis-
ing performance with depth [34, 55, 56, 68, 71] and point
clouds [18,36,52,70]. Depth provides reliable 3D structural
and geometric information which characterizes informative
human actions. In MVDI [71], dynamic images [4] were
extracted through multi-view projections from depth
videos for 3D action recognition. 3D-FCNN [55] directly
exploited a 3D-CNN to model depth videos. Another
popular category of 3D human action recognition is based
on 3D point clouds. PointNet [51] and PointNet++ [52]
are the pioneering works contributing towards permutation
invariance of 3D point sets for representing 3D geometric
structures. Along this avenue, MeteorNet [36] stacked
multi-frame point clouds and aggregates local features
for action recognition. 3DV [70] transferred point cloud
sequences into regular voxel sets to characterize 3D
motion compactly via temporal rank pooling. PSTNet [18]
disentangled space and time to alleviate point-wise spatial
variance across time. Action recognition has shown
promising results with 3D skeletons and point clouds.
Meshes, which are commonly used in representing human
bodies and creating action sequences, have not been
explored for the action recognition task. In this work, we
propose the first mesh-based action recognition model.

MoCap-Based Action Recognition. Motion-capture
(MoCap) datasets [15, 44, 46–48, 50, 57] serve as key
elements for various research fields, such as action
recognition [15, 44, 46–48, 50, 57], tracking [47], pose
estimation [1, 27], imitation learning [76], and motion
synthesis [47]. MoCap-based action recognition was
formulated as a skeleton-based action recognition prob-
lem [50]. Various architectures have been investigated to
incorporate skeleton sequences. In [14,35,75], skeleton se-
quences were treated as time-series inputs to RNNs. [24,69]
respectively transformed skeleton sequences into spectral
images and trajectory maps and then adopted CNNs for
feature learning. In [72], Yan et al. leveraged GCN to
model joint dependencies that can be naturally represented
with a graph. In this paper, we propose a novel method to
directly model the dynamics of raw mesh sequences which
can benefit from surface motion and body shape knowledge.
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Masked Autoencoder. Masked autoencoder has gained at-
tention in Natural Language Processing and Computer Vi-
sion to learn effective representations using auto-encoding.
Stacked denoising autoencoders [66] treated masks as a
noise type and used denoising autoencoders to denoise cor-
rupted inputs. ViT [13] proposed a self-supervised pre-
training task to reconstruct masked tokens. More recently,
BEiT [2] proposed to learn visual representations by recon-
structing the discrete tokens [53]. MAE [23] proposed a
simple yet effective asymmetric framework for masked im-
age modeling. In 3D point cloud analysis, Wang et al. [67]
chose to first generate partial point clouds by calculating
occlusion from random camera viewpoints, and then com-
pleted occluded point clouds using autoencoding. Point-
BERT [73] followed the success of BERT [12] to predict
the masked tokens learned from points. However, apply-
ing self-supervised learning to temporal 3D sequences (i.e.
point cloud, 3D skeleton) has not been fully explored. One
probable reason is that self-supervised learning on high-
dimensional 3D temporal sequences is computationally-
expensive. In this work, we propose an effective and effi-
cient self-supervised learning method based on masked ver-
tex modeling and future frame prediction.

3. Method

3.1. Overview

In this section, we describe our model for mesh-
based action recognition, which we call STMT. The in-
puts of our model are temporal mesh sequences: M =
((P1,A1), (P2,A2), · · · , (Pt,At)), where t is the frame
number. Pi ∈ RN×3 represents the vertex positions in
Cartesian coordinates, where N is the number of vertices.
Ai ∈ RN×N represents the adjacency matrix of the mesh.
Element Amn

i ∈ Ai is one when there is an edge from
vertex Vm to vertex Vn, and zero when there is no edge.
The mesh representation with vertices and their adjacent
matrix is a unified format for various body models such as
SMPL [39], SMPL-H [54], and SMPL-X [49]. In this work,
we use SMPL-H body models from AMASS [40] to obtain
the mesh sequences, but our method can be easily adapted
to other body models.

Mesh’s local connectivity provides fine-grained informa-
tion. Previous methods [21, 59] proved that explicitly using
surface (e.g., mesh) connectivity information can achieve
higher accuracy in shape classification and segmentation
tasks. However, classifying temporal mesh sequences is a
more challenging problem, as there is no vertex-level corre-
spondence across frames. This prevents graph-based mod-
els from directly aggregating vertices in the temporal di-
mension. Therefore, we propose to first leverage mesh con-
nectivity information to build patches at the frame level,

then use a hierarchical transformer which can freely at-
tend to any intra- and inter-frame patches to learn spatial-
temporal associations. In summary, it has the following key
components:

• Surface Field Convolution to form local vertex
patches by considering both intrinsic and extrinsic
mesh representations.

• Hierarchical Spatial-Temporal Transformer to
learn spatial-temporal correlations of vertex patches.

• Self-Supervised Pre-Training to learn the global con-
text in terms of appearance and motion.

See Figure 2 for a high-level summary of the model, and
the sections below for more details.

3.2. Surface Field Convolution

Because displacements in grid data are regular, tradi-
tional convolutions can directly learn a kernel for elements
within a region. However, mesh vertices are unordered and
irregular. Considering the special mesh representations, we
represent each vertex by encoding features from its neigh-
bor vertices inspired by [51,52]. To fully utilize meshes’ lo-
cal connectivity information, we consider the mesh proper-
ties of extrinsic curvature of submanifolds and intrinsic cur-
vature of the manifold itself. Extrinsic curvature between
two vertices is approximated using Euclidean distance. In-
trinsic curvature is approximated using Geodesic distance,
which is defined as the shortest path between two vertices
on mesh surfaces. We propose a light-weighted surface field
convolution to build local patches, which can be denoted as:

F
′(x,y,z)
V G =

∑
(δx,δy,δz)∈G(x,y,z)

W (δx,δy,δz)·F (x+δx,y+δy,z+δz)

(1)

F
′(x,y,z)
V E =

∑
(ζx,ζy,ζz)∈E(x,y,z)

W (ζx,ζy,ζz)·F (x+ζx,y+ζy,z+ζz)

(2)

G and E is the local region around vertex (x, y, z).
In this paper, we use k-nearest-neighbor to sample local
vertices. (δx, δy, δz) and (ζx, ζy, ζz) represent the spa-
tial displacement in geodesic and euclidean space, respec-
tively. F (x,y,z) denotes the feature of the vertex at position
(x, y, z).

3.3. Hierarchical Spatial-Temporal Transformer

We propose a hierarchical transformer that consists of
intra-frame and inter-frame attention. The basic idea be-
hind our transformer is three-fold: (1) Intra-frame atten-
tion can encode connectivity information from the adja-
cency matrix, while such information can not be directly
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Figure 2. Overview of the proposed framework. (a) Overview of STMT. Given a mesh sequence, we first develop vertex patches by
extracting both intrinsic (geodesic) and extrinsic (euclidean) features using surface field convolution. The intrinsic and extrinsic features
are denoted by yellow and blue blocks respectively. Those patches are used as input to the intra-frame offset-attention network to learn
appearance features. Then we concatenate intrinsic patches and extrinsic patches of the same position. The concatenated vertex patches
(green blocks) are fed into the inter-frame self-attention network to learn spatial-temporal correlations. Finally, the local and global features
are mapped into action predictions by MLP layers. (b) Overview of Pre-Training Stage. We design two pretext tasks: masked vertex
modeling and future frame prediction for global context learning. Bidirectional attention is used for the reconstruction of masked vertices.
Auto-regressive attention is used for the future frame prediction task.

aggregated in the temporal domain because vertices are un-
ordered. (2) Frame-level offset-attention can be used to
mimic the Laplacian operator to learn effective spatial rep-
resentations. (3) Inter-frame self-attention can learn feature
correlations in the spatial-temporal domain.

3.3.1 Intra-Frame Offset-Attention

Graph convolution networks [6] show the benefits of using
a Laplacian matrix L = D−E to replace the adjacency ma-
trix E, where D is the diagonal degree matrix. Inspired by
this, offset-attention has been proposed and achieved supe-
rior performance in point-cloud classification and segmen-
tation tasks [20]. We adapt offset-attention to attend to ver-
tex patches. Specifically, the offset-attention layer calcu-
lates the offset (difference) between the self-attention (SA)
features and the input features by element-wise subtraction.
Offset-attention is denoted as:

F out = OA(F in) =ϕ(F in − F sa) + F in. (3)

where ϕ denotes a non-linear operator. F in−F sa is proved
to be analogous to discrete Laplacian operator [20], i.e.
F in − F sa ≈ LF in. As Laplacian operators in geodesic
and euclidean space are expected to be different, we pro-
pose to use separate transformers to model intrinsic patches
and extrinsic patches. Specifically, the aggregated feature
for vertex V is denoted as:

F
′(x,y,z)
V = OAG(F

′(x,y,z)
V G )⊕OAE(F

′(x,y,z)
V E ) (4)

Here F
′(x,y,z)
V G ∈ RN×dg and F

′(x,y,z)
V E ∈ RN×de are

local patches learned using Equ. 1 and Equ. 2. F ′(x,y,z)
V ∈

RN×d denotes the local patch for position (x, y, z), where
d = dg+de. The weights of OAG and OAE are not shared.

3.3.2 Inter-Frame Self-Attention

Given F ′
V which encodes local connectivity information,

we use self-attention (SA) [65] to learn semantic affini-
ties between different vertex patches across frames. Specif-
ically, let Q,K,V be the query, key and value, which are
generated by applying linear transformations to the input
features F ′

V ∈ RN×d as follows:

(Q,K, V ) = F ′
V · (W q,W k,W v)

Q,K ∈ RN×da , V ∈ RN×d

W q,W k ∈ Rd×da , W v ∈ Rd×d (5)

where W q , W k and W v are the shared learnable linear
transformation, and da is the dimension of the query and
key vectors. Then we can use the query and key matrices to
calculate the attention weights via the matrix dot-product:

A = (α̃)i,j = softmax(
Q ·KT

√
da

). (6)

F sa = A · V (7)

The self-attention output features F sa are the weighted
sums of the value vector using the corresponding attention
weights. Specifically, for a vertex patch in position (x, y, z),
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its aggregated feature after inter-frame self-attention can be
computed as: F (x,y,z)

sa =
∑

A(x,y,z),(x′,y′,z′)×V (x′,y′,z′),
where (x′, y′, z′) belongs to the Cartesian coordinates of
F ′

V .

3.4. Self-Supervised Pre-Training

Self-supervised learning has achieved remarkable re-
sults on large-scale image datasets [23]. However, self-
supervised learning for temporal 3D sequences (i.e. point
cloud, 3D skeleton) remains to be challenging and has
not been fully explored. There are two possible reasons:
(1) self-supervised learning methods rely on large-scale
datasets to learn meaningful patterns [10]. However, ex-
isting MoCap benchmarks are relatively small compared to
2D datasets like ImageNet [11]. (2) Self-supervised learn-
ing for 3D data sequences is computationally expensive in
terms of memory and speed. In this work, we first pro-
pose a simple and effective method to augment existing Mo-
Cap sequences, and then define two effective and efficient
self-supervised learning tasks, namely masked vertex mod-
eling and future frame prediction, which enable the model
to learn global context. The work that is close to us is OcCO
[67], which proposed to use occluded point cloud recon-
struction as the pretext task. OcCO has a computationally-
expensive process to generate occlusions, including point
cloud projection, occluded point calculation, and a mapping
step to convert camera frames back to world frames. Differ-
ent from OcCO, we randomly mask vertex patches or fu-
ture frames on the fly, which saves the pre-processing step.
Moreover, our pre-training method is designed for temporal
mesh sequences and considers both bi-directional and auto-
regressive attention.

3.4.1 Data Augmentation through Joint Shuffle

Considering the flexibility of SMPL-H representations,
we propose a simple yet effective approach to augment
SMPL-H sequences by shuffling body pose parameters.
Specifically, we split SMPL-H pose parameters into five
body parts: bone, left/right arm, and left/right leg. We
use Ibone, I

left
leg , Irightleg , I leftarm, Irightarm to denote the SMPL-H

pose indexes of the five body parts. Then we synthesize
new sequences by randomly selecting body parts from five
different sequences. We keep the temporal order for each
part such that the merged action sequences have meaningful
motion trajectories. Pseudocode for the joint shuffle is pro-
vided in Algorithm 1. The input to Joint Shuffle are SMPL-
H pose parameters θ ∈ Rb×t×n×3, where b is the sequence
number, t is the frame number, and n is the joint number.
We randomly select the shape β and dynamic parameters ϕ
from one of the five SMPL-H sequences to compose a new
SMPL-H body model. Given b SMPL-H sequences, we can
synthesize

b

C5 = b!
5!(b−5)! number of new sequences.

We prove that the model can benefit from large-scale pre-
training in Section 4.6.

Algorithm 1: Pseudocode of STMT Joint Shuffle
1: function STMT JOINT SHUFFLE(θ ∈

Rb×t×n×3, Ibone, I
left
leg , Irightleg , I leftarm, Irightarm )

2: θs← random sample(θ, 5) ▷ θs ∈ R5×t×n×3,
randomly sample five SMPL-H sequences

3: tmax ← get max length(θs) ▷ compute the
maximum sequence length in θs

4: θnew ← Initialize(tmax, n, 3)

5: P ← {Ibone, I leftleg , Irightleg , I leftarm, Irightarm }
6: for i in 0, 1, 2, 3, 4 do
7: θs← repeat(θs[i], (tmax, n, 3)) ▷ pad each

sequence to the max length using repeating
8: θnew[P [i]]← θs[i][P [i]] ▷ assign the body-part

sequence
9: return θnew

3.4.2 Masked Vertex Modeling with Bi-Directional At-
tention

To fully activate the inter-frame bi-directional attention in
the transformer, we design a self-supervised pretext task
named Masked Vertex Modeling (MVM). The model can
learn human prior information in the spatial dimension by
reconstructing masked vertices of different body parts. We
randomly mask r percentages of the input vertex patches,
and force the model to reconstruct the full sequences. More-
over, we use bi-directional attention to learn correlations
among all remaining local patches. Each patch will attend
to all patches in the entire sequence. It models the joint
distribution of vertex patches over the whole temporal se-
quences x as the following product of conditional distribu-
tions, where xi is a single vertex patch:

p(x) =

N∏
i=1

p(xi|x1, .., xi, ..., xN ). (8)

Where N is the number of patches in the entire sequence
x after masking. Every patch will attend to all patches in
the entire sequence. In this way, bi-directional attention is
fully-activated to learn spatial-temporal features that can ac-
curately reconstruct completed mesh sequences.

3.4.3 Future Frame Prediction with Auto-Regressive
Attention

The masked vertex modeling task is to reconstruct masked
vertices in different body parts. The model can recon-
struct completed mesh sequences if it captures the human
body prior or can make a movement inference from nearby
frames. As action recognition requires the model to un-
derstand the global context, we propose the future frame
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prediction (FFP) task. Specifically, we mask out all the fu-
ture frames and force the transformer to predict the masked
frames. Moreover, we propose to use auto-regressive at-
tention for the future frame prediction task, inspired by
language generation models like GPT-3 [5]. However, di-
rectly using RNN-based models [9] in GPT-3 to predict fu-
ture frames one by one is inefficient, as 3D mesh sequences
are denser compared to language sequences. Therefore, we
propose to reconstruct all future frames in a single forward
pass. For auto-regressive attention, we model the joint dis-
tribution of vertex patches over a mesh sequence x as the
following product of conditional distributions, where xi is
a single patch at frame ti:

p(x) =

N∏
i=1

p(xi|x1, x2, ..., xM ). (9)

Where N is the number of patches in the entire sequence
x after masking. M = (ti−1)×n, where n is the number of
patches in a single frame. Each vertex patch depends on all
patches that are temporally before it. The auto-regressive
attention enables the model to predict movement patterns
and trajectories, which is beneficial for the downstream ac-
tion recognition task.

3.5. Training

In the pre-training stage, we use PCN [74] as the decoder
to reconstruct masked vertices and predict future frames.
The decoder is shared for the two pretext tasks. Since
mesh vertices are unordered, the reconstruction loss and fu-
ture prediction loss should be permutation-invariant. There-
fore, we use Chamfer Distance (CD) as the loss function to
measure the difference between the model predictions and
ground truth mesh sequences.

CD(Mpred,Mgt) =
1

|Mpred|
∑

x∈Mpred

min
y∈Mgt

∥x− y∥2 +

1

|Mgt|
∑

y∈Mgt

min
x∈Mpred

∥y − x∥2

(10)
CD (10) calculates the average closest euclidean dis-

tance between the predicted mesh sequences Mpred and the
ground truth sequences Mgt. The overall loss is a weighted
sum of masked vertex reconstruction loss and future frame
prediction loss:

L = λ1CD(MMVM
pred ,Mgt) + λ2CD(MFFP

pred ,Mgt) (11)

In the fine-tuning stage, we replace the PCN decoder
with an MLP head. Cross-entropy loss is used for model
training.

4. Experiment
4.1. Datasets

Following previous MoCap-based action recognition
methods [50,63], we evaluate our model on the most widely
used benchmarks: KIT [42] and BABEL [50]. KIT is
one of the largest MoCap datasets. It has 56 classes with
6,570 sequences in total. (2) BABEL is the largest 3D Mo-
Cap dataset that unifies 15 different datasets. BABEL has
43 hours of MoCap data performed by over 346 subjects.
We use the 60-class subset from BABEL, which contains
21,653 sequences with single-class labels. We randomly
split each dataset into training, test, and validation set, with
ratios of 70%, 15%, and 15%, respectively. Note that exist-
ing action recognition datasets with skeletons only are not
suitable for our experiments, as they do not provide full 3D
surfaces or SMPL parameters to obtain the mesh represen-
tation.

Motion Representation. Both KIT and BABEL’s MoCap
sequences are obtained from AMASS dataset in SMPL-H
format. A MoCap sequence is an array of pose parameters
over time, along with the shape and dynamic parameters.
For skeleton-based action recognition, we follow previous
work [50] which predicted the 25-joint skeleton from the
vertices of the SMPL-H mesh. The movement sequence
is represented as X = (x1, · · · ,xL), where xi ∈ RJ×3

represents the position of the J joints in the skeleton in
Cartesian coordinates. For point-cloud-based action recog-
nition, we directly use the vertices of SMPL-H model as the
model input. The point-cloud sequence is represented as
P = (p1, · · · ,pL), where pi ∈ RV×3, and V is the num-
ber of vertices. For mesh-based action recognition, we rep-
resent the motion as a series of mesh vertices and their adja-
cent matrix over time, as introduced in Section 3.1. See Sup.
Mat. for more details about datasets and pre-processing.

4.2. Baseline Methods

We compare our model with state-of-the-art 3D skeleton-
based and point cloud-based action recognition models, as
there is no existing literature on mesh-based action recogni-
tion. 2s-AGCN [61], CTR-GCN [7], and MS-G3D [37] are
used as skeleton-based baselines. Among those methods,
2s-AGCN trained with focal loss and cross-entropy loss are
used as benchmark methods in the BABEL dataset [50].
For the comparison with point-cloud baselines, we choose
PSTNet [18], SequentialPointNet [30], and P4Transformer
[16]. Those methods achieved top performance on common
point-cloud-based action recognition benchmarks.

4.3. Implementation Details

For skeleton-based baselines, we use the official imple-
mentations of 2s-ACGN, CTR-GCN, and MS-G3D from
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Method Input KIT BABEL-60
Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

2s-AGCN-FL [61] (CVPR’19) 3D Skeleton 42.44 75.60 49.62 79.12
2s-AGCN-CE [61] (CVPR’19) 3D Skeleton 57.46 81.54 63.57 86.77
CTR-GCN [7] (ICCV’21) 3D Skeleton 64.65 87.90 67.30 88.50
MS-G3D [37] (CVPR’20) 3D Skeleton 65.38 87.90 67.43 87.99
PSTNet [18] (ICLR’21) Point Cloud 56.93 88.21 61.94 84.11
SequentialPointNet [30] (arXiv’21) Point Cloud 59.75 88.01 62.92 84.58
P4Transformer [16] (CVPR’21) Point Cloud 62.15 88.01 63.54 86.55
STMT(Ours) Mesh 65.59 90.09 67.65 88.68

Table 1. Experimental Results on KIT and BABEL Dataset.

Figure 3. Visualization of inter-frame attention. Red denotes the
highest attention.

[62], [8], and [38]. For point-cloud-based baselines, we use
the official implementations of PSTNet, SequentialPoint-
Net, P4Transformer from [19], [31], and [17]. We pre-train
STMT for 200 epochs with a batch size of 32. The model is
fine-tuned for 50 epochs with a batch size of 64. Adam op-
timizer [26] is used with a learning rate of 0.0001 for both
pre-training and fine-tuning. See Sup. Mat. for more im-
plementation details.

4.4. Main Results

Comparison with State-of-the-Art Methods. As indi-
cated in Table 1, STMT outperforms all other state-of-
the-art models. Our model can outperform point-cloud-
based models by 3.44% and 4.11% on KIT and BABEL
datasets in terms of top-1 accuracy. Moreover, compared
to skeleton-based methods which involve manual efforts
to convert mesh vertices to skeleton representations, our
model achieves better performance by directly modeling the
dynamics of raw mesh sequences.

We visualize the inter-frame attention weights of our hi-
erarchical transformer in Figure 3. We observe that the
model can pay attention to key regions across frames. This
supports the intuition that our hierarchical transformer can
take the place of explicit vertex tracking by learning spatial-
temporal correlations.

Intrinsic Extrinsic MVM FFP Top-1 (%)

✓ 63.40
✓ ✓ 64.03
✓ ✓ ✓ 64.96
✓ ✓ ✓ 64.13
✓ ✓ ✓ ✓ 65.59

Table 2. Performance of ablated versions. Intrinsic and Extrin-
sic stand for the intrinsic (geodesic) and extrinsic (euclidean) fea-
tures in surface field convolution. MVM stands for Masked Vertex
Modelling. FFP stands for Future Frame Prediction.

4.5. Ablation Study

Ablation Study of STMT. We test various ablations of
our model on the KIT dataset to substantiate our design de-
cisions. We report the results in Table 2. Note that Joint
Shuffle is used in all of the self-supervised learning exper-
iments (last three rows). We observe that each component
of our model gains consistent improvements. The compari-
son of the first two rows proves the effectiveness of encod-
ing both intrinsic and extrinsic features in vertex patches.
Comparing the last three rows with the second row, we ob-
serve a consistent improvement using self-supervised pre-
training. Moreover, the downstream task can achieve bet-
ter performance with MVM compared to FFP. One proba-
ble reason is that the single task for future frame prediction
is more challenging than masked vertex modeling, as the
model can only see the person movement in the past. The
model can achieve the best performance with both MVM
and FFP, which demonstrates that the two self-supervised
tasks are supplementary to each other.

4.6. Analysis

Different Pre-Training Strategies. We pre-train our
model with different datasets and summarize the results in
Table 3. The first row shows the case without pre-training.
The second shows the result for the model pre-trained on the
KIT dataset (without Joint Shuffle augmentation). The third
shows the result for the model pre-trained on KIT dataset
(with Joint Shuffle). We observe our model can achieve
better performance with Joint Shuffle, as it can synthesize
large-scale mesh sequences.
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Method Top-1 (%)

w/o pre-training 64.03
pre-training w/o JS 64.13
pre-training w/ JS 65.59

Table 3. Comparison of Different Pre-Training Strategies. JS
stands for Joint Shuffle.

r Pre-Train Loss (× 104) Fine-Tune Accuracy (%)

0.1 0.39 64.44
0.3 0.41 64.55
0.5 0.40 65.59
0.7 0.43 64.19
0.9 0.48 65.07

Rand 0.43 64.75

Table 4. Effect of Different Masking Ratios.

Different Masking Ratios. We investigate the impact of
different masking ratios. We report the converged pre-
training loss and the fine-tuning top-1 classification accu-
racy on the test set in Table 4. We also experiment with
the random masking ratio in the last row. For each forward
pass, we randomly select one masking ratio from 0.1 to 0.9
with step 0.1 to mimic flexible masked token length. The
model with a random masking ratio does not outperform
the best model that is pre-trained using a single ratio (i.e.
0.5). We observe that as the masking ratio increases, the
pre-training loss mostly increases as the task becomes more
challenging. However, a challenging self-supervised learn-
ing task does not necessarily lead to better performance.
The model with a masking ratio of 0.7 and 0.9 have a high
pre-train loss, while the fine-tune accuracy is not higher
than the model with a 0.5 masking ratio. The conclusion
is similar to the comparison of MVM and FFP training ob-
jectives, where a more challenging self-supervised learning
task may not be optimal.

Different Number of Mesh Sequences for Pre-Training.
We test the effect of different numbers of mesh sequences
used in pre-training. We report the fine-tuning top-1 clas-
sification accuracy in Figure 4. We observe that a large
number of pre-training data can bring substantial perfor-
mance improvement. The proposed Joint Shuffle method
can greatly enlarge the dataset size without any manual cost,
and has the potential to further improve model performance.

Experimental Results on Noisy Body Pose Estimations.
Body pose estimation has been a popular research field [25,
27, 32], but how to leverage the estimated 3D meshes for
downstream perception tasks has not been fully explored.
We apply the state-of-the-art body pose estimation model
VIBE [27] on videos of NTU RGB+D dataset to obtain 3D
mesh sequences. Skeleton and point cloud representations
are derived from the estimated meshes to train the baseline

Figure 4. Effect of Different Number of Mesh Sequences.

Method Input Top-1 (%)

2s-AGCN-FL [61] 3D Skeleton 58.67
2s-AGCN-CE [61] 3D Skeleton 57.49

CTR-GCN [7] 3D Skeleton 62.25
MS-G3D [37] 3D Skeleton 60.01
PSTNet [18] Point Cloud 51.48

SequentialPointNet [30] Point Cloud 60.60
P4Transformer [16] Point Cloud 57.84

STMT(Ours) Mesh 64.04

Table 5. Experimental results on body poses estimated by VIBE
[27] on NTU RGB+D dataset. The skeleton, point cloud, and mesh
representations are derived from the same noisy body estimations.

models (see Sup. Mat.). We report the results in Table 5.
We observe that STMT can outperform the best skeleton-
based and point cloud-based action recognition model by
1.79% and 3.44% respectively. This shows that STMT with
meshes as input, is more robust to input noise compared
to other state-of-the-art methods with 3D skeletons or point
clouds as input.

5. Conclusion

In this work, we propose a novel approach for MoCap-
based action recognition. Unlike existing methods that rely
on skeleton representation, our proposed model directly
models the raw mesh sequences. Our method encodes both
intrinsic and extrinsic features in vertex patches, and uses a
hierarchical transformer to freely attend to any two vertex
patches in the spatial and temporal domain. Moreover, two
self-supervised learning tasks, namely Masked Vertex Mod-
eling and Future Frame Prediction are proposed to enforce
the model to learn global context. Our experiments show
that STMT can outperform state-of-the-art skeleton-based
and point-cloud-based models.
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