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Abstract

Animating virtual avatars to make co-speech gestures
facilitates various applications in human-machine interac-
tion. The existing methods mainly rely on generative adver-
sarial networks (GANs), which typically suffer from noto-
rious mode collapse and unstable training, thus making it
difficult to learn accurate audio-gesture joint distributions.
In this work, we propose a novel diffusion-based framework,
named Diffusion Co-Speech Gesture (DiffGesture), to
effectively capture the cross-modal audio-to-gesture asso-
ciations and preserve temporal coherence for high-fidelity
audio-driven co-speech gesture generation. Specifically, we
first establish the diffusion-conditional generation process
on clips of skeleton sequences and audio to enable the
whole framework. Then, a novel Diffusion Audio-Gesture
Transformer is devised to better attend to the information
from multiple modalities and model the long-term temporal
dependency. Moreover, to eliminate temporal inconsistency,
we propose an effective Diffusion Gesture Stabilizer with
an annealed noise sampling strategy. Benefiting from the
architectural advantages of diffusion models, we further
incorporate implicit classifier-free guidance to trade off
between diversity and gesture quality. Extensive experi-
ments demonstrate that DiffGesture achieves state-of-the-
art performance, which renders coherent gestures with bet-
ter mode coverage and stronger audio correlations. Code is
available at https://github.com/Advocate99/DiffGesture.

1. Introduction

Making co-speech gestures is an innate human behavior
in daily conversations, which helps the speakers to express
their thoughts and the listeners to comprehend the mean-
ings [10, 32, 38]. Previous linguistic studies verify that
such non-verbal behaviors could liven up the atmosphere
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Figure 1. Illustration of Conditional Generation Process in Co-
Speech Gesture Generation. The diffusion process q gradually
adds Gaussian noise to the gesture sequence (i.e., x0 sampled
from the real data distribution). The generation process pθ learns
to denoise the white noise (i.e., xT sampled from the normal
distribution) conditioned on context information c. Note that xt

denotes the corrupted gesture sequence at the t-th diffusion step.

and improve mutual intimacy [7, 8, 21]. Therefore, ani-
mating virtual avatars to gesticulate co-speech movements
is crucial in embodied AI. To this end, recent researches
focus on the problem of audio-driven co-speech gesture
generation [16, 25, 30, 41], which synthesizes human upper
body gesture sequences that are aligned to the speech audio.

Early attempts downgrade this task as a searching-and-
connecting problem, where they predefine the correspond-
ing gestures of each speech unit and stitch them together by
optimizing the transitions between consecutive motions for
coherent results [11,21,31]. In recent years, the compelling
performance of deep neural networks has prompted data-
driven approaches. Previous studies establish large-scale
speech-gesture corpus to learn the mapping from speech
audio to human skeletons in an end-to-end manner [4,5,25,
27,30,34,39]. To attain more expressive results, Ginosar et
al. [16] and Yoon et al. [41] propose GAN-based methods
to guarantee realism by adversarial mechanism, where the
discriminator is trained to distinguish real gestures from
the synthetic ones while the generator’s objective is to fool
the discriminator. However, such pipelines suffer from
the inherent mode collapse and unstable training, making
them difficult to capture the high-fidelity audio-conditioned
gesture distribution, resulting in dull or unreasonable poses.

The recent paradigm of diffusion probabilistic models
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provides a new perspective for realistic generation [19, 37],
facilitating high-fidelity synthesis with desirable properties
such as good distribution coverage and stable training com-
pared to GANs. However, it is non-trivial to adapt existing
diffusion models for co-speech gesture generation. Most
existing conditional diffusion models deal with static data
and conditions [35, 36] (e.g., the image-text pairs without
temporal dimension), while co-speech gesture generation
requires generating temporally coherent gesture sequences
conditioned on continual audio clips. Further, the com-
monly used denoising strategy in existing diffusion models
samples independently and identically distributed (i.i.d.)
noises in latent space to increase diversity. However, this
strategy tends to introduce variation for each gesture frame
and lead to temporal inconsistency in skeleton sequences.
Therefore, how to generate high-fidelity co-speech gestures
with strong audio correlations and temporal consistency is
quite challenging within the diffusion paradigm.

To address the above challenges, we propose a tailored
Diffusion Co-Speech Gesture framework to capture the
cross-modal audio-gesture associations while maintain-
ing temporal coherence for high-fidelity audio-driven co-
speech gesture generation, named DiffGesture. As shown
in Figure 1, we formulate our task as a diffusion-conditional
generation process on clips of skeleton and audio, where
the diffusion phase is defined by gradually adding noise
to gesture sequence, and the generation phase is referred
as a parameterized Markov chain with conditional context
features of audio clips to denoise the corrupted gestures.
As we treat the multi-frame gesture clip as the diffusion
latent space, the skeletons can be efficiently synthesized in
a non-autoregressive manner to bypass error accumulation.
To better attend to the sequential conditions from multiple
modalities and enhance the temporal coherence, we then
devise a novel Diffusion Audio-Gesture Transformer archi-
tecture to model audio-gesture long-term temporal depen-
dency. Particularly, the per-frame skeleton and contextual
features are concatenated in the aligned temporal dimension
and embedded as individual input tokens to a Transformer
block. Further, to eliminate the temporal inconsistency
caused by the naive denoising strategy in the inference
stage, we thus propose a new Diffusion Gesture Stabilizer
module to gradually anneal down the noise discrepancy in
the temporal dimension. Finally, we incorporate implicit
classifier-free guidance by jointly training the conditional
and unconditional models, which allows us to trade off
between the diversity and sample quality during inference.

Extensive experiments on two benchmark datasets show
that our synthesized results are coherent with stronger
audio correlations and outperform the state-of-the-arts with
superior performance on co-speech gesture generation. To
summarize, our main contributions are three-fold: 1) As
an early attempt at taming diffusion models for co-speech

gesture generation, we formally define the diffusion and de-
noising process in gesture space, which synthesizes audio-
aligned gestures of high-fidelity. 2) We devise the Diffusion
Audio-Gesture Transformer with implicit classifier-free dif-
fusion guidance to better deal with the input conditional
information from multiple sequential modalities. 3) We pro-
pose the Diffusion Gesture Stabilizer to eliminate temporal
inconsistency with an annealed noise sampling strategy.

2. Related Work

Co-Speech Gesture Generation. Synthesizing co-speech
gestures is crucial for a variety of applications. Conven-
tional studies resort to rule-based pipelines [11, 21, 31],
where linguistic experts pre-define the speech-gesture pairs
and refine the transitions between different motions. Recent
works exploit neural networks to learn the mapping from
speech to gesture based on a large training corpus, where an
off-the-shelf pose estimator is leveraged to label the online
videos for pseudo annotations [1, 16, 30, 34, 41, 42]. Mean-
while, some works study the influence of input modality,
verifying the connections between co-speech gesture and
speech audio [25], text transcript [3], speaking style [2], and
speaker identity [41]. To further improve the model’s capac-
ity, previous studies explore multiple architecture choices,
including CNN [17], RNN [42], Transformer [6], and VQ-
VAE [29, 40]. Notably, several recent works are based on
GANs to guarantee realistic results [16, 30, 34, 41], which
involve the adversarial training between the generator and
the discriminator. However, the notorious mode collapse
and unstable training of GANs prevent the high-fidelity
gesture distribution learning conditioned on audio.
Diffusion Probabilistic Models. Diffusion probabilistic
models have achieved promising results on unconditional
image generation [19], which are further applied to condi-
tional tasks like text-to-image [36]. Among the diffusion-
based literature, previous works focus on static data and
conditions. Besides, they mainly utilize explicit guidance
like pretrained classifiers [13] and CLIP similarity [28, 33,
35, 36] to guide the generation process. In this work, we
explore a more challenging co-speech gesture generation
setting, where the gesture data and audio conditions are
both sequential, and the audio-to-gesture mapping is im-
plicit. To this end, we propose the Diffusion Audio-Gesture
Transformer to guarantee temporally aligned generation.
We further propose the Diffusion Gesture Stabilizer to
simultaneously achieve diverse and temporally coherent
gestures with an annealed noise sampling strategy.

3. Our Approach

Figure 2 depicts an overview of the proposed DiffGes-
ture framework to generate co-speech gestures of high
fidelity. In this section, we first introduce the problem
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Figure 2. Overview of the Diffusion Co-Speech Gesture (DiffGesture) Framework. Given the gesture sequence x0, we first establish
the forward diffusion (purple) and conditional denoising process (green) in gesture space. Then, we devise the Diffusion Audio-Gesture
Transformer to attend to the input conditions of initial poses p(1:M), speech audio a, time embedding t and corrupted gesture xt from
multiple modalities (blue). At the diffusion sampling stage (grey), we propose the Diffusion Gesture Stabilizer to eliminate temporal
inconsistency with an annealed noise sampling strategy. To further incorporate implicit classifier-free guidance, we jointly train the
conditional (1− puncond) and unconditional (puncond) models. This allows us to trade off between diversity and quality during inference.

formulation of audio-driven co-speech gesture generation
(Section 3.1). We then establish the forward diffusion and
the reverse conditional generation process in gesture space
(Section 3.2). Furthermore, we elaborate the Diffusion
Audio-Gesture Transformer to attend to the conditions from
multiple modalities and enhance the speech-gesture correla-
tions with temporal dependency (Section 3.3). To eliminate
temporal inconsistency introduced by naive noises, we
propose a novel Diffusion Gesture Stabilizer with annealed
noise sampling strategies and describe this module in
(Section 3.4). Finally, incorporating implicit classifier-free
guidance in co-speech gestures is discussed in (Section 3.5).

3.1. Problem Formulation

With a large-scale co-speech gesture training corpus, we
leverage the speaking videos with clear co-speech upper
body movements for model learning. In particular, for
each video clip of N frames, we extract the accompanying
speech audio sequence a = {a1, . . . ,aN} and use the off-
the-shelf human pose estimator OpenPose [9] to annotate
the per-frame human skeletons as x = {p1, . . . ,pN}.
We follow baseline methods [30, 41] to pre-process such
skeletal representation as the concatenation of unit direction
vectors as pi = [di,1,di,2, . . . ,di,J−1], where pi denotes
the pose description coordinates of the i-th frame, J is the
total joint number and di,j represents the j-th unit direction
vector among the J joints of the i-th image frame. The
diffusion model’s reverse denoising process G parameter-
ized by θ is optimized to synthesize the human skeleton se-
quence x, which is further conditioned on the speech audio
sequence a and the initial poses {p1, . . . ,pM} of the first
M frames. The learning objective of the overall framework
can be formulated as argminθ ||x−Gθ(a,p1, . . . ,pM )||.

3.2. Gesture Space Forward and Reverse Process

Given x0 ∈ RN×3(J−1) sampled from real data distribu-
tion q(x0), our goal is to learn a model distribution pθ(x0)
parameterized by θ that approximates q(x0). Specifically,
denoising diffusion probabilistic models (DDPMs) [19]
define the latent variable models of the form pθ(x0) =∫
pθ(x0:T )dx1:T , where x1:T are latent variables in the

same sample space as x0 with the same dimensionality.
The Forward Diffusion Process. The forward process,
which is also termed as the diffusion process, approximates
the posterior distribution q(x1:T |x0). It is defined as a
Markov chain that gradually adds Gaussian noise to the data
sample according to a variance schedule β1, . . . , βT :

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), (1)

where q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). (2)

The variances βt are constant hyperparameters to ease the
modeling of the reverse process [19]. Through such a
corruption scheme, the structural information of the original
skeleton is gradually substituted by noises, which finally
leads to a pure white noise when T goes to infinity. There-
fore, the prior latent distribution of p(xT ) is N (xT ;0, I)
with only information of Gaussian noise.
Reverse Conditional Gesture Generation. The reverse
process, which is also termed as the generative process,
estimates the joint distribution of pθ(x0:T ). As proved
in [15], the reverse process of the continuous diffusion
process preserves the same transition distribution form,
which motivates us to leverage a Gaussian transition to for-
mulate pθ(xt−1|xt) under an unconditional setting, which
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approximates the intractable process as:

pθ(x0:T ) = pθ(xT )

T∏
t=1

pθ(xt−1|xt), (3)

where pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (4)

The corrupted noisy data xt is sampled by q(xt|x0) =
N (xt;

√
ᾱtx0, (1 − ᾱt)I), where αt = 1 − βt and ᾱt =∏t

s=1 αs. Note that we set the variances Σθ(xt, t) = βtI
to untrained time-dependent constants. The above diffusion
model formulations show compelling performances on un-
conditional generation. To further adapt to the conditional
co-gesture synthesis, we have to provide additional inputs to
the model, including the audio and initial poses. Therefore,
we treat the speech audio a and initial poses p1:M as context
information c and inject conditions into the generation
process. The reverse process of each timestep (Eq. 4) can
be thus updated as:

pθ(xt−1|xt, c) = N (xt−1;µθ(xt, t, c), βtI). (5)

In this way, we could start the generation process by firstly
sample a Gaussian noise xT ∼ N (0, I) and follow the
Markov chain to iteratively denoise the latent variable xt

via Eq. 5 to get the final results. The overview of conditional
co-speech gesture process is illustrated in Figure 1.
Training Objective. To optimize the overall framework,
we optimize the variational lower bound on negative log-
likelihood: E[− log pθ(x0)] ≤ Eq[− log pθ(x0)

q(x1:T |x0)
]. We

rewrite the loss function conditioned on context c and
eliminate all the constant items that do not require training:
L(θ) = Eq[

∑T
t=2 DKL(q(xt−1|xt,x0)||pθ(xt−1|xt, c))].

With reparameterization, we can represent each term in Lθ

using MSE loss. We follow [19] to further simplify the
training objective to the ensemble of MSE losses as:

L(θ) = Eq[
∥∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, c, t)

∥∥2], (6)

where t is uniformly sampled between 1 and T . As we
jointly train the model under conditional and unconditional
setting, a trainable masked embedding with probability
puncond replaces context c and the diffusion model predicts
the noise in the unconditional setting. The detailed princi-
ples will be discussed in Section 3.5.

3.3. Diffusion Audio-Gesture Transformer

With the naive conditional generation scheme as speci-
fied in Section 3.2, we still confront a critical problem in the
setting of co-speech gesture generation. Since x0 denotes
the skeleton sequence of N frames, there exists temporal
dependency among the target sequence and context infor-
mation, making it more complex than time-invariant tasks

like image generation. Therefore, how to guarantee tem-
porally coherent results in a non-autoregressive conditional
generation process remains an unsolved problem.

In contrast to most previous studies that resort to re-
current networks [30, 41], we propose to make use of the
Transformer’s strong capacity in sequential data modeling.
Specifically, since the noisy gesture sequence xt and the
contextual information c align in the temporal dimension,
we concatenate them in the feature channel. In this way, the
skeleton and context condition of each frame serve as an
individual token, which captures the long-term dependency
by the self-attention mechanism:

Attention(Q,K,V) = softmax(
QKT

√
ℓ

)V, (7)

where Q,K,V are the query, key, and value matrix from
input tokens, ℓ is the channel dimension, and T is the matrix
transpose operation. Such a design also avoids severe error
accumulation in autoregressive pipelines, enabling us to
generate coherent gesture sequences.

3.4. Diffusion Gesture Stabilizer

In DDPMs, the independent random variables z intro-
duced at the sampling stage promote diversity and thus
systematically improve the task performance. However,
the variation in temporal dimension introduced by z, es-
pecially when timestep t is small in the reverse process,
can have a negative effect on temporal consistency. At the
inference stage, to achieve the trade-off between diversity
and temporal consistency, we propose a novel Diffusion
Gesture Stabilizer without extra training expenses under
two annealed scenarios, where the term “annealed” means
that the process is transitioned from high variance and
entropy (hot) to low variance and entropy (cold).
Thresholding. Since temporally independent Gaussian
noises inevitably introduce inconsistency, restricting the
temporal variation naturally helps to avoid inconsistency.
And hard thresholding serves as an effective trick. In
detail, we set a time threshold t0, and then use the same
z ∈ RN×C in the naive sampling strategy for t > t0 and set
z = {z0}Ni=1 for t ≤ t0, where z0 ∈ RC follows N (0, I)
which do not introduce variation in the temporal dimension.
Smooth Sampling. We further modify z(t) = {zi(t)}Ni=1

to be a smooth annealing version via variance-aware
sampling. In the original sampling rule of DDPMs,
i.i.d.variables zi(t) are sampled from N (0, I). With
smooth resampling, we first sample z0(t) ∼ N (0, σ2

a(t)I)
only once for each timestep t in the reverse process, then
given z0(t), we sample zi(t)|z0(t) ∼ N (z0(t), (1 −
σ2
a(t))I) for i ∈ {1, . . . , N}, where σa(t) ∈ [0, 1] is a non-

decreasing function to achieve variance annealing.
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Algorithm 1 Training
1: repeat
2: Sample (x0, c) ∼ q(x0, c)
3: Sample τ ∼ Uniform(0, 1). Set c = ∅ if τ < puncond

4: Sample t ∼ Uniform({1, . . . , T})
5: Compute ∇θ

∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, c, t)

∥∥2

6: Perform gradient descent
7: until converged

3.5. Implicit Classifier-free Guidance

In co-speech gesture literature, the speech-to-gesture
mapping is implicit, where the same audio corresponds to
diverse gestures and different audios could incur the same
motion [22, 25], making it difficult to utilize the commonly
used explicit classifier guidance [13, 33]. Therefore, how
can we further exploit practical guidance for better audio
correlations and mode coverage? Our solution to this
question is to train an extra “unconditional” diffusion model
to implicitly guide the generation. Dhariwal et al. [13]
first introduce the classifier guidance of cross-entropy gra-
dient ∇xt

log pϕ(y|xt), where the pretrained classifier is
parameterized by ϕ and y denotes the classification logits.
This gradient term is further scaled by the covariance
matrix to modify the mean value of transition distribution
in Eq. 4. To adapt to the cases where no explicit guidance is
available, we follow [20] to jointly train the conditional and
unconditional models, termed as classifier-free guidance.
In particular, according to the implicit classifier’s property
that p(c|xt) ∝ p(xt|c)/p(xt), we could derive a gradient
relationship in the implicit classifier as:

∇xt
log p(c|xt) ∝ ∇xt

log p(xt|c)−∇xt
log p(xt), (8)

which is further proportional to ϵ∗(xt|c) − ϵ∗(xt). There-
fore, we use a single Transformer network to parameterize
both settings by a mix-up training trick: for the probability
of puncond, we set the context information c as masked
embedding to train the unconditional setting, while for other
cases, we train the original conditional counterpart. The
training is shown in Algorithm 1.
Sampling with Classifier-free Guidance. Starting from
Gaussian noise, we iteratively remove noises in xt. As we
use implicit classifier-free guidance, similar to Equation 8,
the predicted Gaussian noise is modified as:

ϵ̂θ = ϵθ(xt, t) + s · (ϵθ(xt, c, t)− ϵθ(xt, t)), (9)

where s is the scale parameter to trade off the diversity
and quality. With classifier-free guidance, Algorithm 2
reveals how to generate co-speech gestures given the trained
diffusion model via the Diffusion Gesture Stabilizer with
the Smooth Sampling annealed scenario.

Algorithm 2 Sampling
1: Trained diffusion model θ, xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: ϵ̂θ = ϵθ(xt, t) + s · (ϵθ(xt, c, t)− ϵθ(xt, t))
4: z0(t) ∼ N (0, σ2

a(t)I)
5: for i = 1, . . . , N do
6: zi(t) ∼ N (z0(t), (1− σ2

a(t))I)
7: end for
8: z(t) = {z1(t), . . . , zN (t)}, if t > 1, else z(t) = 0

9: xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵ̂θ
)
+ σtz(t)

10: end for
11: return x0

4. Experiments
4.1. Co-Speech Gesture Datasets

TED Gesture. As a large-scale dataset for gesture genera-
tion research, TED Gesture dataset [41, 42] contains 1,766
TED videos of different narrators covering various topics.
We follow the data process in former works [30, 41], where
the poses are resampled with 15 FPS, and frame segments
of length 34 are obtained with a stride of 10.
TED Expressive. While the poses in TED Gesture only
contain 10 upper body key points without vivid finger
movements, the TED Expressive dataset [30] is further
expressive of both finger and body movements. The state-
of-art 3D pose estimator ExPose [12] is used to fully capture
the pose information in data. As a result, TED Expressive
annotates the 3D coordinates of 43 keypoints, including 13
upper body joints and 30 finger joints.

4.2. Experimental Settings

Comparison Methods. We compare our method on two
benchmark datasets with the state-of-the-art methods in
recent years. 1) Attention Seq2Seq [42] elaborates on
the attention mechanism to generate pose sequences from
speech text. 2) Speech2Gesture [16] uses spectrums of the
speech audio segments as the input and generates speech
gestures adversarially. 3) Joint Embedding [3] maps text
and motion to the same embedding space, then generates
outputs from motion description text. 4) Trimodal [41]
serves as a strong baseline that learns from text, audio, and
speaker identity to generate gestures, outperforming former
methods by a large margin. 5) HA2G [30] introduces a
hierarchical audio learner that captures information across
different semantic granularities, achieving state-of-the-art
performances. This method hierarchically extracts rich
features at the cost of heavier GPU memory overhead, while
our method requires much smaller expenses.
Implementation Details. For all the methods in both
datasets, we set N = 34 and M = 4 to get M -frame pose
sequences where the first N frames are used for reference,
termed as initial poses. There are J upper body joints in
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TED Gesture [41] TED Expressive [30]

Methods FGD ↓ BC ↑ Diversity ↑ FGD ↓ BC ↑ Diversity ↑
Ground Truth 0 0.698 108.525 0 0.703 178.827

Attention Seq2Seq [42] 18.154 0.196 82.776 54.920 0.152 122.693
Speech2Gesture [16] 19.254 0.668 93.802 54.650 0.679 142.489
Joint Embedding [3] 22.083 0.200 90.138 64.555 0.130 120.627
Trimodal [41] 3.729 0.667 101.247 12.613 0.563 154.088
HA2G [30] 3.072 0.672 104.322 5.306 0.641 173.899

DiffGesture (Ours) 1.506 0.699 106.722 2.600 0.718 182.757

Table 1. The Quantitative Results on TED Gesture [41] and TED Expressive [30]. We compare the proposed diffusion-based method
against recent SOTA methods [3, 16, 30, 41, 42] and ground truth. For FGD, the lower, the better; for other metrics, the higher, the better.

all the frames of pose sequences, where J = 10 for TED
Gesture and J = 43 for TED Expressive. Following [41],
to eliminate the effect of the joint lengths and root motion,
we represent the joints’ positions using J − 1 directional
vectors normalized to the unit vectors and train the model
to learn the directional vectors. For the audio processing,
we use the same audio encoder used in [41] to extract
the feature of the raw audio clips directly. The audio
clips are encoded as N audio feature vectors of 32-D. The
audio feature and initial poses are concatenated to form the
conditional context information of the diffusion model. For
the diffusion process, the number of timesteps is T = 500,
and the variances increase linearly from β1 = 1e − 4 to
βT = 0.02. For the Stabilizer, t0 can be adjusted from
20-30 for Thresholding, and a quadratic non-increasing
function σa(t) is applied for Smooth Sampling. The hidden
dimension of the transformer blocks, is set to 256 for TED
Gesture and 512 for TED Expressive. We use 8 Transformer
blocks, each of which comprises a multi-head self-attention
block and a Feed-Forward Network. We use an Adam
optimizer, and the learning rate is 5e− 4. It takes 10 hours
to train the model on TED Gesture and 20 hours on TED
Expressive on a single NVIDIA GeForce RTX 3090 GPU.

4.3. Evaluation Metrics

In evaluation, we use three metrics that are used in co-
speech gesture generation and relative fields [24, 30].
Fréchet Gesture Distance (FGD). Similar to the Fréchet
Inception Distance (FID) metric [18], which is widely ap-
plied in image generation studies, FGD is used to measure
the distance between the synthesized gesture distribution
and the real data distribution. Yoon et al. [41] define FGD
by training a skeleton sequence auto-encoder to extract the
features of the real gesture sequences X and the features of
the generated gesture sequences X̂:

FGD(X, X̂) = ∥µr −µg∥2 +Tr(Σr +Σg − 2(ΣrΣg)
1/2),

where µr and Σr are the first and the second moments of the

latent feature distribution of the real gestures X , and µg and
Σg are the first and the second moments of the latent feature
distribution of the generated gestures X̂ . We intuitively find
that among the three metrics, FGD tells the most whether
the generated pose sequences are of high quality.
Beat Consistency Score (BC). Proposed in [24, 26],
BC measures motion-audio beat correlation. Consid-
ering that the kinematic velocities vary from different
joints, we use the change of included angle between
bones to track motion beats following [30]. Specifi-
cally, we can calculate the mean absolute angle change
(MAAC) of angle θj in adjacent frames by MAAC(θj) =
1
S

1
T−1

∑S
s=1

∑T−1
t=1 ∥θj,s,t+1 − θj,s,t∥1, where S denotes

the total number of clips in the dataset, T denotes the
number of frames in each clip, and θj,s,t is the included
angle between the j-th and the (j+1)-th bone of the s-th
clip at time-step t. Then, we can compute the angle change
rate of frame t for the s-th clip as 1

J−1

∑J−1
j=1 (∥θj,s,t+1 −

θj,s,t∥1/MAAC(θj)). Then we extract the local optima
whose first-order difference is higher than a threshold to
get kinematic beats, which are used to compute BC later.
Following [24] to detect audio beat by onset strength [14],
we compute the average distance between each audio beat
and its nearest motion beat as Beat Consistency Score:

BC =
1

n

n∑
i=1

exp(−
min∀tyj∈By ∥txi − tyj∥2

2σ2
), (10)

where txi is the i-th audio beats, By = {tyi } is the set
of the kinematic beats, and σ is a parameter to normalize
sequences, set to 0.1 empirically.
Diversity. This metric evaluates the variations among
generated gestures corresponding to various inputs [23]. We
use the same feature extractor when measuring FGD to map
synthesized gestures into latent feature vectors and calculate
the mean feature distance. In detail, we randomly pick 500
generated samples and compute the mean absolute error
between the features and the shuffled features.

10549



Ground
Truth

DiffGesture
(Ours)

Joint
Embed.

Trimodal

Speech2
Gesture  

HA2G

Seq2Seq

Ground
Truth

DiffGesture
(Ours)

Joint
Embed.

Trimodal

Speech2
Gesture  

HA2G

Seq2Seq

(i) (ii) (iii)

Figure 3. Visualization Results of Our DiffGesture on Two Datasets. Three cases are picked up, where (i) and (ii) are TED Expressive
cases, and (iii) is a TED Gesture case. We highlight dull cases generated by comparison methods with rectangles, indicating the mode
collapse phenomenon of baselines.

Methods GT S2S. [42] S2G. [16] Joint. [3] Tri. [41] HA2G [30] DiffGesture(Ours)

Naturalness 4.33 1.22 2.56 1.22 3.22 3.67 4.00
Smoothness 3.94 3.50 1.61 3.44 3.44 3.39 3.89
Synchrony 4.00 1.67 3.17 1.39 3.28 3.44 3.89

Table 2. User Study Results. The ratings of motion naturalness, smoothness, and synchrony, are on a scale of 1-5, with 5 being the best.

4.4. Evaluation Results

Quantitative Results. We compare our method with all
the baselines with three metrics on TED Gesture and TED
Expressive. The results are shown in Table 1. For the
metrics of Ground Truth, we report the values in our
implementation. For TED Gesture, we report FGD of all
baselines in [30] and evaluate BC and Diversity on our
own†. For TED Expressive, all the results of baselines are
reported from [30]. Assuming the pseudo ground truth pose
follows the real distribution, the FGD of Ground Truth in
the table is 0. It is observed that our DiffGesture achieves
state-of-the-art performance on both datasets, especially
outperforming existing methods by a large margin on TED

†Since there exists an evaluation bug for the BC metric in HA2G [30],
we report the re-implemented results from Liu et al.

Expressive. Besides, since BC and Diversity are proposed
to measure motion-audio beat correlation and variation,
these two metrics of Ground Truth cannot be treated as
upper bounds, and it is worth noting that our results may
be higher than the ones of Ground Truth, indicating that
the generated gestures are of high quality. Qualitative
Results. We show the keyframes of all the methods on
two datasets in Figure 3. Since TED Expressive requires
a higher ability of generative models, we pick up two cases
for TED Expressive and one for TED Gesture. For each
case, we select three keyframes (an early, a middle, and a
late one) to show the pose motions. Comparison methods
tend to generate slow and invariant poses and sometimes
produce unreliable and stiff results. In contrast, DiffGesture
produces diverse human-like poses without resulting in
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TED Gesture [41] TED Expressive [30]

Methods FGD ↓ BC ↑ Diversity ↑ FGD ↓ BC ↑ Diversity ↑
DiffGesture Base 2.450 0.632 104.688 3.822 0.707 174.377
DiffGesture w/o Stabilizer 2.219 0.674 105.192 2.792 0.721 180.125
DiffGesture w/o classifier-free 1.810 0.673 105.644 3.326 0.717 178.245
DiffGesture (Ours) 1.506 0.699 106.722 2.600 0.718 182.757

Table 3. Ablation Study on the Proposed Modules. We investigate effectiveness of the proposed modules, Diffusion Gesture Stabilizer
and implicit classifier-free guidance. The results indicate that the proposed modules consistently improve performance on the benchmarks.

mean poses which are slow and rigid. Besides, as a
primary drawback of GAN-based methods, mode collapse
makes comparison methods often produce a single type of
output, which is severe for pose motion generation. Such a
phenomenon is shown in Fig. 3, where the generated frames
with nearly the same pose are highlighted with rectangles.
User Study. To better validate the qualitative performance,
we conduct a user study on the generated co-speech ges-
tures. The study involves 18 participants, with 9 females
and 9 males in the age range of 18-25 years old. The
participants are required to grade the motion’s quality and
coherence, and all the clips are without labels. In total, we
pick up 30 cases, 20 for TED-Expressive and 10 for TED
Gesture. For each case, we show 7 videos with the order
of the methods shuffling, including the ground truth. We
adopt the Mean Opinion Scores rating protocol, and each
participant is required to rate three aspects of generated
motions: Naturalness; Smoothness; Synchrony between
speech and generated gestures. The results are shown in
Table 2 where the ratings are on a scale of 1 to 5, with
5 being the best. Our participants widely accept that our
method produces high-fidelity results in all three aspects.

4.5. Ablation Studies

Ablation Study on the Proposed Modules. To demon-
strate the effectiveness of our proposed DiffGesture, we
present ablation studies on the key modules in the frame-
work. In detail, we conduct experiments as follows. 1) Dif-
fGesture Base means we only use the proposed conditional
diffusion generation process without further design. 2) Dif-
fGesture w/o classifier-free, where classifier-free guidance
is not implemented at both the training stage and inference
stage. 3) DiffGesture w/o Stabilizer, where Diffusion
Gesture Stabilizer is removed at the inference stage. The
results are reported in Table 3. The results illustrate the
effectiveness of the designed Diffusion Gesture Stabilizer
and the implicit classifier-free guidance.
Ablation Study on the Network Architectures. We inves-
tigate the performance of the GRU architecture in diffusion
models, autoregressively generating poses in [30, 41]. We
replace the Diffusion Audio-Gesture Transformer with the

Methods FGD ↓ BC ↑ Diversity ↑
GRU on Da 14.343 0.658 98.472
Transformer on Da 1.506 0.699 106.722

GRU on Db 17.452 0.680 172.168
Transformer on Db 2.600 0.718 182.757

Table 4. Ablation Study on the Network Architectures. We
compare the performance of GRU and Transformer for diffusion-
based backbone on TED Gesture (Da) and TED Expressive (Db).

GRU in the diffusion model. All the context inputs remain
the same as our method and are concatenated before the
diffusion network. Results are shown in Table 4. Though
GRU serves as a strong baseline network in co-gesture
learning, it fails to generate high-performance data like our
designed Transformer-based network, which indicates the
effectiveness of our Transformer-based network and that
applying diffusion models in the audio-driven conditional
generation is a non-trivial task.

5. Conclusion
In this work, we present a novel diffusion-based frame-

work DiffGesture for co-speech gesture generation. To
generate coherent gestures with strong audio correlations,
we propose the Diffusion Audio-Gesture Transformer with
the Diffusion Gesture Stabilizer to better attend to the
condition information. Such a non-autoregressive pipeline
helps to efficiently generate results and reduce error accu-
mulation. We hope our method offers a new perspective
for diffusion-based temporal generation and how to capture
sequential cross-modal dependencies.
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