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Abstract

Few-shot learning (FSL) is popular due to its ability to
adapt to novel classes. Compared with inductive few-shot
learning, transductive models typically perform better as
they leverage all samples of the query set. The two exist-
ing classes of methods, prototype-based and graph-based,
have the disadvantages of inaccurate prototype estimation
and sub-optimal graph construction with kernel functions,
respectively. In this paper, we propose a novel prototype-
based label propagation to solve these issues. Specifically,
our graph construction is based on the relation between
prototypes and samples rather than between samples. As
prototypes are being updated, the graph changes. We also
estimate the label of each prototype instead of considering
a prototype be the class centre. On mini-ImageNet, tiered-
ImageNet, CIFAR-FS and CUB datasets, we show the pro-
posed method outperforms other state-of-the-art methods in
transductive FSL and semi-supervised FSL when some un-
labeled data accompanies the novel few-shot task.

1. Introduction
With the availability of large-scale datasets and the rapid

development of deep convolutional architectures, super-
vised learning exceeds in computer vision, voice, and ma-
chine translation [23]. However, lack of data makes the ex-
isting supervised models fail during the inference on novel
tasks. As the annotation process may necessitate expert
knowledge, annotations are may be scarce and costly (e.g.,
annotation of medical images). In contrast, humans can
learn a novel concept from just a single example.

Few-shot learning (FSL) aims to mimic the capabilities
of biological vision [7] and it leverages metric learning,
meta-learning, or transfer learning. The purpose of metric-
based FSL is to learn a mapping from images to an embed-
ding space in which images from the same class are closer
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Figure 1. Drawbacks of prototype-based and graph-based FSL.
(left) Some label assignments are incorrect due to the imperfect
decision boundary. (right) Some “strong” links in the fixed graph
are incorrect as they associate samples of different classes.

together and images from other classes are separated. Meta-
learning FSL performs task-specific optimisation with the
goal to generalize to other tasks well. Pre-training a fea-
ture extractor followed by adapting it for reuse on new class
samples is an example of transfer learning.

Several recent studies [6, 11, 13, 16, 22, 29, 34, 35] ex-
plored transductive inference for few-shot learning. At the
test time, transductive FSL infer the class label jointly for
all the unlabeled query samples, rather than for one sam-
ple/episode at a time. Thus, transductive FSL typically out-
performs inductive FSL. We categorise transductive FSL
into: (i) FSL that requires the use of unlabeled data to esti-
mate prototypes [2,26,27,43,44], and (ii) FSL that builds a
graph with some kernel function and then uses label prop-
agation to predict labels on query sets [22, 29, 61]. How-
ever, the above two paradigms have their own drawbacks.
For prototype-based methods, they usually use the nearest
neighbour classifier, which is based on the assumption that
there exists an embedding where points cluster around a
single prototype representation for each class. Fig. 1 (left)
shows a toy example which is sensitive to the large within-
class variance and low between-class variance. Thus, the
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two prototypes cannot be estimated perfectly by the soft
label assignment alone. Fig. 1 (right) shows that Label-
Propagation (LP) and Graph Neural Network (GNN) based
methods depend on the graph construction which is com-
monly based on a specific kernel function determining the
final result. If some nodes are wrongly and permanently
linked, these connections will affect the propagation step.

In order to avoid the above pitfalls of transductive FSL,
we propose prototype-based Label-Propagation (protoLP).
Our transductive inference can work with a generic feature
embedding learned on the base classes. Fig. 2 shows how
to alternatively optimize a partial assignment between pro-
totypes and the query set by (i) solving a kernel regression
problem (or optimal transport problem) and (ii) a label prob-
ability prediction by prototype-based label propagation. Im-
portantly, protoLP does not assume the uniform class distri-
bution prior while significantly outperforming other meth-
ods that assume the uniform prior, as shown in ablations on
the imbalanced benchmark [46] where methods relying on
the balanced class prior fail. Our model outperforms state-
of-the-art methods significantly, consistently providing im-
provements across different settings, datasets, and training
models. Our transductive inference is very fast, with run-
times that are close to the runtimes of inductive inference.

Our contributions are as follows:

i. We identify issues resulting from separation of proto-
type-based and label propagation methods. We propose
prototype-based Label Propagation (protoLP) for trans-
ductive FSL, which unifies both models into one frame-
work. Our protoLP estimates prototypes not only from
the partial assignment but also from the prediction of la-
bel propagation. The graph for label propagation is not
fixed as we alternately learn prototypes and the graph.

ii. By introducing parameterized label propagation step,
we remove the assumption of uniform class prior while
other methods highly depend on this prior.

iii. We showcase advantages of protoLP on four datasets
for transductive and semi-supervised learning, Our pro-
toLP outperforms the state of the art under various set-
tings including different backbones, unbalanced query
set, and data augmentation.

2. Related Work
Few-shot classification methods often exploit the meta-
learning paradigm [36, 44, 47], and they use episodes for
training and testing. Approaches [4, 50] show that meta-
training is not required for learning good features for few-
shot learning. Instead, they train a typical classification
network with two blocks: the feature extractor and the
classification head. Many FSL models combine backbone

Figure 2. Our transductive few-shot learning: (i) based on pro-
totypes, estimate as partial assignment (one can use soft k-means
in Eq. (4) instead); (ii) a graph is constructed by the assignment,
followed by the prototype-based label propagation, predicting the
label soft score; (ii) updating prototypes based on the prediction.

with classification head [19, 42, 48, 49, 55], detection head
[56–58], localization head [30] or detection head [15].

We focus on designing the inference stage and improving
its performance in transductive and semi-supervised setting.
Graph-based FSL often form a graph via an adjacency ma-
trix based on Radial Basis Function (RBF), used in the prop-
agation of labels or features. Satorras et al. [40] propagate
labels by building an affinity matrix between the support set
and the unlabeled data. wDAE-GNN [9] generates classifi-
cation weights with a graph neural network (GNN) and ap-
plies a denoising AutoEncoder (DAE) to regularize the rep-
resentation. Approach [29] learns propagation. Embedding
Propagation [38] propagates labels and the embedding to
decrease the intra-class distance. Set-to-set functions have
also been used for embedding adaptation [54].

In contrast to FSL with a fixed graph, we do not construct
a graph from samples directly but construct a bipartite graph
by prototypes and samples. As prototypes change, so does
the constructed graph, which we regard as a learnable graph.
Transductive and Semi-Supervised Few-Shot Learning
is not as popular as inductive FSL which only uses samples
in the support set to fine-tune the model or learn a func-
tion for the inference of query labels. In contrast, transduc-
tive FSL enjoys access to all the query data. In this paper,
we categorise transductive FSL into (i) prototype-based and
(ii) label propagation based FSL. Prototypical Network [44]
learns a metric space in which classification is performed
by computing distances to prototype representations of each
class. Simon et al. [43] use adaptive subspace-based proto-
types. Lichtenstein et al. [26] employ subspace learning via
PCA or ICA to extract discriminant features for the near-
est neighbour classifier on prototypes. Liu et al. [27] im-
prove prototype estimation. TIM [2] maximizes the mutual
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information between the query features and their label pre-
dictions for a few-shot task at inference, while minimizing
the cross-entropy loss on the support set to estimate pro-
totypes. Label Propagation (LP) is popular in transductive
FSL methods [3, 22, 29, 60, 61], which construct a graph
from the support set and the entire query set, and propa-
gate labels within the graph. However, as in graph-based
FSL methods, LP employs kernel functions (RBF or co-
sine) to construct the graph between samples. Additionally,
some methods [14,22,60] leverage the uniform prior on the
class distribution with the optimal transport while in realis-
tic evaluation of transductive FSL the prior is unknown [46].
In semi-supervised FSL [25, 29, 37, 43], the unlabeled data
is provided in addition to the support set and is assumed
to have a similar distribution to the target classes (although
unrelated noisy samples may be also added).

3. Methodology
Below we introduce prototypical networks [44], explain

semi-supervised prototype computation, and present trans-
ductive FSL based on label propagation. Then, we present
our prototype-based Label Propagation (protoLP). Finally,
we show how to optimize protoLP by updating the proto-
types, solving the partial assignment problem and the label
propagation by the linear projection. Moreover, we demon-
strate how to obtain the final label prediction for the query
set given learnt prototypes. Fig. 2 illustrates our method.

3.1. Preliminaries

Inductive FSL uses a support set of K classes with N la-
beled examples per class, S ≡ {(xi, yi)}Li=1 where L = NK,
each xi ∈ R

D is the D-dimensional feature vector (from
backbone) of an example and yi ∈ {1, · · · ,K} is the corre-
sponding label. S k ⊂ S is the set of examples labeled with
class k. Prototypical networks [44] compute a prototype of
class as the mean vector of support samples belonging to
the class:

ck =
1
|S k |

∑
x: y(x)∈S k

x. (1)

Given a distance function d : RD × RD → R+, prototypi-
cal nets use Nearest Class Mean (NCM) to predict the label
of query x:

k∗ = arg min
k

d (x, ck) . (2)

Transductive Few-shot Learning. In the case of induc-
tive FSL, the prediction is performed independently on each
episode, and thus the mean vector is only dependent on the
support set of N labeled examples, as shown in Eq. (1), and
is fixed for the given embedded features. However, in the
case of transductive FSL, the prediction is performed inclu-
sive of all queries, Q ≡ {xL+i}

U
i=1, where U = RK, and the

query set has K classes with R unlabeled examples per class.

Inference of Prototypes. Transductive/semi-supervised
Prototypical Network [44] treats prototypes ck in Eq. (1)
as clusters. The unlabeled samples with indexes L + 1 ≤
i ≤ L + U are soft-assigned [18] to each cluster ck, yielding
zik, whereas labeled samples with indexes 1 ≤ i ≤ L use
one-hot labels, i.e., zik = 1 for k = yi and zik = 0 for k , yi.
Specifically, refined prototypes are obtained as follows:

ck =

∑L
i=1 zikxi +

∑L+U
j=L+1 z jkx j∑L

i′=1 zi′k +
∑L+U

j′=L+1 z j′k
where (3)

zik =


exp(−∥xi−ck∥

2
2)∑

k′ exp(−∥xi−ck′ ∥
2
2)

if L + 1 ≤ i ≤ L + U

OneHot(yi) if 1 ≤ i ≤ L.
(4)

The prediction of each query label follows Eq. (2). Notice
that although the prototypes estimation leverages all data in
the query set, the inference still only depends on prototypes
and a single sample rather than prototypes and all samples.

Label Propagation. We form a graph G = (V,E) where
verticesV represent all labeled and unlabeled samples, and
edges E are represented by a distance matrix W . Let D
be a diagonal matrix whose diagonal elements are given by
Dii =

∑
j Wi j. The graph Laplacian is then defined as L =

D−W , which is used for smoothness-based regularization
by taking into account the unlabeled data:

1
2

Tr(Ỹ ⊤LỸ ) =
1
2

∑
i, j

Wi j(ỹi − ỹ j)2. (5)

For practical reasons, Zhou et al. [59] are concerned not
only with the smoothness but the impact of the supervised
loss on the propagation. Thus, they minimize a combination
of the smoothness and the squared error training loss:

Ỹ ∗ = arg min
Ỹ

L∑
i=1

∥ỹi − yi∥
2
2 +
λ

2
Tr(Ỹ ⊤LỸ ). (6)

Eq. (6) relies on the quality of a fixed Laplacian matrix L
which largely determines the final performance of method.

3.2. Proposed Formulation

Below we introduce our prototype-based Label Propaga-
tion (protoLP). Firstly, we parameterize the label propaga-
tion step and explain why. Then, we explain how to use
prototypes to construct a graph, and we combine the above
two components into protoLP.

Parameterized Label Prediction. Given the adjacency
matrix W , we can solve label propagation by Eq. (6). How-
ever, we introduce a linear projection A into the label prop-
agation step to limit overfitting to matrix W . Let:

Ỹ = ZA, (7)
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where A = [a1, · · · ,aK]⊤ has K basis functions and Z
comes from Eq. (4) given a prototype set {ck}

K
k=1. Substi-

tute Eq. (7) into Eq. (6), we obtain:

A∗= arg min
A

∥ZLA − YL∥
2
F +
λ

2
Tr(A⊤Z⊤LZA), (8)

where ZL= [z1, . . . ,zL]⊤ ∈RL×K . YL= [y1, . . . ,yL]⊤ ∈RL×K

is the submatrix according to the assignment and label parti-
tion. Intuitively, we can regard ak as a learnable label for the
k-th prototype which is non-sparse in contrast to a one-hot
class vector. Based on the above model, one can estimate a
soft score of likely category of an inaccurate prototype.
Prototype-based Graph Construction. Prototype-based
graphs are based on the idea that we can use a small num-
ber of prototypes to turn sample-to-sample affinity compu-
tations into much simpler sample-to-prototype affinity com-
putations [28]. Below we explain how to construct a graph
with prototypes. Given a prototype set {ck}

K
k=1, for each

sample we obtain a partial assignment z j with soft assign-
ment in Eq. (4). We form the adjacency matrix W as:

W = ZΛ−1Z⊤, (9)

where the diagonal matrix Λ ∈ RK×K is defined as Λkk =∑
i Zik (index i iterates over all samples). The corresponding

Laplacian matrix is L = I−ZΛ−1Z⊤. Wi j captures relation
between the i-th and j-th samples by confounding variables
ck according to the chain rule of Markov random walks:

Wi j= p
(
xi |x j

)
=

K∑
k=1

p (xi |ck) p
(
ck |x j

)
= p
(
x j |xi

)
=

K∑
k=1

z jk∑
j′ z j′k

zi,k =

K∑
k=1

zikz jk

Λkk
,

(10)

where p(xi | ck) = Zik and Wi j = W ji. One may think of
the above process as a 2-hop diffusion on a bipartite graph
with samples xi and prototypes ck located in two partitions
of that graph. Notice the graph changes with prototypes.
Prototype-based Label Propagation (protoLP). Based on
parameterized label prediction and prototype-based graph
construction, we combine Eq. (8) and (9) into:

min
A

1
2
∥ZLA − YL∥

2
F +
λ

2
Tr(A⊤Z⊤(I −ZΛ−1Z⊤)ZA).

(11)
As Eq. (8) and (9) are highly dependent on prototypes, in-
stead of using the update of ck as in Eq. (4), we use steps
from Section 3.3. Firstly, we initialize each prototype as the
mean vector of the support samples belonging to its class.

3.3. Optimization

Below we explain how to optimize w.r.t. Z,A and C
by alternating. The order of optimisation in each round as-
sumes minimization w.r.t. Z, then A and finally C.

Algorithm 1: Prototype-based Label Propagation.
Input: X ,Y , λ, α, nstep

Init: c̃k =
1
|S k |

∑
(xi,yi)∈S k

xi,k = 0;
while k < nstep do

Estimating Assignment:

Zi j =
exp(−∥xi−c̃ j∥

2
2)∑

j′ exp(−∥xi−c̃ j′∥
2
2)

;

Constructing Graph:
Λkk =

∑
i Zik and W = ZtΛ

−1Z⊤t ;
Propagating Label:

Ỹ = Zt

(
Z⊤L ZL + λZ

⊤
t (I −W )Zt

)−1
Z⊤t Y ;

Updating Prototypes:
C̃← (1 − α)C̃ + αỸ X;

k ← k + 1
end
return yi = arg max j Ỹi, j

Updating Z. Firstly, given a prototype set {ck}
K
k=1, we opti-

mize the following equation w.r.t. Z:

Zt = arg min
Z

∑
i,k

zik∥xi − ck∥
2
2, s.t.

∑
k

zik=1. (12)

Eq. (12) can be solved by Eq. (4).
Updating A. Next, we solve Eq. (11) w.r.t. A by globally-
optimal closed-form formula:

At=
(
Z⊤L ZL + λZ

⊤
t

(
I −ZtΛ

−1Z⊤t
)
Zt

)−1
Z⊤t Y . (13)

Subsequently, we can infer the label soft score by Eq. (7),
i.e., Ỹt = ZtAt is the output for updating prototypes in the
next iteration. Substituting Eq. (13) into (7), we have:

Ỹt = Zt(Z⊤L ZL + λZ
⊤
t

(
I −ZtΛ

−1Z⊤t
)
Zt)−1Z⊤t Y . (14)

Using A is not mandatory but this linear projection im-
proves results by limiting overfitting during propagation.
Updating C. We update C by:

Ct = arg min
C

∑
i,k

ỹik∥xi − ck∥
2
2, (15)

where one may set ck =

∑L
i=1 xiỹik +

∑L+U
j=L+1 x jỹ jk∑L

i′=1 ỹi′k +
∑L+U

j′=L+1 ỹ j′k
. (16)

We use the gradient decent and the exponential running av-
erage to update C to avoid instability that changing Ỹ may
pose:

Ct = (1 − α)Ct−1 + αỸ
⊤X , (17)

where 0 ≤ α ≤ 1 controls the speed of adaptation of Ct.
Inference. For each query xL+i ∈Q (note x1, · · · ,xL where
L = NK are for training, we predict its pseudo-label by
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Table 1. Comparison of test accuracy against state-of-the-art methods for 1-shot and 5-shot classification. (∗: inference aug., §4.2.3)

mini-ImageNet tiered-ImageNet

Methods Setting Network 1-shot 5-shot 1-shot 5-shot

MAML [8] Inductive ResNet-18 49.61 ± 0.92 65.72 ± 0.77 – –
RelationNet [45] Inductive ResNet-18 52.48 ± 0.86 69.83 ± 0.68 – –
MatchingNet [47] Inductive ResNet-18 52.91 ± 0.88 68.88 ± 0.69 – –
ProtoNet [44] Inductive ResNet-18 54.16 ± 0.82 73.68 ± 0.65 – –
TPN [29] transductive ResNet-12 59.46 75.64 – –
TEAM [35] transductive ResNet-18 60.07 75.9 – –
Transductive tuning [6] Transductive ResNet-12 62.35 ± 0.66 74.53 ± 0.54 – –
MetaoptNet [24] Transductive ResNet-12 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53
CAN+T [11] Transductive ResNet-12 67.19 ± 0.55 80.64 ± 0.35 73.21 ± 0.58 84.93 ± 0.38
DSN-MR [43] Transductive ResNet-12 64.60 ± 0.72 79.51 ± 0.50 67.39 ± 0.82 82.85 ± 0.56
ODC∗ [34] Transductive ResNet-18 77.20 ± 0.36 87.11 ± 0.42 83.73 ± 0.36 90.46 ± 0.46
MCT∗ [21] Transductive ResNet-12 78.55 ± 0.86 86.03 ± 0.42 82.32 ± 0.81 87.36 ± 0.50
EASY∗ [1] Transductive ResNet-12 82.31 ± 0.24 88.57 ± 0.12 83.98 ± 0.24 89.26 ± 0.14
protoLP (ours) Transductive ResNet-12 70.77 ± 0.30 80.85 ± 0.16 84.69 ± 0.29 89.47 ± 0.15
protoLP∗ (ours) Transductive ResNet-12 84.35 ± 0.24 90.22 ± 0.11 86.27 ± 0.25 91.19 ± 0.14
protoLP (ours) Transductive ResNet-18 75.77 ± 0.29 84.00 ± 0.16 82.32 ± 0.27 88.09 ± 0.15
protoLP∗ (ours) Transductive ResNet-18 85.13 ± 0.24 90.45 ± 0.11 83.05 ± 0.25 88.62 ± 0.14

ProtoNet [44] Inductive WRN-28-10 62.60 ± 0.20 79.97 ± 0.14 – –
MatchingNet [47] Inductive WRN-28-10 64.03 ± 0.20 76.32 ± 0.16 – –
SimpleShot [50] Inductive WRN-28-10 65.87 ± 0.20 82.09 ± 0.14 70.90 ± 0.22 85.76 ± 0.15
S2M2-R [31] Inductive WRN-28-10 64.93 ± 0.18 83.18 ± 0.11 - -
Transductive tuning [6] Transductive WRN-28-10 65.73 ± 0.68 78.40 ± 0.52 73.34 ± 0.71 85.50 ± 0.50
SIB [13] Transductive WRN-28-10 70.00 ± 0.60 79.20 ± 0.40 – –
BD-CSPN [27] Transductive WRN-28-10 70.31 ± 0.93 81.89 ± 0.60 78.74 ± 0.95 86.92 ± 0.63
EPNet [38] Transductive WRN-28-10 70.74 ± 0.85 84.34 ± 0.53 78.50 ± 0.91 88.36 ± 0.57
LaplacianShot [61] Transductive WRN-28-10 74.86 ± 0.19 84.13 ± 0.14 80.18 ± 0.21 87.56 ± 0.15
ODC [34] Transductive WRN-28-10 80.22 88.22 84.70 91.20
iLPC [22] Transductive WRN-28-10 83.05 ± 0.79 88.82 ± 0.42 88.50 ± 0.75 92.46 ± 0.42
protoLP (ours) Transductive WRN-28-10 83.07 ± 0.25 89.04 ± 0.13 89.04 ± 0.23 92.80 ± 0.13
protoLP* (ours) Transductive WRN-28-10 84.32 ± 0.21 90.02 ± 0.12 89.65 ± 0.22 93.21 ± 0.13

arg max
k∈{1,··· ,K}

ỹ jk that corresponds to the maximum element of the

j-th row of the resulting matrix Ỹ .
Uniform Prior with Optimal Transport. In transductive
FSL, the evaluation based on the balanced class setting is
widely used. Thus many methods [14, 22, 60] leverage the
prior of uniform distribution of class labels to improve the
performance. We also consider this factor and normalize
Ỹ to a given row-wise sum dr ∈ R

U and column-wise sum
dc ∈ R

K . The normalization itself is a projection of Ỹ onto
the set Sdr ,dc of non-negative U × K matrices having row-
wise sum dr and column-wise sum dc:

Sdr ,dc ≡
{
Ỹ ∈RU×K : Ỹ 1K =dr, Ỹ

⊤1U =dc

}
. (18)

We use the Sinkhorn-Knopp algorithm [17] for this projec-
tion. It alternates (until convergence) between rescaling the

rows of Ỹ to add up to dr and its columns to add up to dc:

Ỹ ← diag(dr) diag
(
Ỹ 1U

)−1
Ỹ ,

Ỹ ← Ỹ diag
(
Ỹ ⊤1K

)−1
diag(dc).

For the uniform prior assumption, dc = 1U and dc = R · 1K ,
where R is the query number of each class.

Algorithm 1summarizes our standard protoLP without the
Sinkhorn-Knopp algorithm [5] omitted for brevity. Four
steps indicated in italics are also indicated in Fig. 2.

4. Experiments

We evaluate our method on four few-shot classification
benchmarks, mini-ImageNet [47], tiered-ImageNet [37],
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CUB [52] and CIFAR-FS [4, 20], all often used in trans-
ductive and semi-supervised FSL [16, 29, 35, 37, 43]. We
use the standard evaluation protocols. The results of the
transductive and semi-supervised FSL evaluation together
with comparisons to previous methods are summarized in
Tables 1, 2, 3, 4 and 5, and discussed below. The perfor-
mance numbers are given as accuracy %, and the 0.95 con-
fidence intervals are reported. The tests are performed on
10,000 randomly drawn 5-way episodes, with 1 or 5 shots
(number of support examples per class), and with 15 queries
per episode (unless otherwise specified). We use publicly
available pre-trained backbones that are trained on the base
class training set. We experiment with ResNet-12, ResNet-
18 [33], and WRN-28-10 [39] backbones pre-trained in
S2M2-R [31], and DenseNet [26] and MobileNet [12] pre-
trained in SimpleShot [50].

4.1. FSL benchmarks used in our experiments

Transductive FSL Setting. We investigate transductive
FSL with the set of queries as the source of unlabeled data,
which is typical when an FSL classifier receives a bulk
of the query data for an off-line evaluation. In Table 1,
we report the performance of our protoLP, and compare it
to baselines and state-of-the-art (SOTA) transductive FSL
methods from the literature: TPN [29], Transductive Fine-
Tuning [6], MetaOptNet [24], DSN-MR [43], EPNet [38],
CAN-T [11], SIB [53], BP-CSPN [29], LaplacianShot [61],
RAP-LaplacianShot [10], ICI [51], TIM [2], iLPC [22],
and PT-MAP [14]. We also compare to SOTA regular FSL
based on S2M2-R [31] to highlight the effectiveness of us-
ing the unlabeled data. Tables 1, 2 and 3 show that on both
transductive FSL benchmarks (mini-ImageNet and tiered-
ImageNet), protoLP consistently outperforms all the previ-
ous (transductive and inductive) methods.

Our protoLP is insensitive to the feature extractor, e.g.,
see protoLP with DenseNet and MobileNet in Table 5. We
used features from SimpleShot [50] backbones. Compared
with SimpleShot, protoLP gains 13% and 3% on the 1-
and 5-shot protocols. It also outperforms other transductive
methods based on DenseNet such as LaplacianShot [61],
RAP-LaplacianShot [10] and variants of TAFSSL [26].

Semi-supervised Learning. In this setting, one has an ac-
cess to an additional set of unlabeled samples along with
each test task. These unlabeled samples may contain both
the target task category or other categories. Table 4 sum-
marizes the performance of our methods and SOTA semi-
supervised FSL methods, and shows that protoLP out-
performs such baselines in all settings by a large margin
(ResNet-12 backbone). The gain varies between 3% and
6% on mini-ImageNet 1-shot protocol due to capturing data
manifold by using learnable graph with extra unlabeled
samples. On WRN-28-10, protoLP also outperforms other
methods by a fair margin in the 1-shot setting, e.g., between

Table 2. Test accuracy vs. the state of the art (transductive infer-
ence, 1- and 5-shot classification, CUB). (∗: inference aug., §4.2.3)

CUB

Method Backbone 1-shot 5-shot

LaplacianShot [61] ResNet-18 80.96 88.68
LR+ICI [51] ResNet-12 86.53±0.79 92.11±0.35
iLPC [22] ResNet-12 89.00±0.70 92.74±0.35
protoLP (ours) ResNet-12 90.13±0.20 92.85±0.11
protoLP∗ (ours) ResNet-12 91.82±0.18 94.65±0.10

BD-CSPN [27] WRN-28-10 87.45 91.74
TIM-GD [2] WRN-28-10 88.35±0.19 92.14±0.10
PT+MAP [14] WRN-28-10 91.37±0.61 93.93±0.32
LR+ICI [51] WRN-28-10 90.18±0.65 93.35±0.30
iLPC [22] WRN-28-10 91.03±0.63 94.11±0.30
protoLP (ours) WRN-28-10 91.69±0.18 94.18±0.09

Table 3. Test accuracy vs. state of the art (transductive inference,
1- and 5-shot classification, CIFAR-FS). (∗: inference aug., §4.2.3)

CIFAR-FS

Method Backbone 1-shot 5-shot

LR+ICI [51] ResNet-12 75.36±0.97 84.57±0.57
iLPC [22] ResNet-12 77.14±0.95 85.23±0.55
DSN-MR [43] ResNet-12 75.60±0.90 85.10±0.60
SSR [41] ResNet-12 76.80±0.60 83.70±0.40
protoLP (ours) ResNet-12 78.66±0.24 85.85±0.17
protoLP∗ (ours) ResNet-12 88.22 ±0.21 91.52±0.15

SIB [13] WRN-28-10 80.00±0.60 85.30±0.40
PT+MAP [14] WRN-28-10 86.91±0.72 90.50±0.49
LR+ICI [51] WRN-28-10 84.88±0.79 89.75±0.48
iLPC [22] WRN-28-10 86.51±0.75 90.60±0.48
protoLP (ours) WRN-28-10 87.69±0.23 90.82±0.15

1.3% and 3.5% on mini-ImageNet 1-shot. PT+MAP [14]
offers no results on semi-supervised learning so we use
iLPC [22] that provides the code for PT+MAP (WRN-28-
10) in that setting. On tiered-ImageNet, the larger number
of categories resulted in randomly chosen diverse unlabeled
samples which had negative effect on support/query sets.

4.2. Ablation Studies

4.2.1 Uniform Class Prior

As many methods use Optimal Transport (OT) to leverage
the uniform prior on the class distribution, we demonstrate
how these methods benefit from the prior by Sinkhorn dis-
tance. To further investigate the potential of protoLP, we
conduct ablations on mini-ImageNet to compare FSL with
Sinkhorn (uniform class prior) vs. no Sinkhorn (no prior).
Tables 6 and 7 show that OT improves results especially in
1-shot classification when the features are not discrimina-
tive enough (ResNet-12). For example, OT improves per-
formances of EASE by 13% and iLPC by 4.5% in mini-
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Table 4. Comparison of test accuracy against state-of-the-art methods for 1-shot and 5-shot classification under the semi-supervised few-
shot learning setting. CUB 5-shot omitted: no class has the required 70 examples.

mini-ImageNet tiered-ImageNet CIFAR-FS CUB

Methods Backbone Setting 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

LR+ICI [51] ResNet-12 30/50 67.57±0.97 79.07±0.56 83.32±0.87 89.06±0.51 75.99±0.98 84.01±0.62 88.50±0.71 -
iLPC [22] ResNet-12 30/50 70.99±0.91 81.06±0.49 85.04±0.79 89.63±0.47 78.57±0.80 85.84±0.56 90.11±0.64 -

protoLP (ours) ResNet-12 30/50 72.21±0.88 81.48±0.49 85.22±0.79 89.64±0.46 80.02±0.88 86.16±0.53 90.26±0.65 -

LR+ICI [51] WRN-28-10 30/50 81.31±0.84 88.53±0.43 88.48±0.67 92.03±0.43 86.03±0.77 89.57±0.53 90.82±0.59 -
PT+MAP [14] WRN-28-10 30/50 83.14±0.72 88.95±0.38 89.16±0.61 92.30±0.39 87.05±0.69 89.98±0.49 91.52±0.53 -

iLPC [22] WRN-28-10 30/50 83.58±0.79 89.68±0.37 89.35±0.68 92.61±0.39 87.03±0.72 90.34±0.50 91.69±0.55 -
protoLP (ours) WRN-28-10 30/50 84.25±0.75 89.48±0.39 90.10±0.63 92.49±0.40 87.92±0.69 90.51±0.48 92.01±0.57 -

Table 5. Comparison of test accuracy against state-of-the-art meth-
ods (DenseNet and MobileNet, 1- and 5-shot protocols). Notice
SimpleShot is an inductive method based on the above backbone.

mini-ImageNet tiered-ImageNet

Methods (DenseNet) 1-shot 5-shot 1-shot 5-shot

SimpleShot [50] 65.77 ± 0.19 82.23 ± 0.13 71.20 ± 0.22 86.33 ± 0.15
LaplacianShot [61] 75.57 ± 0.19 84.72 ± 0.13 80.30 ± 0.20 87.93 ± 0.15

RAP-LaplacianShot [10] 75.58 ± 0.20 85.63 ± 0.13 - -
TAFSSL(PCA) [26] 70.53 ± 0.25 80.71 ± 0.16 80.07 ± 0.25 86.42 ± 0.17
TAFSSL(ICA) [26] 72.10 ± 0.25 81.85 ± 0.16 80.82 ± 0.25 86.97 ± 0.17

TAFSSL(ICA+MSP) [26] 77.06 ± 0.26 84.99 ± 0.14 84.29 ± 0.25 89.31 ± 0.15
protoLP (ours) 79.27 ± 0.27 85.88 ± 0.14 86.17 ± 0.25 90.50 ± 0.15

Methods (MobileNet) 1-shot 5-shot 1-shot 5-shot

SimpleShot [32] 61.55 ± 0.20 77.70 ± 0.15 69.50 ± 0.22 84.91 ± 0.15
LaplacianShot [61] 70.27 ± 0.19 80.10 ± 0.15 79.13 ± 0.21 86.75 ± 0.15

protoLP (ours) 72.04 ± 0.23 82.11 ± 0.20 80.68 ± 0.24 87.45 ± 0.19

ImageNet. Notice that OT only boost protoLP by 0.7% in
mini-ImageNet. In 5-shot setting, the performance gains
from OT are reduced but they follow the same pattern as in
1-shot setting. As WRN-28-10 backbone yields good per-
formance, gains from OT are lesser than for ResNet-12.

The performance gain of OT on protoLP is small while
overall results of protoLP are high. Section 4.2.4 shows that
results of many OT-based methods degrade significantly
when the uniform class prior is used and the real class dis-
tribution does not follow it. Our protoLP is an exception.

4.2.2 Comparisons with the classical LP

Our protoLP improves results significantly compared to
classical LP (no prototypes used) in Table 6. On ResNet-
12, protoLP gains 9% and 4% over LP on mini-ImageNet
(1- and 5-shot prot.) On WRN-28-10, protoLP gains 7.5%
and 3.7% on mini-ImageNet (1- and 5-shot prot.)

4.2.3 Data Augmentation for Inference

Some methods apply data augmentation techniques to boost
inference. In Table 1, we report results of protoLP∗ with
data augmentation. The protoLP∗ and EASY∗ use random
resized crops from each image. We obtain multiple versions

Table 6. The uniform class prior (Sinkhorn vs. no Sinkhorn).

mini-ImageNet

Method Sinkhorn Backbone 1-shot 5-shot

LP ResNet-12 61.09±0.70 75.32±0.50
EASE ResNet-12 57.00±0.26 75.07±0.21
EASE ✓ ResNet-12 70.47±0.30 80.73±0.16
iLPC ResNet-12 65.57±0.89 78.03±0.54
iLPC ✓ ResNet-12 69.79±0.99 79.82±0.55

protoLP ResNet-12 70.04±0.29 79.80±0.16
protoLP ✓ ResNet-12 70.77±0.30 80.85±0.16

LP WRN-28-10 74.24±0.68 84.09±0.42
PT-MAP WRN-28-10 82.92±0.26 88.82±0.13

EASE WRN-28-10 67.42±0.27 84.45±0.18
EASE ✓ WRN-28-10 83.00±0.21 88.92±0.13
iLPC WRN-28-10 78.29±0.76 87.62±0.41
iLPC ✓ WRN-28-10 83.05±0.79 88.82±0.42

protoLP WRN-28-10 81.91±0.25 87.85±0.13
protoLP ✓ WRN-28-10 83.07±0.25 89.04±0.13

of each feature vector and average them. MCT augments
both the input image and the intermediate model features.
Based on these augmentations, MCT learn a meta-learning
confidence with input-adaptive distance metric. ODC em-
ploys spatial pyramid pooling to augment intermediate fea-
tures of the backbones. The use of augmentation (from
data or from models) in the inference stage improves perfor-
mance. Table 1 shows this effect is particularly evident in
the 1-shot classification of mini-ImageNet where protoLP∗

outperforms the protoLP by nearly 14%.

4.2.4 Evaluations on Class-unbalanced Setting

Below, we follow the same unbalanced setting as [46] where
the query set is randomly distributed, following a Dirichlet
distribution parameterized by α = 2. The performance is
evaluated by computing the average accuracy over 10,000
few-shot tasks. Table 8 shows that due to the use of the
uniform prior on the class distribution, PT-MAP [14] looses
18% accuracy maximum in the unbalanced setting. Other

24002



Table 7. The uniform class prior (Sinkhorn vs. no Sinkhorn).

tiered-ImageNet

Method Sinkhorn Backbone 1-shot 5-shot

LP ResNet-12 73.29±0.35 86.32±0.30
EASE ResNet-12 69.74±0.31 85.17±0.21
EASE ✓ ResNet-12 84.54±0.27 89.63±0.15

protoLP ResNet-12 83.59±0.25 88.60±0.15
protoLP ✓ ResNet-12 84.69±0.29 89.47±0.15

LP WRN-28-10 76.24±0.30 85.09±0.25
EASE WRN-28-10 75.87±0.29 85.17±0.21
EASE ✓ WRN-28-10 88.96±0.23 92.63±0.13

protoLP WRN-28-10 87.91±0.25 91.60±0.13
protoLP ✓ WRN-28-10 89.04±0.23 92.80±0.13

Table 8. Test accuracy against the state of the art in the class-
unbalanced setting (WRN-28-10, 1- and 5-shot protocols).

mini-ImageNet tiered-ImageNet

Methods 1-shot 5-shot 1-shot 5-shot

Entropy-min 60.4 76.2 62.9 77.3
PT-MAP 60.6 66.8 65.1 71.0

LaplacianShot 68.1 83.2 73.5 86.8
TIM 69.8 81.6 75.8 85.4

BD-CSPN 70.4 82.3 75.4 85.9
α-TIM 69.8 84.8 76.0 87.8

protoLP (ours) 73.7 85.2 81.0 89.0

Table 9. Test accuracy against the state of the art in the class un-
balanced setting (ResNet-12, 1-shot protocols, CUB).

CUB unbalanced balanced
Method 1-shot 1-shot

PT-MAP [14] 65.1 85.5
LaplacianShot [61] 73.7 78.9

BD-CSPN [27] 74.5 77.9
TIM [2] 74.8 80.3

α-TIM [46] 75.7 −

protoLP 82.22 90.13

methods also loose few percents on mini-ImageNet, tiered-
ImageNet and CUB with the WRN-28-10 backbone. Our
protoLP outperforms other models by 3.3%, 5.6% and 6.5%
on 1-shot protocol in reported datasets.

4.2.5 DenseNet/MobileNet (Multi-class Pre-training)

Compared with other transductive methods based on back-
bones with the meta-learning framework, TAFSSL [26]
uses SimpleShot [50] backbones, and so we also extract
features by backbones (DenseNet, MobileNet) from Sim-
pleShot, which directly train backbone with a nearest-
neighbor classifier instead of meta-learning (as ResNet-12,
ResNet-18, WRN-28-10 from S2M2-R [31]). Thus, below

Figure 3. The loss curve (mini-ImageNet, tiered-ImageNet).

we show that protoLP is independent of the way backbones
are trained. Table 5 shows that protoLP is superior to coun-
terparts with prototypes (TAFFSL) and label propagation
(LaplacianShot) in all settings, especially in 1-shot proto-
col, outperforming them by a large margin (DenseNet back-
bone), e.g., 3.7% and 2.2% on mini-ImageNet 1-shot proto-
col, and 5.8% and 1.8% in tiered-ImageNet 1-shot protocol.

4.3. Inference Time and Convergence

The computational complexity of protoLP depends only
on the feature dimension and the number of samples. Thus,
for different datasets, the computational cost appears equal.
Our protoLP takes only a few of milliseconds (about 10×
faster than iLPC and ICI, as shown in the supplementary
material, which does not impose any burden on typical ap-
plications. Finally, Fig. 3 shows the value of loss in Eq. (11)
w.r.t. the iteration number. The loss converges fast.

5. Conclusions
In this paper, we have pointed out disadvantages

of prototype-based methods and label propagation based
methods for transductive FSL. To overcome these draw-
backs, we have presented a unified framework combining
the prototype-based methods and label propagation based
methods within a single objective. Our protoLP inherits ad-
vantages of individual prototype refinement and label prop-
agation steps while avoiding the disadvantages of the bias
in estimation of prototypes and the fixed graph bias. Our
protoLP performs well also under non-uniform class pri-
ors unlike Sinhorn-based methods. The protoLP works with
different backbones and is a plug-and-play module for the
inference step of FSL.
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