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Abstract

Metric learning requires the identification of far-apart
similar pairs and close dissimilar pairs during training, and
this is difficult to achieve with unlabeled data because pairs
are typically assumed to be similar if they are close. We
present a novel metric learning method which circumvents
this issue by identifying hard negative pairs as those which
obtain dissimilar labels via label propagation (LP), when
the edge linking the pair of data is removed in the affinity
matrix. In so doing, the negative pairs can be identified
despite their proximity, and we are able to utilize this infor-
mation to significantly improve LP’s ability to identify far-
apart positive pairs and close negative pairs. This results
in a considerable improvement in semi-supervised metric
learning performance as evidenced by recall, precision and
Normalized Mutual Information (NMI) performance met-
rics on Content-based Information Retrieval (CBIR) appli-
cations.

1. Introduction

Image data have proliferated owing to ubiquitous cam-
era ownership, widespread internet connectivity, and broad
availability of software applications. The design of efficient
CBIR systems is imperative in managing information con-
tent. Traditional image retrieval systems use textual annota-
tions, but such an approach require manual labor which may
be not be cost-effective. On the other hand, CBIR retrieves
relevant content from an image query, alleviating the need
for human annotation.

Metric learning learns a transformation mapping similar
data closer than dissimilar ones. This makes it easier to
cluster data [37] and also to shortlist similar data by their
proximity to the query. As such, metric learning algorithms
are at the cornerstone of most state-of-the-art CBIR designs
[23]. As the amount of data handled in CBIR systems is
very large, there is interest in utilizing the vast quantities

* Work done while a student at UIUC.

of readily available unlabeled data to improve the metric
learning training process.

Recent advances have asserted the importance of retain-
ing within-class variance in training generalizable represen-
tations [27], particularly because the information encapsu-
lated in representations which are irrelevant in discriminat-
ing between training labels may be important in discrim-
inating between unseen test classes. Since close positive
pairs results in little loss, there is a need to identify far-
apart positive pairs for training. The paper [43] uses the
method from [9] to propagate labels along manifolds in
order to identify such points, by assuming data which are
nearest neighbor pairs but not mutual nearest neighbors as
close dissimilar pairs. However this method does not uti-
lize label information and may not accurately identify hard
negatives [3, 17, 39, 40], which are pairs of data which are
close but have different labels. Label propagation (LP) us-
ing mis-identified edges would lead to inaccuracies in the
model trained.

This paper proposes a novel method to identify hard neg-
ative pairs in a semi-supervised setting. Specifically, given a
few labeled points from each class and an abundance of un-
labeled data, we propose to identify hard negative pairs as
those which obtain dissimilar labels via LP when the edge
linking the two elements of the pair is removed in the affin-
ity matrix. We obtain the dissimilarity weights of edges
under this assumption quickly and efficiently, without the
costly use of repeated LP to calculate these weights.

We use this negative edge information in a novel mixed
LP algorithm which is able to utilize both positive and nega-
tive edge information. Specifically, the method encourages
data linked by positive edges to have the same pseudolabel
and data linked by negative edges to have different pseu-
dolabels. Like LP, our mixed LP optimization problem can
be solved with conjugate gradient (CG), allowing it to scale
to large datasets.

As our obtained pseudolabels capture information on far-
apart positive pairs and close negative pairs, they yield a
significant improvement in semi-supervised metric learn-
ing. We showcase this in a CBIR setting under recall, pre-
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cision and Normalized Mutual Information (NMI) perfor-
mance metrics. This shows that our method is able to more
effectively rank the database in relation to the query and re-
turn relevant articles near the top of this list.

2. Related Work
2.1. Semi-supervised metric learning

Consider a training set X = XL∪XU , consisting of a set
of NL labeled examples XL = {xi}NL

i=0 with corresponding
labels YL = {yi}NL

i=0, yi ∈ {1, ..., C} and a set of N −
NL unlabeled examples XU = {xi}Ni=NL+1 with unseen
labels YU = {yi}Ni=NL+1. The one-hot label matrix Y ∈
{0, 1}N×C is defined as

Yij :=

{
1, if yi ∈ YL ∧ yi = j
0, otherwise. (1)

Many semi-supervised metric learning algorithms [2,28]
employ the triplet loss:

L(X) =
∑

{(i,j,k) : yi=yj ̸=yk}

L(xi, xj , xk), (2)

L(xi, xj , xk) = [D(xi, xj)−D(xi, xk) +m]+, (3)
D(xi, xj) = ∥g(xi)− g(xj)∥2 , (4)

where m is a margin parameter and g is a function mapping
the samples into embeddings. However, it is intractable to
calculate the loss for all triplets in the database and it is
difficult to sample loss-inducing triplets [35]. Furthermore,
the triplet loss encourages similar points to be as close as
possible, encouraging data of the same class to collapse into
a single point. This reduces variance between data that is
crucial for the embeddings to be similarity-preserving in the
zero-shot setting [27].

Proxies [23] can be used to remedy this situation, specifi-
cally by assigning a single anchor point to be the representa-
tive for each class. This also allows the computational com-
plexity to be much lower because each data point is com-
pared to a small number of proxies. Moreover, the within-
class variance is not excessively reduced because its loss
only enforces that a data point is closer to the proxy of its
predicted class than to other proxies. This allows the em-
beddings to retain variance which can be used to discrimi-
nate between classes unseen during training.

Proximity is often used to identify similar pairs [28, 30]
but close pairs result in little loss, and it is difficult to re-
liably identify far-apart similar pairs. The paper [43] pro-
poses to construct a graph with edges joining mutual near-
est neighbor pairs and to propagate the given labels along
the manifolds they lie on. In so doing, they hope to identify
similar data which are far from a proxy, while also identi-
fying dissimilar points which may be close to the proxy but
are not on the same manifold as the proxy.

In effect the paper uses the assumption [9] that pairs of
data which are nearest neighbor pairs but not mutual near-
est neighbors, are negative pairs. However this assumption
does not utilize the labels provided, and we show that we
can improve the identification of far-apart positive pairs and
close negative pairs by identifying hard negative pairs as
those which obtain dissimilar labels via LP when the edge
linking the two elements of the pair is removed in the affin-
ity matrix. This negative edge information is used in our
novel mixed LP method to significantly improve the CBIR
performance of semi-supervised metric learning.

2.2. Label Propagation

LP aims to train a classification function f such that i)
vertices that are linked by an edge are encouraged to have
the same label and ii) the original labels on labeled nodes
are maintained in f . To that end, LP [42] utilizes an objec-
tive function of the form

min
f

{S(f) + µC(fL)} (5)

where S(f) is the smoothness term encouraging linked ver-
tices to have the same label, C(fL) is a loss function on la-
beled nodes penalizing the divergence of output labels from
ground truth, and µ is a positive hyperparameter balancing
the trade-off between the two terms.

The smoothness term is usually of the form

S(f) = f⊤Lf (6)

where L is the graph Laplacian [22],

L = D−W, (7)
D = diag(W1), (8)

W is a symmetric, non-negative affinity matrix, and 1 is the
vector with each element equal to 1.

The label loss function is of the form

C(f) = (f − y)⊤(f − y) (9)

and the overall loss function can be written as

Q(F) =
1

2
tr(F⊤LF) +

µ

2
tr(F−Y)⊤(F−Y), (10)

where F = [f1, ..., fC ] ∈ RN×C and fc denotes the propa-
gated labels for class c.

Differentiating with respect to F and setting the deriva-
tive to zero, we obtain the minimizing F∗ as

F∗ = µ(L+ µI)−1Y. (11)

Since (L + µI) is positive definite for any µ > 0, F∗

can be efficiently obtained via conjugate gradient from the
linear system

(L+ µI)F∗ = µY, (12)

The pseudolabels are typically [42] assigned as

ŷi = argmax
j

F ∗
ij . (13)
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2.3. Hard Negative Mining

Affinity matrices are usually constructed with k-nearest
neighbors. Performing LP directly on these graphs would
tend to result in data which are close together being as-
signed the same pseudolabel. Identifying hard negative
pairs would improve the propagation of labels in LP allow-
ing it to more effectively assign the correct pseudolabels to
far-apart positive pairs and close negative pairs, and in turn
yield better semi-supervised metric learning performance.

Hard negatives cannot be identified directly using LP
class predictions. This is because LP assumes close pairs
have the same label via its smoothness term – LP asserts ev-
ery pair which is “hard” to be “positive”. We overcome this
limitation by comparing the propagated labels of two points
if the edge between them was omitted in the LP affinity ma-
trix. Removal of this edge allows the propagated labels to
be of different classes and allows the identification of hard
negatives.

Utilizing negative samples is central to many metric
learning methods [14, 24, 29], and sampling strategies are
well-studied in these works. However these methods have
access to full label information. In the semi-supervised set-
ting, it is difficult to find hard negative samples because
closer pairs are more likely to be similar. In recent years,
there has been an interest in utilizing hard negatives for un-
supervised contrastive learning [1, 12, 31]. These methods
usually identify points which the model already believes to
be dissimilar as negative points. In contrast, our method is
able to identify negative pairs which the model believes to
be similar and hence result in a significant change to the
model.

The paper [9] proposes to identify points which are near-
est neighbor pairs but not mutual nearest neighbors to be
negative examples. However this method does not utilize
label information and we show that our method is able to
outperform [9] significantly.

2.4. Mixed Label Propagation

Incorporating negative edge information into LP is not
trivial. To our knowledge, there are five prominent papers
on mixed LP [4,5,33,41,44]. Of these, [44] utilizes negative
label information instead of negative edge information and
[33] performs mixed LP on the binary classification task and
cannot be directly extended to multi-class classification.

Two of the other methods have high complexity, restrict-
ing their utility to very small datasets. The quadratic pro-
gram presented in [4] has a large number of inequality con-
straints and has O(N3) time complexity when solved using
an interior-point method [38]. Similarly, [5] has a O(N3)
time complexity because the paper proposes to propagate
edge information to the other N ×N edges.

On the other hand, LPDR [41] may encourage erroneous
label assignments [4] as we discuss in section 3.2. In the

same section, we formulate a scalable LP algorithm which
can efficiently harness the dissimilarity information we gen-
erate.

3. Proposed Method
3.1. Obtaining Hard Negative Weights

We use a neural network with parameters ϕ to extract
L2-normalized features vi ∈ Rd from each input xi:

vi = gϕ(xi). (14)

Denoting the k nearest neighbors of v in Euclidean distance
metric by NNk(v), we construct a sparse affinity matrix
A ∈ RN×N with elements

Aij :=

{
[v⊤

i vj ]
γ
+, if i ̸= j ∧ vi ∈ NNk(vj)

0, otherwise. (15)

This matrix can be constructed efficiently for large N us-
ing the faiss library [11], with O(log2 N) complexity. With
W = A +A⊤, we perform a slightly modified version of
LP, replacing µ in (10) with a diagonal N × N matrix U
where

Uii :=

{
µ, if yi ∈ YL

0, otherwise. (16)

In effect we are removing the L2-regularization on unla-
beled data points in the original LP. With this change, the LP
objective on unlabeled data reduces to only the smoothness
term (6). Differentiating with respect to Fi and equating to
zero, we get

F∗
i =

∑
j wijF

∗
j

Dii
, (17)

and hence the unlabeled F∗
i is a weighted average of its

neighbors’ labels. We can then calculate Zi,j , the weighted
average of all neighbors of i excluding neighbor j, as de-
picted in Fig. 1,

Zi,j =

∑
l wilF

∗
l − wijF

∗
j

Dii − wij
(18)

=
DiiF

∗
i − wijF

∗
j

Dii − wij
. (19)

Since the labels obtained from LP can be shown to be
a weighted average of its first-order neighbors, and Zi,j is
a weighted average of the first-order neighbors excluding
j, we can view Zi,j as an approximation of the propagated
labels we would have obtained from LP if edge (i, j) was
removed.

We estimate the class probabilities as

Z̃i,j = softmax[λ(DiiF
∗
i − wijF

∗
j )], (20)

where λ is a temperature-scaling hyperparameter.
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Figure 1. (left) The smoothness term ensures that pairs which are close have similar labels and it is difficult to identify them as dissimilar
pairs. (right) However the influence of the red nodes on the blue nodes through the offending edge is diminished due to the increased
geodesic distance and it is easier to identify dissimilar pairs by comparing their first-order neighbors.

The probability that nodes i and j are dissimilar can then
be calculated as pdisij = 1− Z̃⊤

i,jZ̃j,i.
We define the confidence weights [10]

ω(Z̃i,j) = 1− H(Z̃i,j)

log (C)
, (21)

where H(·) is the entropy function, and obtain dissimilarity
edge weights as

W
(dis)
ij = ω(Z̃i,j)ω(Z̃j,i)p

dis
ij . (22)

A high dissimilarity edge weight is hence assigned if the
first-order neighbors of the pair i and j confidently belong
to different classes.

3.2. Proposed Mixed Label Propagation

Given two positive matrices W and W(dis) representing
similar and dissimilar edge weights respectively, we pro-
pose our mixed LP method as the following optimization
problem:

min
G

{1
2

tr(G⊤LG) +
1

2
∥U(G−Y)∥F +

β

2
D(G)},

(23)
where

D(G) =

C∑
c

∑
i,j

W
(dis)
ij (Gic +Gjc)

2, (24)

is the dissimilarity loss.
The dissimilarity loss function used in LPDR [41] is

D(G) = −
C∑
c

∑
i,j

W
(dis)
ij (Gic −Gjc)

2. (25)

Even though our loss function looks similar to LPDR’s,
there are important differences.

Consider two points i and j with differing labels. The
correct assignment is Gic = Gjc = 0 for c ̸= ŷi, ŷj . How-
ever we see that the LPDR loss function erroneously en-
forces Gic ̸= Gjc for such c.

On the other hand, for any c, our loss function gives no
penalty if Gic = Gjc = 0, gives a small penalty if ei-
ther Gic or Gjc equals 1, but gives an exponentially large
penalty if Gic = Gjc = 1, which is the main intention of
the dissimilarity loss. Therefore our dissimilarity objective
is able to avoid strongly penalizing the intended outcome,
while effectively enforcing ŷi ̸= ŷj .

The overall optimization problem of our mixed LP for-
mulation can be efficiently solved in O(N) time using con-
jugate gradient, in contrast to the quadratic program for-
mulated in [4] which involves a large number of inequality
constraints and has a high time complexity. A dense N×N
matrix is also never created, allowing our method to retain
O(Nk) memory complexity in contrast to [5] where a dense
N ×N matrix is created.

3.3. Deep semi-supervised metric learning

In each epoch, we use the dissimilarity edge weights
from (22) in our mixed LP method (23), to obtain propa-
gated labels G∗ and in turn normalized class probabilities
G̃i :=

G∗
i

∥G∗
i ∥1

, with confidence weights ω(G̃∗
i ).

A set of L2-normalized proxies {pc}Cc=0, pc ∈ Rδ is gen-
erated and maintained, where δ is the dimension of the em-
beddings z, given as the final output at the top of the neural
network. The pseudolabels ŷi = argmaxc G

∗
ic and confi-

dence weights ω(G̃∗
i ) are then used in the following loss
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function from [43] to update the model:

L =
1

C

∑
i

L(zi, ω(G̃∗
i )), (26)

L(zi, ω(G̃∗
i )) = ω(G̃∗

i )(L+(zi) + L−(zi)), (27)

L+(zi) = log {1 + exp[−ϵ(z⊤i pŷi
− b)]}, (28)

L−(zi) =
∑
c̸=yi

log {1 + exp[ϵ(z⊤i pc + b)]}, (29)

with ϵ and b as hyperparameters.
Given the initial affinity matrix built using faiss, our

space complexity is O(NkC) if fully-vectorized code is
used, but can be reduced to O(Nk+NC) using loops, with
time complexity O(NkC). Our method is linear in N for
both space and time complexity and is therefore fairly scal-
able.

4. Experiments
4.1. Datasets

We mainly use 6 image datasets: FGVC-Aircraft [19],
Cars-196 [15], CIFAR100 [16], CUB-200-2011 [34], Stan-
ford Dogs [13] and Oxford-IIIT Pets [26]. For the accuracy
comparison in Table 3, we additionally include results on
German Traffic Sign Recognition Benchmark (traffic sign)
[7] and vgg flowers [25].

For each class, the labels for 5 data points are given in all
our experiments. For hyperparameters, we use β = 1, γ =
3, ϵ = 32, λ = 4, b = 0.1, µ = 1

99 , learning rate 10−4 and
k = 50 in all our experiments unless otherwise stated.

We use the BN-Inception [8] architecture as the base
model to obtain features. This architecture is commonly
used in metric learning [43]. For our method and DSSML,
the AdamW optimizer [18] was used and the weight decay
was set at 10−4.

4.2. CBIR Experiments

For the CBIR experiments using our metric learning
method shown in Figures 2 and 3 and Table 1, we use the
same setup as DSSML [43]. We merge the training, valida-
tion and test sets of the datasets and use 40% of the classes
are use as the training set, 20% as the validation set, and
the remaining 40% of classes as the test set. The training,
validation and test set classes are hence disjoint.

We compare our results against state-of-the-art semi-
supervised algorithms DSSML [43] and SDEC [30] ; fully-
supervised algorithms Proxy-Anchor [14], SoftTriple [29]
and ProxyNCA++ [32]; and unsupervised algorithm DEC
[36].

All deep methods were run for 20 epochs using pre-
trained BN-Inception [8] as the base architecture with a
batch size of 32, except SDEC which used a batch size of

90. Finetuning was done for our method and DSSML for
5 epochs using only the given labelled data before running
these 20 epochs. Default hyperparameter settings and op-
timizers for all competing methods were used. The best
epoch for all methods was chosen as the epoch which gave
the best P@8 (precision at 8) on the validation set. Embed-
dings of dimension δ = 64 were used.

We use three evaluation metrics: Normalized Mutual
Information (NMI), recall at k (R@k) and precision at k
(P@k) [43].

NMI evaluates the clustering quality. Let C =
{hi}Ci=1, hi = {j : yj = i} be the cluster assignments
based on the true labels of the data. We use k-Means clus-
tering on the embeddings to obtain a similar cluster assign-
ment Ω = {ωi}Ci=1, ωi = {j : qj = i}, where qj is the
cluster number of sample j. Let the number of test samples
be Ntest. Then NMI is calculated [20] as

NMI =
2× I(Ω, C)

H(Ω) +H(C)
, (30)

where we have defined the mutual information

I(Ω, C) =
∑
k

∑
j

|ωk ∩ yj |
Ntest

log
Ntest|ωk ∩ yj |

|ωk||yj |
, (31)

and the entropies

H(Ω) = −
∑
k

|ωk|
Ntest

log
|ωk|
Ntest

, (32)

H(C) = −
∑
k

|hk|
Ntest

log
|hk|
Ntest

. (33)

Denote by r
(i)
j the class label of the j-th retrieved item

of the i-th sample. Let

R@k =
1

Ntest

Ntest∑
i=0

1{yi ∈ {r(i)1 , ..., r
(i)
k }}, (34)

which measures the average probability that at least one of
the top k retrieved results has the same class label as the
query.

Also

P@k =
1

Ntest

Ntest∑
i=0

1

k

k∑
j=0

1{r(i)j = yi}, (35)

measures the average fraction of the top k retrieved results
that has the same class label as the query.

From Figures 2 and 3, we see that the use of our negative
mining approach together with our mixed LP method out-
performs state-of-the-art results on semi-supervised metric
learning. The NMI results in Table 1 also support the ob-
servation that the incorporation of our proposal is able to
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Table 1. NMI comparisons, best results are shown in bold.

aircraft (family) cars CIFAR100 cub dogs pets
Ours 33.837 36.397 39.377 57.780 72.677 77.039
DSSML 32.798 34.755 39.150 55.824 71.427 74.867
SDEC 23.414 21.678 21.570 39.487 54.429 75.845
Proxy-Anchor 30.660 32.239 34.085 51.688 65.668 76.966
ProxyNCA++ 20.279 27.954 20.808 42.209 55.949 50.420
SoftTriple 30.018 33.800 34.787 53.289 68.663 73.065
DEC 21.163 22.148 20.165 37.508 53.645 76.039

Figure 2. Comparison of precision against state-of-the-art methods on real-world public datasets.

considerably improve the semi-supervised metric learning
results. These results demonstrate that our proposal is able
to significantly advance state-of-the-art results in important
and practical areas of high interest such as semi-supervised
metric learning.

4.3. Additional comparison with recent state-of-the-
art

Dutta et al [2] also considers a semi-supervised metric
learning method. However the main points of difference
are: 1) The paper [2] requires the creation and inversion of
a dense N × N matrix which necessitates sampling, while
our method does not involve the creation of such a matrix
and we are able to avoid direct matrix inversion. Hence we
are able to utilize all provided data. 2) The paper [2] as-
sumes samples which rank k/2 apart in affinity are dissim-
ilar. However setting k appropriately may require knowl-
edge of the distribution of the dataset as a small k could
result in erroneously declaring a same-class sample as neg-
ative, while a large k could mean only far apart negative
pairs are used in forming triplets. It may also be difficult
to choose k if the dataset is class imbalanced. Unlike [2],
our method does not require knowledge of the distribution

Table 2. Comparison against Dutta et al on CUB-200.

Method NMI R@1 R@2 R@4 R@8
Dutta et al [2] 54.0 44.8 56.9 69.1 79.9

Ours 59.5 ± 0.8 49.9± 1.3 63.1 ± 1.2 74.7 ± 0.8 84.1 ± 0.6

of the dataset, and works well even with class imbalanced
datasets.

To compare against [2], we run our method for CUB-
200 using the experimental settings in [2]. We use BN-
Inception, which is comparable to the GoogLeNet with R-
MAC used by [2]. We also run our method for only 20
epochs which is lower than the 200 epochs run by [2]. We
average our results over 10 runs and present them in Table
2. Our superior results support the claim that our method
can alleviate the above-mentioned issues of [2].

As our pseudolabeling method could be used in the for-
mation of triplets in [2], our methods are complementary.

4.4. Ablation studies on our hard negative mining
method

We show that the negative pairs we mined are effec-
tive in improving LP performance. Four methods are com-
pared: 1) Original LP is the method implemented in [42].
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Figure 3. Comparison of recall against state-of-the-art methods on real-world public datasets.

Table 3. Accuracy comparisons between methods identifying hard negatives. Best results are shown in bold.

Original LP MoM Control Ours
aircraft (family) 0.195 ± 0.006 0.098 ± 0.002 0.197 ± 0.005 0.207 ± 0.005
aircraft (manufacturer) 0.189 ± 0.019 0.113 ± 0.002 0.202 ± 0.022 0.218 ± 0.020
aircraft (variant) 0.198 ± 0.005 0.101 ± 0.002 0.207 ± 0.003 0.209 ± 0.003
cars 0.190 ± 0.002 0.103 ± 0.001 0.192 ± 0.002 0.193 ± 0.001
CIFAR100 0.315 ± 0.004 0.210 ± 0.003 0.299 ± 0.003 0.338 ± 0.003
cub 0.441 ± 0.005 0.158 ± 0.002 0.458 ± 0.004 0.468 ± 0.003
dogs 0.620 ± 0.005 0.234 ± 0.002 0.622 ± 0.005 0.639 ± 0.004
pets 0.780 ± 0.011 0.242 ± 0.006 0.779 ± 0.014 0.832 ± 0.005
traffic sign 0.488 ± 0.010 0.266 ± 0.004 0.482 ± 0.012 0.498 ± 0.010
vgg flowers 0.750 ± 0.009 0.149 ± 0.002 0.760 ± 0.006 0.797 ± 0.003

2) MoM [9] considers points which are nearest neighbors
but not mutual nearest neighbors as dissimilar pairs and are
given W

(dis)
ij = 1 for such pairs. 3) Control implements

our method except Z̃i,j is replaced with the L1-normalized
Fi,∀j [10, 43], which is the usual approach to calculate the
class probabilities of a data point xi [10, 43]. This cor-
responds to calculating the dissimilarity between pairs di-
rectly, instead of their first-order neighbors. 4) Ours is our
method.

For methods 2, 3 and 4, the dissimilarity weights are
used in our mixed LP method to obtain accuracy. This ac-
curacy is calculated as:

accuracy =
1

N

N∑
i

1{ŷi = yi}, (36)

The entire dataset is used for each experiment. The ex-
periments are repeated ten times with different random se-
lections of the five labeled data points and the 95% confi-
dence interval is given. Table 3 shows that our method ob-

tains consistent and significant improvements over all com-
pared methods.

MoM results in a decline in performance from the orig-
inal LP method because it does not utilize labels and could
confuse the predictions of the original LP method which
uses labels and is able to generate more reliable predictions.

‘Control’ is the straightforward extension of original LP
to directly use its predictions in generating dissimilarity
weights. It is able to obtain a marginal improvement over
the original LP method. This could be due to its considera-
tion of all propagated labels over all the classes allowing a
slight increase in accuracy, while LP is only able to consider
the propagation of each class label in isolation.

Our method is able to weaken the label smoothing con-
straint across potential dissimilar edges and provide dissim-
ilar edge weights which are contradictory to the LP predic-
tions and hence result in a considerable change to the LP
objective, and a significant improvement in accuracy. This
is reflected in the great improvement in accuracy afforded
by our method in Table 3.
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Figure 4. Comparison of accuracy against LPDR as more close negative edges are provided by an oracle.

Figure 5. Sensitivity analysis of accuracy on β and λ.

4.5. Ablation studies on our mixed LP method

As the proposed methods in [4] and [5] have high time
complexities and are not able to run on the datasets in rea-
sonable time, we compare our results primarily with LPDR
[41].

In the experiments shown in Figure 4, an oracle ran-
domly identifies close negative edges between the kNN
neighbors which are not already given by the labels. The
accuracy is calculated as in Equation (36).

Using LPDR’s notation, the default hyperparameter of
LPDR’s γ = 100 was used and we set LPDR’s λ = 1 which
is equivalent to our hyperparameter of β = 1.

From Figure 4, we see that our mixed LP method obtains
a significantly higher accuracy than LPDR. LPDR is unable
to effectively use the negative edge weights provided be-
cause it incorrectly enforces Gic ̸= Gjc for any c ̸= ŷi, ŷj
when the correct assignment is Gic = Gjc = 0 for such
c. Our method is able to avoid strongly penalizing intended
outcomes such as this.

4.6. Ablation studies on hyperparameters

We conduct ablation studies on datasets cub, cars and
dogs for the two hyperparameters in our method, β and λ.

For each experiment, the default setting of β = 1 or λ = 4 is
maintained, while the tested hyperparameter is varied. The
dissimilarity weights are calculated using our method (22)
and used with our mixed LP method (23). The accuracy is
calculated from (36).

Figure 5 shows the sensitivity of accuracy on the two hy-
perparameters, β and λ. The accuracy is not very sensitive
to β but is however sensitive to λ. In this work we fixed λ to
a moderate value of 4, but results could be further improved
by tuning λ for each dataset using a more sophisticated cal-
ibration method such as [6, 21].

5. Conclusion

In this work, we aimed to identify far-apart positive pairs
and close negative pairs to improve the CBIR performance
of semi-supervised metric learning. We achieved this by as-
suming hard negatives pairs as k-NN pairs which obtain dis-
similar LP labels when the edge between them is removed
and incorporated this into a novel mixed LP method. We
showed that the resulting pseudolabels obtains state-of-the-
art results in the semi-supervised metric learning applica-
tion of CBIR.
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