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Figure 1. An instance in CLOTH4D. Given (a) hand-crafted 2D sewing patterns, clothes are simulated with virtual fashion software to
have (b) varied poses, (c) multiple views, and (d) high-quality and physically plausible series of paired dynamic 3D meshes with textures.

Abstract

Clothed human reconstruction is the cornerstone for cre-
ating the virtual world. To a great extent, the quality of re-
covered avatars decides whether the Metaverse is a passing
fad. In this work, we introduce CLOTH4D, a clothed hu-
man dataset containing 1,000 subjects with varied appear-
ances, 1,000 3D outfits, and over 100,000 clothed meshes
with paired unclothed humans, to fill the gap in large-
scale and high-quality 4D clothing data. It enjoys ap-
pealing characteristics: 1) Accurate and detailed cloth-
ing textured meshes—all clothing items are manually cre-
ated and then simulated in professional software, strictly
following the general standard in fashion design. 2) Sep-
arated textured clothing and under-clothing body meshes,
closer to the physical world than single-layer raw scans.
3) Clothed human motion sequences simulated given a set
of 289 actions, covering fundamental and complicated dy-
namics. Upon CLOTH4D, we novelly designed a series of

temporally-aware metrics to evaluate the temporal stability
of the generated 3D human meshes, which has been over-
looked previously. Moreover, by assessing and retraining
current state-of-the-art clothed human reconstruction meth-
ods, we reveal insights, present improved performance, and
propose potential future research directions, confirming our
dataset’s advancement. The dataset is available at 1.

1. Introduction
As we enter the volumetric and XR content era, re-

searchers have been trailblazing their way into the Meta-
verse. With the converging of technologies and practical
applications, e.g., fashion NFTs (non-fungible tokens), im-
mersive AR and VR, and games, clothed human recon-
struction demands are rapidly growing. While current re-
search has made astonishing results in creating digital hu-
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Table 1. Comparisons of CLOTH4D with existing representative datasets. Gray color indicates synthetic datasets generated with graphics
engines. #Subjects: number of peoples in different appearances; #Action: number of actions adopted; #Scans: numbers of 3D meshes;
2D Pattern: 2D clothing pattern; TexCloth: with textured clothed model; TexHuman: with textured naked human model. w/ SMPL: with
registered SMPL [33] parameters. Public: publicly available and free of charge. Photorealistic: whether the images in the dataset are
realistic. -: not applicable or reported. CLOTH4D presents more desirable characteristics compared with others.

Dataset #Subjects #Action #Scan 2D Pattern TexCloth TexHuman w/ SMPL Public Photorealistic

BUFF [52] 6 - 13.6k - ✓ - ✓ ✓ ✓
RenderPeople [1] - - 825 - ✓ - ✓ - ✓
DeepWrinkles [30] 2 2 9.2k - ✓ - - - ✓
CAPE [35] 15 600 140k - - - ✓ ✓ ✓
THuman2.0 [51] 200 - 525 - ✓ - ✓ ✓ ✓

DRAPE [16] 7 23 24.5k - - - - - -
Wang et al. [47] - - 24k ✓ ✓ - ✓ ✓ -
3DPeople [40] 80 72 - - ✓ - - - ✓
DCA [43] - 56 7.1k - - - ✓ - -
GarNet [17] 600 - 18.8k - - - ✓ ✓ -
TailorNet [38] 9 - 5.5k - ✓ - ✓ ✓ -
Cloth3D [8] 8.5k 7.9k 2.1M - ✓ - ✓ ✓ -
Cloth3D++ [36] 9.7k 8k 2.2M ✓ ✓ ✓ ✓ ✓ -

CLOTH4D 1k 289 100k ✓ ✓ ✓ ✓ ✓ ✓

mans, these reconstructed meshes have issues, e.g., flex-
ible body motions and diverse appearances, owing to the
lack of datasets with richness in clothing and realistic dy-
namics of garments. To this end, we introduce CLOTH4D,
an open-sourced dataset facilitating physically plausible dy-
namic clothed human reconstruction.

Prior to us, many datasets have been collected, and we
sort out them in Table 1. Currently, scanned datasets are
widely adopted as they are photorealistic and can be eas-
ily processed to watertight meshes, which does an excel-
lent favor for current deep models to learn an implicit func-
tion (e.g., signed distance function) followed by marching
cubes [34] for surface reconstruction. However, it is born
with some weaknesses: 1) Scanned meshes are single-layer
and inherently fail to capture the space between clothing
and skin surface. Thus, body shape under clothing can-
not be accurately inferred, let alone the multi-layer and thin
clothing structures as in the real physical world. 2) It is
time-consuming and expensive to obtain high-quality and
large-scale temporal scanned sequences (i.e., 4D scanned
sequences) due to the limited efficiency and precision of 4D
scanners, especially for complicated clothing and large mo-
tions. Although synthetic datasets can to some extent over-
come these limitations, existing synthetic datasets are either
of small scale in terms of appearances and motions or are
highly unrealistic. Moreover, many datasets are not made
publicly available and free.

In contrast, CLOTH4D possesses several attractive at-
tributes: 1) We made great efforts to the diversity and
quality of clothing. All clothes are manually designed in
CLO [3] and cater to the requirement of the fashion indus-
try. 2) Meshes in CLOTH4D are clothing/humans sepa-
rated. Such flexibility makes studying and modeling the

relations and interactions between clothing simulation and
body movement possible. 3) CLOTH4D provides plenty of
temporal motion sequences with realistic clothing dynam-
ics. As the human body moves, the dressed clothing, e.g.,
the skirt in Figure 1, naturally deforms. 4) The dataset is
large-scale and openly accessible.

To demonstrate the advantages of CLOTH4D, we use it
to evaluate the state-of-the-art (SOTA) clothed human re-
construction methods. In addition to the generally adopted
static evaluation metrics, we propose a set of temporally-
aware metrics to assess the temporal coherence in a video
inference scenario thanks to the rich and true-to-life 4D syn-
thetic sequences in the dataset. Quantitative and qualitative
results of SOTA methods on CLOTH4D suggest that our
dataset is challenging and the temporal stability of the re-
constructed mesh is vital for evaluating the perceptual qual-
ity. Meanwhile, we retrain SOTA methods on CLOTH4D,
revealing interesting observations of how they perform on
multi-layer meshes with thin clothing structures. With in-
depth analysis and a summary of challenges for the exist-
ing approaches, CLOTH4D makes an essential step toward
more realistic reconstructions of clothed humans and stim-
ulates several exciting future work directions. All in all:

• We contribute CLOTH4D, a large-scale, high-quality,
and open-accessible 4D synthetic dataset for clothed human
reconstruction.

• We introduce a series of temporally-aware metrics to
evaluate the reconstructed performance in the aspect of tem-
poral consistency.

• With the proposed dataset and metrics, we thoroughly
analyze the pros and cons of SOTAs, summarize the existing
challenges toward more realistic 3D modeling, and propose
potential new directions.
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CLOTH4D with varied 3D sequences

Figure 2. Pipeline for creating instances in CLOTH4D, which primarily adopts CLO for clothing design and simulation, Mixamo for
animation, and Blender for processing and exporting meshes.

2. Related Work

Clothed Human Reconstruction. Clothed human recon-
struction aims to recover a 3D mesh from a monocular per-
son image. Estimating dressed people by modeling clothing
geometry as 3D displacement on top of a parametric body
model (e.g., SMPL [33]) is the leading solution to deal with
this task [5, 6, 28, 31, 39, 48]. By transferring the skinning
weights from the body model to the offset clothing mesh,
the reconstructed clothed mesh can be readily deformed and
animated in the same way as the under-clothing 3D para-
metric body model. However, it assumes the clothed human
to have the same topology as the naked body, leading to un-
satisfactory reconstructions of long hair, skirts, dresses, etc.
Although methods such as [9, 22, 26, 38] try to isolate the
reconstruction of clothing by constructing category-specific
clothing templates or statistical models, they fail to gener-
alize to unseen or complex types of clothing.

As another line of research, deep implicit function net-
works have drawn broader attention recently [7, 15, 20, 21,
24, 41, 42, 54]. PIFu [41] conditions on pixel-aligned fea-
tures to build deep implicit functions for reconstructing hu-
man meshes, and PIFuHD [42] goes a further step towards
enhancing 3D geometric details by predicting front and
back normals. ARCH [24] and ARCH++ [21] enable ani-
mating the reconstructed meshes by deforming the semantic
information into the SMPL canonical space. More recently,
leveraging SMPL body models as prior, PaMIR [54] and
ICON [49] further improve the reconstruction quality, espe-
cially on challenging poses. PHORHUM [7] achieves more
accurate results via jointly estimating geometry, albedo, and
shading information. It is worth noting that most works rely
on training data that are not available free of charge, making
an open-sourced dataset of clothed avatars of great signifi-
cance to advance research in 3D body/clothing modeling.
Clothed Human Datasets. As summarized in Table 1,
existing clothed human datasets can be divided into two

types, i.e., scanned datasets and synthetic datasets. The
former [10, 25, 44, 46] utilizes multiple synchronized cam-
eras to capture motions that have difficulties enriching the
scalability and diversity and obtaining highly accurate 4D
ground truth. Moreover, it inherently cannot mimic the
layering of clothing. The synthetic datasets mitigate these
limitations. However, existing synthetic datasets, no matter
whether static [17, 38, 47] or dynamic [8, 16, 39, 43], either
only contain a few clothing types or are highly unrealis-
tic. Cloth3D++ [36] is developed from Cloth3D [8], which
contains a total of 2.2 million scans, covering 9.7k subjects
dressed in 12.9k clothing, which is the most advanced in
scale. However, the clothing created based on garment tem-
plates are only base patterns with an immense gap compared
to clothing in real life. To intuitively demonstrate the ad-
vantages of CLOTH4D, we put visual comparisons of these
datasets in Figure A in the supplementary material.

3. CLOTH4D Dataset

We depict the pipeline of creating CLOTH4D in Fig-
ure 2, including (1) preparing the referenced clothing im-
ages and the unclothed 3D human avatars; (2) uploading 3D
human avatars to Mixamo to obtain the FBX files with vari-
ous animations; (3) designing 3D clothing in CLO, integrat-
ing the FBX files obtained in (2), and conducting clothing
simulation; and (4) exporting the sequenced mesh files.
Clothes and Models. Clothes are manually created by pro-
fessional fashion designers using CLO by producing the 2D
garment patterns and then auto-simulating them to 3D. We
put a video illustrating the production process of a 3D gar-
ment in the supplementary material (Video A) instead of
demonstrating details in the paper. CLOTH4D covers 1,000
different 3D outfits spanning over 500 prints and 50 fab-
rics. Over 40% of the clothes are designed referring to the
newest collections of varying design houses (e.g., Prada,
Moschino, and Alexander McQueen) to ensure visual re-
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alism, variance, and fashionability. In this paper, we fo-
cus on women’s wear owing to its diversity covering most
characteristics of garments. For avatars, CLO provides hu-
man avatars with varied physical appearances in terms of
hairstyles, faces, skin colors, body figures, etc., and we di-
rectly adopt these available avatars.
Animations and Simulations. For each human avatar,
we use Mixamo [2] for rigging and generating motion se-
quences. Given a motion sequence and a 3D garment, CLO
runs a clothing simulation of the 3D garment according to
the motion sequence at 30fps. A total of 289 animations
are utilized, such as Belly Dance, Offensive Idle, Jumping
Rope, etc. Unlike previous work [8] directly uses Blender
for cloth simulation, CLO simulates clothing with richer de-
tails and dynamics. The clothes exhibit wrinkles and fold
with the body’s movement in a natural and physically plau-
sible way, especially for skirts or dresses that differ a lot
from the body topology as shown in Figure 1.
Paired Multi-Modal Data. Then, we can obtain paired
data in the following representations: a 2D clothing pattern,
3D mesh sequences (clothed and naked human meshes with
corresponding fitted SMPL parameters/meshes, and sepa-
rate clothing meshes), and a UV texture map. The tex-
tured mesh can be rendered into multi-view normal images,
depth images, and RGB images given varying light condi-
tions. We also translate all these dynamic meshes to water-
tight with simplification using [23], thus they can be readily
used to train an implicit function for mesh reconstruction.
The number of triangles ranges from 170K to 4M for sim-
ulation and becomes 200K after simplification. Besides
human reconstruction, many other tasks could also bene-
fit from this paired data (e.g., clothing capture [50], human
pose transfer [18], and fashion-related tasks [19, 56, 57]).

4. Evaluations
In this section, we evaluate the state-of-the-art clothed

human reconstruction methods on CLOTH4D to demon-
strate new insights that the dataset can provide. Further,
we retrain SOTA methods on CLOTH4D and make several
interesting observations of how they perform on multi-layer
meshes with thin clothing structures. We also present the
challenges for existing approaches and propose potential re-
search directions with a comprehensive analysis.

4.1. Baselines

We mainly report results of four SOTA approaches, PIFu
[41], PIFuHD [42], PaMIR [54], and ICON [49] owing
to other works do not release their codes or models, such
as PHORHUM [7], ARCH++ [21], or which have already
been extensively compared with the listed methods above.
We use PIFu, PIFuHD, PaMIR, and ICON to denote their
released pretrained testing models. PaMIRgt and ICONgt

indicate the testing results using the fitted ground truth

SMPL mesh as conditions rather than the one predicted
using off-the-shelf human mesh recovery (HMR) methods
(GraphCMR [29] for PaMIR, and PyMAf [53] for ICON as
in their released code). Based on the characteristics of these
methods, they can be divided into three types: 1) pixel-
aligned methods (PIFu, PIFuHD); 2) GT-SMPL-guided +
pixel-aligned methods (PaMIRgt and ICONgt); 3) HMR-
SMPL-guided + pixel-aligned methods (PaMIR and ICON).

Furthermore, we retrain PIFu, PaMIR, and ICON on
CLOTH4D, which are denoted as PIFuclo, PaMIRclo, and
ICONclo, respectively. For these retrained models, we fol-
low the re-implementation setting introduced in ICON [4],
which allows us to train all these baselines with the same
training protocol and hyper-parameters for a fair compari-
son. Similarly, PaMIRgt

clo, and ICONgt
clo are tested with the

ground truth SMPL fits. We also use the cloth-refinement
module in the ICON’s released code for post-processing.

4.2. Datasets and Metrics

Datasets and implementation details. We organize the se-
quences in CLOTH4D into a 80%/10%/10% train/val/test
split. We render each mesh into 8 views using a weak per-
spective camera and pre-computed radiance transfer [45]
with dynamic light conditions following [41, 49]. All ren-
dered images are 512 × 512. The 2D keypoints used in all
methods are generated by OpenPose [11]. In addition, we
also evaluate all models on CAPE [35] test set adopted in
[49] to investigate the generalization ability.
Static Metrics. We report the quantitative results on nor-
mal reprojection error, Chamfer distance, and P2S distance
for evaluation as [15, 41, 42, 49]. As all compared meth-
ods use a weak perspective or orthographic camera, the es-
timated meshes may not be well aligned with the ground
truth meshes in the z-direction (i.e., view direction). Thus,
we shift the estimated meshes to have the same z-axis mean
as the ground truths following [15] for a fair comparison.
Temporal Metrics. The aforementioned static metrics ig-
nore the temporal consistency of the reconstructed meshes
across time, which is essential for real-time applications
since meshes presenting jitters and flickers highly affect the
perceptual quality. Thanks to the rich temporal dynam-
ics provided in CLOTH4D, we are the first to introduce
temporally-aware metrics to evaluate the temporal coher-
ence of the generated mesh sequences. Referring to tempo-
ral metrics SSDdt and dtSSD used in video matting tasks
[14, 32], we compute two metrics measuring the temporal
coherence of the predicted mesh normal:

Normalsddt =
1

T

∑
t

∣∣∣∣(N pr
t −N gt

t

)2
−

(
N pr

t+1 −N gt
t+1

)2
∣∣∣∣ , (1)

Normalsdtd =
1

T

∑
t

∣∣∣∣(N pr
t −N pr

t+1

)2
−

(
N gt

t −N gt
t+1

)2
∣∣∣∣ , (2)

where T is the length of the sequence. N pr
t and N gt

t de-
note the rendered normal images from the predicted mesh
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Table 2. Quantitative evaluation on CLOTH4D. PaMIRgt and ICONgt denote that the fitted ground truth SMPL is used during the inference.
Gray color indicates the results trained on CLOTH4D.

Method PIFu PIFuHD PaMIR PaMIRgt ICON ICONgt PIFuclo PaMIRclo PaMIRgt
clo ICONclo ICONgt

clo

Normals ↓ 0.182 0.181 0.224 0.145 0.211 0.118 0.150 0.230 0.114 0.198 0.103
P2S ↓ 3.911 3.518 3.827 2.641 4.660 2.473 2.793 5.037 2.619 3.711 2.068
Chamfer ↓ 3.578 2.487 4.157 2.487 4.196 1.631 2.412 4.186 1.618 3.499 1.367

Normalsddt ↓ 0.008 0.007 0.032 0.025 0.013 0.030 0.009 0.021 0.033 0.013 0.035
Normalsdtd ↓ 0.025 0.023 0.043 0.035 0.034 0.028 0.017 0.040 0.027 0.038 0.033
P2Sddt ↓ 0.222 0.167 0.253 0.247 0.383 0.369 0.185 0.417 0.402 0.321 0.367
P2Sdtd ↓ 0.733 0.578 1.025 0.702 0.979 0.554 0.548 0.890 0.536 0.878 0.526
Chamferddt ↓ 0.207 0.181 0.331 0.316 0.359 0.358 0.157 0.350 0.382 0.331 0.369
Chamferdtd ↓ 0.729 0.576 1.017 0.701 0.974 0.553 0.546 0.886 0.536 0.873 0.525

Table 3. Quantitative evaluation on CAPE. Table notations are the same as Table 2.

Method PIFu PIFuHD PaMIR PaMIRgt ICON ICONgt PIFuclo PaMIRclo PaMIRgt
clo ICONclo ICONgt

clo

Normals ↓ 0.161 0.160 0.183 0.086 0.160 0.056 0.164 0.176 0.093 0.156 0.077
P2S ↓ 4.259 3.795 3.840 1.193 4.014 1.067 4.652 4.235 1.491 3.304 1.193
Chamfer ↓ 4.204 3.927 4.258 1.654 3.962 1.038 4.381 4.080 1.427 3.544 1.397

and the ground truth mesh at time step t, respectively. The
subscript ddt is short for distance delta time, which captures
the stability of errors between two consecutive meshes. And
dtd (delta time distance) penalizes large temporal change
of the prediction with respect to the change of the ground
truth. These two metrics indicate unstable mesh variations
and ignore temporally coherent errors [14]. The ddt and dtd
of Chamfer and P2S distances are similarly defined. More
details can be found in the supplementary material.

4.3. Baseline Evaluation

Quantitative results. Table 2 gives quantitative results
on the CLOTH4D test set using the evaluation metrics de-
scribed in Section 4.2. As indicated in the non-gray part,
we made the following observations:

1) In terms of static metrics, ICONgt > PaMIRgt > PI-
FuHD > PIFu > PaMIR > ICON. I.e., GT-SMPL-guided
+ pixel-aligned methods > pure pixel-aligned methods >
HMR-SMPL-guided + pixel-aligned methods.

2) With the strong guidance of ground truth SMPL mesh,
the performance of ICONgt and PaMIRgt significantly im-
proves compared to their counterparts with estimated SMPL
(i.e., ICON and PaMIR). However, ground truth SMPL
meshes are unavailable at test time, which suggests that pre-
vious comparisons [15,49] between GT-SMPL-based meth-
ods and others may be unfair. And pure pixel-aligned meth-
ods may be even more favorable than SOTA SMPL-based
methods for the in-the-wild scenario.

3) From the perspective of temporally-aware metrics,
pure pixel-aligned methods have higher reconstruction sta-
bility (see Figure 4). We attribute this to the fact that ICON
and PaMIR strongly rely on the SMPL body prior, thus fail-
ing to generate far-from-the-body clothes (e.g., skirts and
dresses) that present rich temporal dynamics as shown in
Figure 1. Plus, the jittery and unstable pose estimation of

the off-the-shelf HMR methods further prevents ICON and
PaMIR from generating temporally coherent results.

4) ICON outperforms PaMIR as ICON better models
mesh-based local features while PaMIR depends more on
global information. Moreover, PaMIR loses high-frequency
details due to the limited resolution of its volumetric repre-
sentation. Our observations on CAPE are in line with previ-
ous works. For simplicity, we do not expand the narrative.
Qualitative results. We present the qualitative results on
CLOTH4D in Figure 3 and draw the following insights that
have not been fully explored since there are no such large-
scale and diverse datasets like CLOTH4D.

1) Global shape vs. local details. All baselines can recon-
struct the overall shape conditioned on the input RGB im-
age. PIFuHD presents the finest details, followed by ICON,
PaMIR, and PIFu, as PIFuHD enlarges the spatial resolu-
tion of pixel-aligned features and ICON takes advantage
of mesh-based local features (signed distance, surface nor-
mal, etc.). However, focusing on local features suffers from
overfitting and poor generalization to complicated clothing
(e.g., incomplete dress in the 3rd and 5th examples in Fig-
ure 3) and large motions (e.g., artifacts in the arm regions in
the 2nd, 3rd, 6th, and 8th examples in Figure 3). Compar-
atively, thanks to the global feature encoder, PaMIR, and
PIFu can generate more holistic clothing but sacrifice de-
tails. Thus, it is an important future research direction to
explore better strategies for balancing the local and global
reconstruction quality.

2) Human body priors. The last three rows in Figure 3
and Figure 4 (also shows side views) present results on
relatively challenging poses. ICONgt and ICON robustly
recover the poses, while PIFu, PIFuHD, and PaMIR are
prone to producing broken limbs or anatomically improb-
able shapes to different extents. For the side view, we
can find that PaMIRgt and ICONgt are more similar to the
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Figure 3. Qualitative results on CLOTH4D.

ground truth mesh, which is unsurprising as they are given
the ground truth SMPL as prior. Comparatively, PaMIR and
ICON, which adopt the estimated SMPL, face the common
problems of HMR-SMPL-based reconstruction methods–
the predicted SMPL body bends legs or hunches over due
to the depth ambiguity–leading to large reconstruction er-
ror. Similarly, PIFu and PIFuHD tend to have forward heads
with slightly bending legs as they are not aware of any hu-
man body priors. One potential research direction is to
jointly train or optimize body prior (e.g., SMPL, keypoints,
human parsing) with mesh reconstruction.

3) Ambiguity of geometry and appearance. As shown in
the 6th-8th rows of Figure 3, the clothing prints can affect
the surface reconstruction due to the ambiguity of geometry
and appearance in single-view rendering. Among all these
baselines, ICON and PIFuHD show high robustness to the
input clothing prints as they predict normal images as inter-
mediate representations, which reduces this ambiguity com-
pared to directly inputting RGB images. Note that ICON
only takes the normal images as input to the reconstruction
module without using the RGB images, further mitigating
the ambiguity and bringing even higher robustness than PI-
FuHD (the 8th example). Motivated by this observation,
future research could shed more light on disentangling the
geometry and appearance either implicitly [37] or explic-

RGB PIFu PIFuHD PaMIR ICONGT ICONgtPaMIRgt

1

6

4

5

3

2

Figure 4. Temporal qualitative results. The 1st, 3rd, and 5th rows
are three consecutive frames, and the 2nd, 4th, and 6th rows are
the side views predicted from the corresponding front-view RGB.
Refer to the supplementary material (Video B) for video results.

itly [7]. Also, predicting more comprehensive intermediate
2D/3D representations (e.g., depth, illumination, keypoints,
segmentation) may also improve the performance.

4) Temporal consistency. For real-time applications, e.g.,
streaming from a monocular camera and importing the re-
constructed motion sequence into a virtual scene, the tem-
poral coherence of the generated meshes over time is vi-
tal for a high-quality user experience. We show the re-
constructed meshes for three consecutive frames in Fig-
ure 4. As can be found from the side views of the recon-
structed meshes, although only subtle motions are present
in these frames, the HMR-SMPL-guided methods (PaMIR
and ICON) suffer from unstable SMPL predictions and gen-
erate temporally inconsistent meshes. On the other hand,
pure pixel-aligned methods (PIFu and PIFuHD) fail to pre-
dict accurate human pose but produce temporally consistent
errors, thus having small ddt values. Given the ground truth
SMPL meshes, PaMIRgt is still more sensitive to global
pose than ICONgt as also noted by [49]. These observa-
tions are consistent with the quantitative temporal metrics
reported in Table 2. It would be interesting to investigate
temporal modeling of implicit functions (e.g., incorporating
a recurrent neural network [27, 32, 55] to train the implicit
function on the 4D dataset, or applying test-time fitting to
refine the reconstructed meshes with temporal loss terms).
We make such an attempt by adding a temporal term (penal-
ize Chamfer distance between two successive frames) to the
refinement process of PIFuclo and achieve better temporal
consistency (Chamferddt: 0.157→0.123 and Chamferdtd:
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Figure 5. Qualitative results of baseline methods tested on CLOTH4D with front view and side view.

0.546→0.454).

4.4. Baseline Enhancement

In addition to the findings and insights discovered in
Section 4.3 by evaluating on CLOTH4D. CLOTH4D, con-
taining various clothing types and motion sequences, as
well as true-to-life multi-layer thin 3D clothing structures,
poses new challenges to clothed human reconstruction re-
search. To investigate the SOTA performance when trained
on CLOTH4D, we re-train PIFu, PaMIR, and ICON as de-
scribed in Section 4.1, denoting as PIFuclo, PaMIRclo, and
ICONclo, respectively. We report the results of models
trained on CLOTH4D in the gray columns in Table 2 and

Figure 5. The following findings can be made:
1) In terms of quantitative metrics, the models trained

on CLOTH4D generally outperform the original models
trained on scan datasets as the data distributions of the train-
ing and testing datasets are closer. ICONgt

clo achieves the
highest accuracy on the CLOTH4D test set. Furthermore,
the qualitative results show that more high-frequency de-
tails are generated after training on CLOTH4D.

2) As the re-implementation setting in ICON’s code al-
lows the normal image to be input into all methods, the in-
fluence of garment print to PIFu and PaMIR are slightly re-
lieved, validating the hypothesis we made in Section 4.3 that
predicting intermediate representations like normals can re-
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duce the ambiguity of geometry and appearance.
3) SOTAs fail to model layered and thin clothing struc-

tures as shown in the dress and skirt regions in Figure 5,
where holes and tattered pieces are generated. Notably, the
original PIFu and PaMIR can roughly generate the over-
all shapes of loose clothing, but they fail when trained on
CLOTH4D. Since SOTA methods learn an occupancy field
by sampling query points in the 3D space, for PIFu, whose
spatial feature resolution is low, and for PaMIR, whose vol-
umetric feature space is also of low resolution, it is hard to
sample informative points near the thin surface. It is even
harder for the network to learn if a querying point is inside
or outside the mesh near the thin structure, as the inside and
outside samples have very similar local features.

4) The difficulties of learning the occupancy field for thin
faces motivates developing methods that focus more on the
query points near the thin surface for better reconstruction.
Future research may also seek better implicit representa-
tions to boost the performance of reconstructing multi-layer
thin structures e.g., [12,13]. However, as shown in the sup-
plementary material (Figure B), the state-of-the-art implicit
representation cannot achieve satisfactory multi-layer thin
structure reconstruction even if we feed the ground truth
mesh as the input to the implicit function.

As shown in Table 3 and Figure 6, the performance on
the CAPE dataset drops after training on CLOTH4D due
to two reasons. 1) The CAPE dataset is collected in a con-
trolled lab environment with dim lighting, which further en-
larges the domain gap between CAPE and CLOTH4D. Con-
sequently, the predicted normal images and reconstructed
meshes are less accurate. 2) CAPE dataset contains single-
layer scan meshes and tight clothing. However, models
trained on the multi-layer CLOTH4D dataset tend to gen-
erate gaps between the clothing and skin, resulting in holes
in the clothing and unsmooth surfaces. This also verifies
that local features are sensitive to overfitting. It remains a
challenging but interesting problem to have a unified rep-
resentation of single-layer and multi-layer data, thus dif-
ferent types of datasets could be trained together to yield
better generalizability. Finally, we show the reconstructed
samples of the in-the-wild images in Figure 7.

4.5. Limitations

Firstly, the simulation results are generated via graphics
software, which may crash in some cases. We show some
detailed examples in the supplementary material (Figure C).
Meanwhile, the results on CAPE show that the clothing fea-
tures of current CLOTH4D can well represent basic men’s
wear. However, considering the completeness, the dataset
scale and diversity of subjects will be further improved to
cover males and kids. In addition, the original simulated
mesh sequences are non-watertight, which must be con-
verted to watertight (and such conversion is usually lossy)

RGB PIFu PIFuclo PaMIR ICONGT PaMIRclo ICONclo

Figure 6. Visual results on CAPE with front view and side view.

PaMIR PaMIRcloPIFu PIFuclo ICON ICONcloInput

Figure 7. In-the-wild front and side view reconstructions. SOTAs
with implicit functions tend to generate broken results.

before feeding into current clothed human reconstruction
methods. It would be essential to conduct future research
that reconstructs meshes with arbitrary topologies. Finally,
as indicated by the results on CAPE, the generalization abil-
ity to scan data is yet to be further explored.

5. Conclusion

We introduce CLOTH4D containing realistic and rich
categories of clothing, avatars, and animations, and will re-
lease it for free, hoping to push the research on clothed hu-
man reconstruction. We evaluate current SOTAs with the
newly introduced temporally-aware metrics and in-depth
analyze their pros and cons by leveraging the advantages
of CLOTH4D. We retrain those SOTAs on CLOTH4D, dis-
cuss the challenges the new dataset brings, and propose po-
tential research directions. Although layering clothing in
CLOTH4D brings immense difficulties to current research,
we believe it is an important step toward more realistic and
temporally coherent clothed human reconstruction.
Acknowledgement: This work is supported by Laboratory
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